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Simple Summary: The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity
through inducing the expression of antimicrobial peptides (AMPs) against pathogens. As an important
economical insect, Bombyx mori (B. mori) has been used as an insect model of Lepidoptera. However,
the recognition of the Toll-Spätzle pathway in silkworm is very limited. In this study, we reported
that B. mori Spätzle2 (BmSpz2) could be activated by pathogens. The activated BmSpz2 could bind
with B. mori Toll11 (BmToll11) or B. mori Toll9-1 (BmToll9–1). Further investigations showed that
overexpression of BmToll11 or BmToll9–1 could significantly upregulate AMPs expression. The
findings of this study confirmed that a Toll-Spz pathway regulated immune response to microbial
infection in B. mori and may help improve the understanding of the signaling pathways involved in
the innate immune responses of Lepidoptera insect.

Abstract: The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays
an important role in fighting against pathogens through the regulation of antimicrobial peptide gene
expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known
regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited
direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay
results showed that BmToll11 and BmToll9–1 could activate both drosomycin and diptericin promoters
in S2 cells. Furthermore, BmToll11, BmToll9–1, and five BmSpzs genes were found to be significantly
upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast
two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both
BmToll11 and BmToll9–1. These findings suggest that the activated BmSpz2 can bind with BmToll11
and BmToll9–1 to induce the expression of AMPs after the silkworm is infected by pathogens.
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1. Introduction

Innate immunity works as an evolutionarily conserved system, which provides the first defense
line in animals against a wide variety of pathogens [1]. Antimicrobial peptides (AMPs) are an important
family of innate immunity effectors in insects, they are involved in the three main signaling transduction
pathways—Toll, JAK/STAT, and immune deficiency (IMD) [2]. The critical step of innate immune
responses in the Toll signaling pathway is that pathogen-associated molecular patterns (PAMPs) are
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recognized by host pattern recognition receptors (PRRs) [1,3]. Toll-like receptors (TLRs) are composed
of extracellular leucine-rich repeat (LRR) arrays and an intracellular Toll-interleukin-1 receptor (TIR)
domain and are a group of PRRs that can recognize specific PAMPs. In insects, PAMP recognition by
TLRs results in the activation of AMPs, which subsequently involves the innate immune response [4].

Among the nine Toll genes identified in Drosophila melanogaster, the first Toll gene was reported for
its function in patterning during development [5]. Later, it was confirmed that D. melanogaster TLRs
also participate in innate immune response [6,7]. Drosophila Toll signaling pathways are activated
by Gram-positive bacteria, yeast, or fungi but not Gram-negative bacteria [8,9]. When pathogens
infect Drosophila, PG recognition proteins (PGRPs) activate serine protease zymogens, resulting in
the cleavage of pro-Spätzle (proSpz) [10,11]. During this process, the Spz-processing enzyme (SPE)
is specifically activated and cleaves proSpz into the mature active C-terminal C-106 domain [12–14].
Then, the activated Spzs bind to the extracellular region of the Toll receptor [12,15,16]. After the Spz
binding to the Toll receptor, the conformation of Toll is changed. Then, an active form of the Toll
dimer is generated [17]. Once activated, the TIR domain of Toll forms a homotypic interaction with
MyD88 [18,19]. MyD88, Tube and Pelle bind together to form a signaling complex via their death
domains [20–22]. Then, the complex induces the translocation of their downstream transcription
factors into the nucleus, resulting in the activation of AMPs [23,24].

The Toll signaling pathway is an evolutionarily and highly conserved mechanism for immune
responses in insects. Following their identification in the fruit fly, Toll and Spz genes have been reported
in many insects, such as Tribolium castaneum [25], Anopheles gambiae [26,27], Apis mellifera [28], Manduca
sexta [29] and Bombyx mori [30,31]. In M. sexta, hemolymph proteinase 8 cleaves proSpätzle-1A to
release the active C-terminal domain MsSpz-C108, a dimer of the C-terminal 108 residue cystine-knot
domain [32]. Then, the binding of MsSpz-C108 and MsTollecto (the Toll ectodomain, extracellular
region) activates the expression of AMPs [33].

As an important economical insect, B. mori has been utilized as a model insect for biological
research [30,34,35]. There have been 14 Toll genes identified in B. mori, six more than in
Drosophila [30,31,36]. Phylogenetic analyses of insect TLRs showed that six BmTLRs belong to
the immunity-related group, and others were involved in various processes [30]. However, only the
roles of BmToll9–1 in innate immunity have been confirmed [37,38]. As one of the ligands for the
Toll, Spz can activate the Toll pathway. It has been found that there has 6, 6, 2 Spz genes in Drosophila,
Anopheles, and Apis, respectively. In addition, six BmSpz genes have been identified in B. mori [39],
but only BmSpz1 and BmSpz4 are known to involve in innate immune response [40,41]. BmSpz3/Toll8 is
mainly involved in melanization rather than pattern formation [39]. In addition to Toll9–1, there are 13
other Toll genes encoded in silkworms, however, whether AMP genes are activated by these members
remains unknown. In addition, it is unclear which BmSpz can bind to Toll9–1 or other Tolls.

In this study, the results from S2 cells cotransfected with recombinant BmTIR plasmids
and luciferase plasmids with different D. melanogaster promoter fragment (pGL3B-drosomycin or
pGL3B-diptericin) showed that BmTIR11 and BmTIR9–1 could significantly activate both drosomycin
and diptericin promoter. We further determined that BmSpz2, but not other Spzs, binds to BmToll11
and BmToll9–1. Together, our results confirmed that a Toll-Spz pathway regulated immune response
to microbial infection in B. mori.

2. Materials and Methods

2.1. Insect Rearing, Immune Challenge, and Cell Lines

The B. mori strain Dazao was reared on an artificial diet (Nihon Nosanko, Kanagawa, Japan) and
maintained at 25 ◦C under a photoperiod of 12 h light and 12 h dark.

Escherichia coli and Staphylococcus aureus were inactivated with 4% formalin for 15 min.
After centrifugation at 8000× g for 3 min, the microbes were collected and dissolved in 0.85%
sterilized NaCl. The fifth instar larvae were injected with microbes (OD600 = 0.8, 5 µL per larva), while
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silkworms injected with 0.85% sterilized NaCl were used as controls. The fat body was harvested at
3, 6, 12, and 24 h after injection. The collected samples were stored at −80 ◦C and later used to total
RNA extraction.

D. melanogaster Schneider 2 (S2) cells were maintained in Schneider Drosophila Medium (Gibco,
Waltham, MA, USA) with 10% fetal bovine serum and 1% penicillin/streptomycin (Gibco, Waltham,
MA, USA) at 28 ◦C under a normal atmosphere in T-25 flasks (Corning, NY, USA).

BmN-SWU1, a B. mori cell line, was cultured in TC-100 medium (United States Biological, Salem,
MA, USA) with 10% fetal bovine serum and 1% penicillin/streptomycin (Gibco, Waltham, MA, USA)
and maintained at 28 ◦C [42].

2.2. RNA Isolation and cDNA Synthesis

Total RNA was extracted using a total RNA extraction kit (OMEGA, Doraville, GA, USA), and the
contaminating genomic DNA was digested with RNase-free DNase I (Takara, Tokyo, Japan) for 15 min
at 37 ◦C. Then, total RNA was used to reverse transcribe the first-strand cDNA using a commercial kit
(Promega, Madison, WI, USA). The cDNA samples were stored at −80 ◦C.

2.3. Gene Cloning

All 14 BmToll gene sequences were obtained from the NCBI GenBank (https://www.ncbi.nlm.nih.
gov/genbank), SilkDB (https://silkdb.bioinfotoolkits.net/main/species-info/-1) and KAIKObase (http:
//sgp.dna.affrc.go.jp/KAIKObase/) databases. The TIR domains, signal peptides, and transmembrane
regions were predicted by SMART [43] (Table S1). All 14 BmTIRs were amplified by polymerase chain
reaction (PCR) from cDNA samples and cloned into the pMT/BiP/V5-His A vector (V413020, Invitrogen,
Waltham, MA, USA) for dual-luciferase reporter assays. Forward and reverse primers were listed in
Table S2. PCR reactions were performed with the following conditions: 94 ◦C for 3 min, 35 cycles of 94
◦C for 30 s, Tm−5 ◦C for 30 s and 72 ◦C for 1 min, then a final extension at 72 ◦C for 10 min. The PCR
products were purified using a gel purification kit (OMEGA, Doraville, GA, USA). The purified PCR
products were first inserted into the pMD-19T vector (Takara, Tokyo, Japan). Recombinant plasmids
were purified using a Pure Yield™ Plasmid Miniprep System (A1222, Promega, Madison, WI, USA)
and digested with respective restriction enzymes. The purified DNA fragments were inserted into the
pMT/BiP/V5-His A vector using T4 DNA ligase (M0202L, NEB, Beverly, MA, USA). Positive clones
were sequenced by the Sangon Company (Shanghai, China) for further experiments.

The construction of recombinant plasmids for the study of BmToll11 and Toll9–1 involved in the
immune response and yeast two-hybrid assays was performed as described above. For the analysis
of immune responses, BmTIR11, BmTIR9–1, BmSpz2 (the active domain), and DsRed (as a control)
genes were inserted into the pIZT/V5-His vector (V8010, Invitrogen, Waltham, MA, USA). For the
yeast two-hybrid assay, BmTollecto11 and BmTollecto 9–1 were cloned into the pGBKT7 vector (Takara,
Tokyo, Japan), while the active domain of BmSpzs was cloned into the pGADT7 vector (Takara, Tokyo,
Japan). The mature active C-terminal domain of BmSpzs was cleaved by pro-Spätzle (proSpz), and
the predicted cleavage sites were listed in Figure S2. The forward and reverse primers were listed in
Table S2.

2.4. Dual-Luciferase Reporter Assay

For the dual-luciferase reporter assay, S2 cells were plated in 6-well culture plates (105 cells/well)
and incubated overnight in serum-free medium. Then, S2 cells were transiently cotransfected with
recombinant pMT-TIR expression plasmids (2 µg), pGL3B, pGL3B-drosomycin or pGL3B-diptericin
firefly luciferase reporter plasmids (1 µg) and Renilla luciferase reporter plasmid (pRL-TK, Promega,
Madison, WI, USA) (0.1 µg) [33,44]. After overnight transfection, serum-free medium was replaced
with complete growth medium containing 250 mM copper sulfate for protein expression. Then,
firefly luciferase and Renilla luciferase activities were measured at 48 h after the induction of protein
expression using the Dual-Luciferase Reporter Assay System (E1960, Promega, Madison, WI, USA)

https://www.ncbi.nlm.nih.gov/genbank
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https://silkdb.bioinfotoolkits.net/main/species-info/-1
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in the GloMax®-Multi+ Detection System (Promega, Madison, WI, USA). Relative luciferase activity
(RLA) was obtained as the ratio of firefly luciferase activity to Renilla luciferase activity. RLA from S2
cells cotransfected with empty pMT/BiP/V5-His A and pGL3B (empty reporter vector) plasmids were
used as the calibrator.

2.5. Synthesis of dsRNA

The interference segments of BmToll11, BmToll9-1, BmSpz2, and EGFP (control) genes were designed
by the database (http://sidirect2.rnai.jp/). T7 promoter sequences were tailed to sense and antisense
primers (primers sequences in Table S2). Synthesis of dsRNA were used with Transcript Aid T7 High
Yield Transcription Kit (KO441, Thermo Scientific, Waltham, MA, USA), which were purified using
MicroElute RNA Clean-up Kit (R6247, OMEGA, Doraville, GA, USA) for RNA interference (RNAi).

2.6. Immune Response Analysis

For immune response analysis, the B. mori cell line BmN-SWU1 was plated in 6-well culture
plates (105 cells/well) and incubated overnight in serum-free medium. Then, BmN-SWU1 cells were
transiently transfected with the recombinant expression plasmids pIZT/BmTIR11, pIZT/BmTIR9–1
and pIZT/BmSpz2 (2 µg), while cells cotransfected with pIZT/DsRed served as the control. After 72 h,
the cells were collected for RNA isolation and cDNA synthesis, as described above.

For RNAi, the B. mori cell line BmN-SWU1 was plated in 6-well culture plates (105 cells/well)
and incubated overnight in serum-free medium. Then, BmN-SWU1 cells were transfected with the
interference fragments of BmToll11, BmToll9-1, BmSpz2, or EGFP (3 µg), while cells were challenged by
inactivated E. coli or S. aureus (PBS buffer were used as a control). After 48 h, the cells were collected
for RNA isolation and cDNA synthesis, as described above.

2.7. Real-Time Quantitative PCR (RT-qPCR) Analysis

B. mori ribosomal protein L3 (BmRpL3) was used as an internal control for normalization. The
20 µL mixture included 2 µL cDNA, 0.5 µL each primer (10 mM; Table S3), 10 µL SYBR™ Select Master
Mix reagent (Bio-Rad, Hercules, CA, USA) and 7 µL ddH2O. RT-qPCR was performed according to the
following parameters: one cycle of an initial denaturation step at 95 ◦C for 1 min, 40 cycles at 95 ◦C for
30 s and 60 ◦C for 20 s and a final cycle at 95 ◦C for 15 s, 60 ◦C for 30 s and 95 ◦C for 15 s. The specific
primers of genes for qPCR are listed in Table S3. The relative gene expression levels were estimated
according to the 2−∆∆Ct method [45]. All samples were run in triplicate.

2.8. Yeast Two-Hybrid Assay

Briefly, BmTolls and BmSpzs genes were fused to the yeast two-hybrid vectors pGADT7 and
pGBKT7. Yeast competent cells were transformed simultaneously with the bait and prey constructs
pGBKT7-BmTolls/pGADT7-BmSpzs. Yeast cells were plated on synthetic defined premix (SD) agar base
plates that did not contain leucine (Leu) or tryptophan (Trp). Then, the positive clones containing the
constructs pGADT7-prey/pGBKT7-bait were grown on SD plates in the absence of Leu, Trp, histidine
(His), and adenine (Ade) but the presence of 5-bromo-4-chloro-3-indoxyl-D-gal (X-α-Gal).

2.9. Statistical Analysis

One representative set of data was used to generate figures with GraphPad Prism software
(GraphPad Prism 8). All statistical analyses were conducted using SPSS software (IBM SPSS v. 22),
and cumulative survival was analyzed by Tukey’s multiple comparison test. Significant differences
are indicated with * for p < 0.05 and ** for p < 0.01. All results are shown as means ± SD of triplicate
samples. All data presented are representative of a minimum of three independent experiments.

http://sidirect2.rnai.jp/
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3. Results

3.1. Overexpression of Recombinant BmTIRs in S2 Cells Activates Drosomycin and Diptericin Reporter Genes

The function of the Toll-Spz signaling pathway in regulating innate immunity in D. melanogaster
is well understood. However, in other insect species, it is not well studied. In B. mori, Toll and Spz
genes have been identified [30,31,39], but few were known that the specific Tolls and Spzs implicated
in the innate immune system. To explore the Toll-Spz pathway in B. mori, we constructed recombinant
vectors and expressed the TIR of Toll receptors (BmTIRs) in the S2 cell line. Immunoblotting results
showed that recombinant BmTIR proteins were detected in S2 cells (Figure 1A,B).
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Figure 1. The Toll-interleukin-1 receptor (TIR) domains of Bombyx mori Toll family members can
recognize the drosomycin and diptericin promoter. (A,B): Expression of recombinant B. mori TIR proteins
in S2 cells. The BmTIRs expression in S2 cells were identified by Western blot analysis using an anti-V5
antibody. (C): Expression of BmTIRs activates the promoter activity of drosomycin or diptericin in S2
cells. The cells were cotransfected with recombinant BmTIR plasmids and luciferase plasmids with or
without different promoter fragments (pGL3B, pGL3B-drosomycin or pGL3B-diptericin) for 48 h, and
then the relative luciferase activity (RLA) was measured by dual luciferase assay. The statistical analysis
used Tukey’s multiple comparison test. Bars represent the mean of three individual measurements ±
SD. Significant differences are indicated with * for p < 0.05 and ** for p < 0.01.

We next cotransfected the different combination vectors of BmTIR proteins with the vector
containing the D. melanogaster drosomycin or diptericin promoter in S2 cells, then the activity of
drosomycin or diptericin promoter was measured using dual-luciferase reporter assays. The results
showed that BmTIR9–1 overexpression significantly improved the levels of the relative luciferase
activity (RLA) of the drosomycin reporter. In addition, the overexpression of BmTIR11 gene remarkably
increased the RLA of drosomycin and diptericin reporters (Figure 1C). These results showed that BmTIR11
and BmTIR9–1 could activate drosomycin and diptericin genes in S2 cells, which suggested that they
may be involved in B. mori AMP gene regulation.
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3.2. BmToll11 and BmToll9–1 are Involved in the Immune Response

To investigate whether B. mori Toll11 and Toll9–1 genes were involved in the immune response
in silkworms, the mRNA expression levels of B. mori AMP genes were analyzed by RT-qPCR in
BmN-SWU1 cells overexpressing BmTIR11 or BmTIR9–1. First of all, overexpression levels of BmTIR11
or BmTIR9–1 genes were tested, which results in a significant up-regulation in BmN-SWU1 cells
overexpressing BmTIRs (Figure S3A). Cecropin A1 and gloverin-like protein 3 genes were upregulated in
BmN-SWU1 cells overexpressing BmTIR11 (Figure 2A). Gloverin-like protein 3 and lysozyme genes were
upregulated in BmN-SWU1 cells overexpressing BmTIR9–1 (Figure 2B). Then, the expression levels of
B. mori AMP genes were also analyzed in BmN-SWU1 cells knocking down BmTIR11 or BmTIR9–1
genes. The expressions of AMPs were inhibited in BmToll11 or BmToll9–1 gene knockdown cells (Figure
S4A,B). These results showed that BmToll11 and BmToll9–1 could activate the immune response in the
BmN-SWU1 cell line. Furthermore, an experiment was performed using silkworms infected with E.
coli (Gram-negative bacteria) or S. aureus (Gram-positive bacteria). Then, the transcriptional levels
of B. mori Toll11 and Toll9–1 genes were analyzed by RT-qPCR at different times after infection. The
RT-qPCR results showed that the Toll11 and Toll9–1 genes of B. mori were activated by microbes at 3
h and 6 h compared with saline water but downregulated after 12 h (Figure 2C,D). The Myd88 was
also activated by the two microbes (Figure 2E). These results suggested that both Gram-negative and
Gram-positive bacteria could induce the expression of BmToll11 and BmToll9–1 genes.
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Figure 2. BmToll11 and BmToll9–1 activate the expression of AMPs and are involved in the immune
response. (A,B): The overexpression of BmToll11 and BmToll9–1 could promote the mRNA expression
of AMPs in the BmN-SWU1 cell line. BmN-SWU1 cells were transiently transfected with recombinant
plasmids. The total RNAs were prepared after transfected for 72 h, cDNA was synthesized with olig
(dT)-primer. Then the AMPs were determined by RT-qPCR. (C–K): The Toll signaling pathway was
activated by Escherichia coli or Staphylococcus aureus. The fifth instar larvae were injected with E. coli
or S. aureus, while the 0.85% sterilized NaCl was used as control. The fat body was harvested for the
cDNA synthesis at 3, 6, 12, and 24 h after injection. Then BmToll11, BmToll9–1, Myd88, and AMPs were
detected by RT-qPCR. For all RT-qPCR, RPL3 was used as an internal control. Bars represent the mean
of three individual measurements ± SD. Significant differences are indicated with * for p < 0.05 and **
for p < 0.01, which is determined by one-way ANOVA followed by a Tukey’s multiple comparison test.

In D. melanogaster, some AMP genes expression was regulated through the Toll pathway activated
by fungi or Gram-positive bacteria, such as drosomycins, metchnikowin, and defensins. Another AMP
genes expression was regulated by the IMD pathway activated by Gram-negative bacteria, such as
drosocin, diptericin, and attacins. Several AMP genes in silkworms, including cecropin A1 (CecA1), lebocin
(Leb), defensins (Def), gloverin-like protein 3 (Glo3), lysozyme (Lys), and moricin 1 (Mor) were activated by
the two microbes (Figure 2F–K). These results suggest that both Gram-negative and Gram-positive
bacteria could activate the Toll signaling pathways and cause the increased expression of BmToll11,
BmToll9–1, and AMPs in silkworms.
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3.3. BmTollecto9–1 and BmTollecto11 Interact with BmSpz2 but not Other BmSpzs

The mechanism that the activation of the Toll signaling pathway in D. melanogaster and M. sexta is
relatively clear. In Drosophila, the Toll pathway is activated after the activated Spz binding with the Toll
receptor [6]. We demonstrated that BmToll11 and BmToll9–1 genes function in innate immune responses
in silkworms. However, it is unclear which Spzs may be involved in innate immune responses and
interact with BmTolls. The amino acid sequence of Spz contains a cystine knot domain (Spz CK domain)
(Figure S2). Furthermore, phylogenetic analysis was conducted using the CK domain sequence of Spz
genes, the results showed that there was a highly conserved monophyly among different insect species
(Figure S1). To identify which of the five BmSpzs genes may be involved in innate immune responses,
RT-qPCR was performed. The results showed that all five BmSpzs genes were upregulated after the
injection of inactivated bacteria for 6 h (Figure 3).
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To determine which Spzs interact with Toll11 and Toll9–1, a yeast two-hybrid analysis was 
conducted. The results confirmed that BmSpz2 could interact with both BmTollecto11 and BmTollecto9–
1, whereas other BmSpzs failed to interact with them (Figure 4). Furthermore, the mRNA expression 
levels of B. mori AMP genes were analyzed by RT-qPCR in BmN-SWU1 cells overexpressing BmSpz2. 
Cecropin A1 and gloverin-like protein 3 genes were upregulated in BmN-SWU1 cells overexpressing 
BmSpz2 (Figure 3F). The expression levels of B. mori AMP genes were also analyzed in BmSpz2 
knocking down BmN-SWU1 cells. The expressions of AMPs were inhibited in BmSpz2 knocking 
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Figure 3. BmSpzs were activated by E. coli or S. aureus in B. mori larvae, while AMPs were activated in
BmSpz2 overexpressed cells. (A–E): RT-qPCR was performed to detect the mRNA expression level
of BmSpzs of silkworm challenged by two microbes respectively. (F): The AMPs were detected by
RT-qPCR in BmSpz2 overexpressed cells. RPL3 was used as an internal control. Bars represent the mean
of three individual measurements ± SD. Significant differences are indicated with * for p < 0.05 and **
for p < 0.01, which is determined by one-way ANOVA followed by a Tukey’s multiple comparison test.

To determine which Spzs interact with Toll11 and Toll9–1, a yeast two-hybrid analysis was
conducted. The results confirmed that BmSpz2 could interact with both BmTollecto11 and BmTollecto9–1,
whereas other BmSpzs failed to interact with them (Figure 4). Furthermore, the mRNA expression
levels of B. mori AMP genes were analyzed by RT-qPCR in BmN-SWU1 cells overexpressing BmSpz2.
Cecropin A1 and gloverin-like protein 3 genes were upregulated in BmN-SWU1 cells overexpressing
BmSpz2 (Figure 3F). The expression levels of B. mori AMP genes were also analyzed in BmSpz2
knocking down BmN-SWU1 cells. The expressions of AMPs were inhibited in BmSpz2 gene knocking
down cells (Figure S4C). These results suggested that BmToll11 and BmToll9–1 could bind to BmSpz2
and activate the expression of AMPs in B. mori.
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Figure 4. BmTollecto11 and BmTollecto9–1 interact with BmSpz2 but not other BmSpzs. (A):
Yeast two-hybrid assay for determination of BmTollecto11 and BmTollecto 9–1 with BmSpz2. Yeast
cells were transformed simultaneously with the bait (pGBKT7-BmTollectos) and prey constructs
(pGADT7-BmSpzs). On the up line, yeast cells containing the bait and prey constructs were plated
on synthetic defined premix (SD) agar base plates that did not contain leucine (Leu) or tryptophan
(Trp). Howere, on the down line, only the clones containing the constructs pGBKT7-53/pGADT7-T
(PC), pGADT7-Toll11ecto/pGBKT7-Spz2 and pGADT7-Toll9-1ecto/pGBKT7-Spz2 could grow on SD
plates in the absence of Leu, Trp, histidine (His), and adenine (Ade). These clones also formed blue
colonies in the presence of 5-bromo-4-chloro-3-indoxyl-D-gal (X-α-Gal). (B): The table summarized the
information given above A. BmTollecto11 and BmTollecto9–1 interact with BmSpz2, while other BmSpzs
were not. Positive control pGBKT7-53/pGADT7-T (PC) and negative control pGBKT7-lam/pGADT7-T
(NC) reactions were provided for each group.

4. Discussion

In insects, the Toll-Spätzle pathway works as an evolutionarily conserved system, which plays a
key role in their innate immunity against pathogens. In D. melanogaster, Toll1 and Spz1 were implicated
in regulating AMP genes and other immune-related functions [9,46]. In B. mori, BmSpz1, BmSpz4
and BmToll9–1 have been confirmed to activate the Toll signaling pathway and function in innate
immunity [37,38,40,41]. In addition to Spz1, Spz4, and BmToll9–1, whether the other Tolls and Spzs can
activate innate immunity pathways are unknown. The results of our dual-luciferase reporter assays
showed that BmTIR11 and BmTIR9–1 were strongly elicited AMP genes (Figure 1C). The findings also
confirmed that BmToll11 and BmToll9-1 genes were upregulated when silkworms were challenged
with E. coli or S. aureus (Figure 2C,D) and that they could activate the transcription of AMP genes
(Figure 2). In vivo experiments showed that the transcriptional expression levels of five Spzs were all
increased in the silkworm (Figure 3). These results showed that BmToll9–1, BmToll11, and BmSpz1–5
were involved in the innate immunity in silkworms.

Although the interactions between Tolls and Spzs were well studied in D. melanogaster and M.
sexta [6,33,46], it remains unclear whether the Tolls can participate in the innate immune response in
the silkworm through binding with BmSpz1 or other Spzs. The yeast two-hybrid assay results showed
that BmToll11 and BmToll9-1 could interact with BmSpz2 and activate the expression of AMP genes
(Figures 2 and 4). Additionally, the results indicated that one BmSpz could combine with multiple
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BmTolls, which is consistent with the reported binding of Spzs to multiple Tolls in D. melanogaster [6].
In our study, we also found that other Tolls, except for BmToll9–1 and BmToll11, participated in
immune regulation, including BmToll 1, BmToll 3, BmToll 5, and others (Figure 1B). Five BmSpzs genes
were also upregulated when the silkworm was challenged by two microbes (Figure 3). Therefore,
we speculate that except for BmSpz2, the other Spzs can also bind to other BmTolls. Furthermore, it
might be possible that multiple BmSpzs can bind to one or more BmTolls. However, further studies are
required to confirm these predictions.

Insects lack an acquired immune system and mainly rely on innate immunity to resist pathogens
infection. AMPs play an important defense role in insect innate immunity that are regulated by
many signals, such as the Toll and IMD signal transduction pathways [3,7,47,48]. In D. melanogaster,
seven kinds of AMPs are synthesized. Some of the AMPs genes expression was regulated by the Toll
pathway activated by fungi or Gram-positive bacteria, such as drosomycins, metchnikowin, and defensins,
whereas another AMPs expression regulated by the IMD pathway activated by Gram-negative bacteria,
such as cecropins, drosocin, diptericin, and attacins. In M. sexta, AMP genes, including attacin, cecropin,
lysozyme gloverin, lebocin, and moricin have been identified [49,50]. Among these genes, attacin and
cecropin are widely found in most insect species, whereas lebocin, moricin, and gloverin were conserved
in Lepidoptera species [49,51–53]. These genes can be activated by the host infected by different
bacterial [54]. The overexpression of MsTIR and DmTIR in S2 cells can activate drosomycin (a target
gene of the Toll pathway) but not diptericin (a target gene of the IMD pathway) [33]. At present, the
members of B. mori AMPs can be classified into six different families, including cecropin, attacin, moricin,
gloverin, lebocin, and defensin [35,51,55–59]. The activation of AMPs is different depending on the
pathogen used to challenge silkworms [38,41,60]. Our studies showed that the Toll pathways were
both activated by Gram-positive and Gram-negative bacteria in B. mori (Figures 1 and 2), unlike in
M. sexta or D. melanogaster [6,33], which is consistent with a recent study in Tenebrio molitor [61]. In
addition, the activation of AMP genes was not absolutely specific following the challenge with E. coli
or S. aureus (Figure 2). Our results indicated that the activation of the Toll receptor signaling pathway
and the regulation of AMP gene expression are different between B. mori and D. melanogaster.

5. Conclusions

In summary, B. mori infected by pathogens could activate BmSpz2 to bind with BmToll11 and
BmToll9–1, and then induce the expression of AMPs. In this study, we identified a Toll-Spz pathway
involved in the immune response to bacteria in B. mori. The findings of this study may help improve
the understanding of the signaling pathways involved in Lepidoptera insect innate immune responses.
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