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Abstract

with disease progression.

analyzed.

Background: Parkinson’s disease (PD) and atypical parkinsonisms (APD) have overlapping symptoms challenging
an early diagnosis. Diagnostic accuracy is important because PD and APD have different prognosis and response to
treatment. We aimed to identify diagnostic inflammatory biomarkers of PD and APD in cerebrospinal fluid (CSF)
using the multiplex proximity extension assay (PEA) technology and to study possible correlations of biomarkers

Methods: CSF from a longitudinal cohort study consisting of PD and APD patients (PD, n =44; multiple system
atrophy (MSA), n = 14; vascular parkinsonism (VaP), n=19; and PD with VaP, n=7) and controls (n = 25) were

Results: Concentrations of CCL28 were elevated in PD compared to controls (p =0.0001). Five other biomarkers
differentiated both MSA and PD from controls (p < 0.05) and 10 biomarkers differentiated MSA from controls, of
which two proteins, i.e. beta nerve growth factor (3-NGF) and Delta and Notch like epidermal growth factor-related
receptor (DNER), were also present at lower levels in MSA compared to PD (both p=0.032). Two biomarkers (MCP-1
and MMP-10) positively correlated with PD progression (rho > 0.650; p < 0.01).

Conclusions: PEA technique identified potential new CSF biomarkers to help to predict the prognosis of PD. Also,
we identified new candidate biomarkers to distinguish MSA from PD.
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Background

Parkinson’s disease (PD) is the most common neurode-
generative disorder of movement affecting 1% of the
population worldwide older than 65years [1]. PD is
characterized by motor symptoms: bradykinesia with
rigidity and/or rest tremor. The prodromal phase of PD
features non-motor symptoms such as olfactory dysfunc-
tion, psychiatric symptoms, REM-sleep behavior disorder,
autonomic dysfunction, pain and fatigue [1]. At later
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stages, dementia might also occur. A progressive degener-
ation of dopaminergic neurons in the substantia nigra pars
compacta causes many of the clinical symptoms. Degener-
ation is associated with the presence of Lewy Bodies,
which contain aggregates of the protein a-synuclein. Diag-
nosis of PD is based on the typical motor symptoms that,
however, only appear after 50—-80% of dopaminergic neu-
rons have died [2, 3]. Establishing a correct diagnosis of
PD can be challenging since its phenotype shares many
clinical features with atypical parkinsonisms (APD), espe-
cially early in the disease process. APD include multiple
system atrophy (MSA), vascular parkinsonism (VaP), de-
mentia with Lewy Bodies (DLB), corticobasal syndrome
(CBS) and progressive supranuclear palsy (PSP). Error
rates in clinicopathological series of PD and APD patients
have been as high as 24%, even when diagnosis was made
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by movement-disorder specialists [4]. APD has many
overlapping symptoms with PD. However, patients with
APD generally have an inefficient or transient response to
levodopa (current treatment of PD) and a much faster dis-
ease progression [5]. Making that distinction based on
clinical grounds alone remains difficult, particularly in the
first years after the initial manifestation of symptoms.
Thus, there is a clear need to discover specific biomarkers
that can help clinicians to establish a more timely and ac-
curate differential diagnosis amongst patients suspected of
a form of parkinsonism. There is also a need to discover
biomarkers that can help clinicians to predict disease
progression.

Because of its close connection with the brain, the
cerebrospinal fluid (CSF) contains potential biomarker
candidates for differential diagnosis. Although the exact
etiology of PD and the different forms of APD remain
unknown, systemic and cerebral inflammatory processes
may be involved in the disease process [6—8]. Microglia,
the major type of immune cells of the brain, are acti-
vated in PD brains and secrete pro-inflammatory pro-
teins, reactive oxygen species and reactive nitrogen
species that contribute to neuronal degeneration [7—10].
Therefore, in the present study, we aimed to discover in-
flammatory protein biomarkers in CSF that may aid in
the differential diagnosis of PD versus APD using a
proximity extension assay (PEA). We also aimed to
define inflammatory biomarkers that may be related to
disease progression.

Recently, it was established that Delta and Notch-like
epidermal growth factor-related receptor (DNER), vascu-
lar endothelial growth factor A (VEGF-A) and fibroblast
growth factor 19 (FGF-19) were differentially expressed in
MSA versus PD by using PEA [11]. Since many biomarker
discovery studies often lack independent confirmation, we
also aimed to confirm these findings in an independent
clinical cohort. For this, we used a unique cohort of
patients that presented uncertain clinical diagnosis at
inclusion and that were followed-up for 12 years.

Methods

Patients

A total of 74 cases were selected based on CSF availability
from a prospective cohort study performed at the Radboud
University Medical Center (Nijmegen, the Netherlands) (see
Additional file 1) [12]. In this previous study, 156 patients,
referred to our center between January 2003 to December
2006 because of parkinsonism and diagnostic uncertainty,
were included. Exclusion criteria were age younger than 18
years, history of brain surgery or neurodegenerative disease
other than parkinsonism or unstable comorbidity. All
patients underwent a structured interview, detailed and
standardized neurologic examination, blood collection,
lumbar puncture and other ancillary investigations within

Page 2 of 8

the 6 following weeks after inclusion. The study design,
methods and patient population have been extensively
described elsewhere [12]. These patients were followed
up for 3 and 10 years and a clinical diagnosis was
established by two expert neurologists in movement
disorders based on a repeated structured interview and
extensive neurological examination. In 2018, 12 years
after inclusion, all diagnoses were re-evaluated and up-
dated according to the most recent clinical criteria
[12-17], disease course based on the patients’ medical
files, follow-up visits and neuropathological examin-
ation whenever available. Disease severity and cogni-
tive function were evaluated using the Hoehn and Yahr
(HY) scores, the Unified Parkinson’s Disease Rating
Scale (UPDRS), the International Cooperative Ataxia Rat-
ing Scale (ICARS) and the Mini-Mental State Examination
(MMSE). Disease progression was assessed by subtracting
the score at follow-up from the score at baseline and
dividing by years of follow-up (At=3years) (Table 1).
Neurofilament (NFL) and DJ-1 levels in CSF were ob-
tained from previous biomarker discovery studies using
the same cohort [18-20].

The control group consisted of 25 patients aged above
40 years with neither a neurological nor an inflammatory
disease and who underwent a lumbar puncture because
of a suspected neurological disorder that was ruled out
after extensive investigation.

All participants provided written informed consent
and the study was approved by the local Medical Ethics
Committee. Usage of CSF leftovers from patients as
controls in research projects was approved by the local
Medical Ethics Committee.

Cerebrospinal fluid samples

Lumbar puncture was performed as described previously
[12]. CSF samples had no blood contamination (leukocyte
number count fewer than 5 cells/uL and erythrocyte
number fewer than 200 cells/pL) [21, 22].

Proximity extension assay (PEA)

Multiplex PEA was conducted using the Proseek Multi-
plex Inflammation I panel (Olink Bioscience, Uppsala,
Sweden). The Proseek kit targeted 92 biomarkers (see
Additional file 2). Data are expressed as normalized
protein expression (NPX) values. NPX is an arbitrary
unit on a Log2 scale to normalize data to minimize both
intra-assay and inter-assay variation. A high NPX value
corresponds to a high protein concentration.

Data analysis

Statistical analyzes were performed using IBM SPSS Sta-
tistics (v.25.0.0.1). Kruskal-Wallis test with Bonferroni
correction was performed to assess differences between
groups for age, baseline and follow-up parameters as
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Table 1 Characteristics of the patients included in the analysis
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Controls MSA PD VaP PD/VaPD p value®
N 25 MSA-P MSA-C MSA-P/C 44 9 7
1 2 1
14
Age (at inclusion) 645+103 61.1+80 579+99 695+9.0 70.2+5.1 0.003
Sex (male/female) 11/14 9/5 28/16 7/2 6/1 0.004
Disease duration since first symptoms (months) N.A. 389+383 420+343 255+16.11 410+198 0.556
Disease Severity (baseline)
HY score NA. 2708 (14) 20£06 (43) 29+079) 26£09 (7) 0.001
UPDRS-IIl score N.A. 303+ 100 (14) 282+138(42) 331+£113(9 40.1+168(7) 0203
ICARS score N.A. 109+11.5(11) 28+34 (39 10.7+£51(7) 88£6.1(6) 0.000
MMSE score N.A. 279+27 (13) 282+21(44) 267+29(8) 264+£15(7) 0030
Disease Severity (3 years follow-up)
HY score N.A. 40+1.1 (10) 23+08(41) 42+10 (6) 28+09 (5) 0.000
UPDRS-II score N.A. 338+6.8 () 299+ 151 (39) 447+£93(4) 392+£206 (5 0.109
ICARS score NA. 160+ 179 (5) 35+£32(35) 200+£57 4) 50+25(5 0.001
MMSE score N.A. 274+1.1 (5) 279+£29(34) 270+41(4) 248+£57(5) 0189
Survival after 12 years (dead/alive) N.A. 13/1 11/33 9/0 4/3

Data are represented as mean + SD (N). p value was considered significant when < 0.05, MSA multiple system atrophy, PD Parkinson’s disease, VaP vascular
parkinsonism, PD/VaP PD with overlapping VaP, MSA-P multiple system atrophy parkinsonian type, MSA-C multiple system atrophy cerebellar type, MSA-P/C
multiple system atrophy mixed parkinsonian and cerebellar, N.A not applicable, HY Hoehn and Yahr, UPDRS-IIl Unified Parkinson’s Disease Rating Scale part IIl
(motor score), ICARS International Cooperative Ataxia Rating Scale, MMSE Mini-Mental State Examination. “Kruskal-Wallis test with Bonferroni correction and

Chi-square for sex differences

well as disease progression. In general, the Bonferroni
correction divides the desired alpha-value by the number
of comparisons and uses this number to determine
significance. However, the SPSS package uses a math-
ematical equivalent adjustment; it takes the observed
(uncorrected) p-value and multiplies it by the number
of comparisons made. This corrected p-value is used to
conclude significance. If the value is less than 0.05, one
can conclude that the difference is significant (https://www.
ibm.com/support/pages/calculation-bonferroni-adjusted-p-
values). Chi-square test was used to assess sex differences.
A p-value < 0.05 was defined as significant.

All proteins of the inflammation panel with more than
35% of missing values (below limit of detection) in the
whole cohort were excluded from the analysis (1 =39
out of a total of 92) (See Additional file 2). Group com-
parison of NPX values of PEA markers was performed
by rank analysis of covariance to correct for age and sex.
Briefly, the dependent variables and the covariates were
ranked. Then, a linear regression of the ranks of the
dependent variable on the ranks of the covariates was
performed and the unstandardized residuals were saved.
Finally, an ANOVA with Games Howell correction was
performed using the unstandardized residuals. The
Games Howell post hoc test is used to compare groups
with unequal variances. The test was designed based on
Welch’s degrees of freedom correction and uses Tukey’s

studentized range distribution. Disease progression was
calculated using annual change in HY, UPDRS-III,
ICARS MMSE and tandem gate scores using the 3 years
follow-up and baseline scores. Spearman’s test with 100
bootstrapping was used to correlate the levels of bio-
markers at baseline with these annual progression
scores. In all cases, a p value <0.05 was considered as
statistically significant. Because of the low population
power, results of the groups VaP and VaP/PD are not
included in the present article.

GraphPad Prism (v.5.00) was used to perform receiver
operating characteristic (ROC) curve analysis of bio-
markers for PD versus MSA. Biomarkers were combined
performing a binary logistic regression and probability
values of the logistic regression were used to run the
ROC curve analysis.

Results

In the present study, we analyzed CSF from 44 PD, 14
MSA, 9 VaP, 7 PD with overlapping vascular disease
(PD/VaP) and 25 controls. Group comparison revealed
that CCL28 was detected at significantly different levels
only in PD compared to controls. CCL28 was also the
only protein expressed at lower levels in controls than in
PD and MSA (p =0.0001; Table 2). Five proteins differ-
entiated both MSA and PD from controls (p <0.05;
Table 2). Ten proteins were uniquely differential in
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Table 2 Disease-specific summary of significant different
biomarkers in cerebrospinal fluid

Protein Controls PD MSA
CCL2s 06 +02° 09 +02° 08+02
IL-8 84 + 13 76 +05° 75+ 04°
FGF-19 47 +08° 42406 39+07°
CD40 81+ 05° 76+ 04 75 +04°
PD-L1 41 + 06° 37405 35404
TGF-a 60 + 06° 57+04 55+ 04°
SCF 52+07° 48+ 05 47 +03°
CSF-1 69 + 05 65 + 04 63 +02°
uPA 60 + 06° 70+05 68 + 04°
VEGF-A 96 +0.7° 91 +06 89 + 04°
CCL23 31410 25+05° 25+03°
CX3CLT 32+ 06 26+ 05° 24 +03°
MCP-2 50 + 09> 42 +08° 42 +05°
CXcL 6.0 + 1.2 49 +05° 49 + 06°
DNER 100 + 02° 99 +02° 98 +0.1%°
R-NGF 18 + 05° 15 +03° 13+02%

Data are expressed as normalized protein expression (NPX) values (mean +
standard deviation). Data were analyzed using rank analysis of covariance
followed by ANOVA with Games Howell as a post hoc test. Only statistically
significant (p < 0.05) differences are noted. ®versus controls; Pversus Parkinson’s
disease (PD); “versus multiple system atrophy (MSA)

MSA compared to controls, of which two proteins, i.e.
beta nerve growth factor (B-NGF) and DNER, were also
present at lower levels in MSA compared to PD (both
p =0.03; Table 2).

We assessed the diagnostic value of B-NGF and DNER
as potential biomarkers to differentiate MSA from PD
using ROC curve analysis. The area under the curve
(AUC) for B-NGF was 0.70 (p=0.018) and for DNER
0.71 (p = 0.015), whereas the combination of B-NGF and
DNER did not yield a better discrimination (AUC = 0.70;
p=0.021). We also studied the ability of B-NGF and
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DNER to distinguish MSA from PD in comparison to
other accepted biomarkers (NFL and DJ-1), from which
we had available data [19, 20]. NFL (AUC=0.87;
» <0.0001) but not DJ-1 (AUC =0.72; p = 0.038) showed
better discrimination power than B-NGF and DNER. The
combination of NFL with DNER and -NGF did not yield
an improvement to discriminate PD from MSA
(AUC =0.88; p < 0.0001) compared to NFL alone (Fig. 1).

We also studied the correlation between the inflamma-
tory proteins of the PEA panel and disease progression.
These analyses showed that two biomarkers specifically
correlated with disease progression in the PD group, i.e.
monocyte chemoattractant protein 1 (MCP-1) positively
correlated with HY progression (rho = 0.690, p = 0.003)
and matrix metalloproteinase 10 (MMP-10) positively
correlated with the UPDRS progression (rho = 0.651, p =
0.006) (Fig. 2). Because of low power, correlations of
biomarkers with disease progression in the MSA group
are not shown.

Discussion

Neuroinflammatory mechanisms contribute to the path-
ology of both PD and APD, which comprise microglia
activation, astrocytosis and lymphocyte infiltration as
observed in post mortem obtained brain tissue [10].
Moreover, polymorphisms in genes associated with
inflammation, such as LRRK2, S100B and NURRI,
increase the risk for PD [23-26]. Consequently, the
expression levels of inflammatory proteins in CSF might
translate into biomarkers for diagnosis and/or prognosis
of PD and APD.

From a panel of 92 inflammatory proteins, we identi-
fied CCL28 as a biomarker of neuroinflammation that
differentiated only PD from controls, which showed a
different expression trend (lower expression levels in
controls). We also identified 8 biomarkers that differenti-
ated only MSA from controls and 5 biomarkers that dif-
ferentiated both PD and MSA from controls. Interestingly,
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Fig. 1 Receiver operating characteristic (ROC) curve analysis of PD versus MSA. The combination of NFL levels with DNER and 3-NGF in
cerebrospinal fluid (solid black) does not yield better diagnosis accuracy than NFL alone (dashed dark grey) (AUC=0.88 and 0.87
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Fig. 2 Correlation of biomarkers with Parkinson’s disease (PD) progression. a. Correlation between MCP-1 and Hoehn and Yahr (HY) progression
score; b. Correlation between MMP-10 and unified Parkinson’s Disease rating scale (UPDRS) progression score. Data were analyzed using
Spearman correlation. Biomarker values are expressed as normalized protein expression. Right whisker plots represent median, interquartile range,
minimum, maximum and outliers of disease score progression. Upper whisker plots represent median, interquartile range, minimum, maximum
and outliers of the protein marker levels in cerebrospinal fluid of PD patients. Rho was > 0.600 and p value < 0.01 for both correlations
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DNER and B-NGF could significantly differentiate MSA
from PD and controls.

CCL28 (Mucosae-associated epithelial chemokine;
MEC) is a chemokine constitutively expressed in muco-
sal tissue and moderately expressed in small intestine,
kidney and brain —in neurons rather than glia cells.
CCL28 bridges the innate and adaptative immune re-
sponse; the C-terminus has antimicrobial activity and
the N-terminus mediates lymphocyte migration. Signal-
ing of CCL28 via CCR10 drives the homing of T and B
lymphocytes, and via CCR3 the migration of eosinophils
[27]. CCL28 was the only biomarker that was up-
regulated in PD patients compared to controls. In a
mouse model of epilepsy, down-regulated expression of
CCL28 in brain tissue was associated with neuronal loss
[28]. Another study performed in human PD brain tissue
detected lower levels in PD patients compared to con-
trols [29]. This apparent inconsistency with our results
might be because they analyzed brain tissue and thus,
neuronal expression of CCL28, while we measured levels
in CSF detecting expression of other cell types and also
systemic inflammation. The elevated levels in CSF might
be in line with the idea that viral and microbial infec-
tions, as well as altered gut-microbiota, increase the risk
of PD or they may even be an early trigger of the disease
[30-32]. Another possible reason of elevated levels of
CCL28 in CSF might be its release from degenerating
neurons.

DNER was observed at higher levels in the CSF of PD
patients as compared to MSA patients. DNER is highly

expressed in the substantia nigra and, just as Parkin pro-
tein, is an activator of the NOTCH1 pathway, which has
a role in neuronal and glial cell differentiation and neu-
roprotection [33, 34]. A down-regulation of DNER pro-
tein in MSA might highlight the loss of neuroprotection
and thus, the higher disease severity. Interestingly,
DNER was also down-regulated in MSA compared to
PD to a similar degree as it was described in a previous
publication that used the same PEA inflammatory panel
for the discovery of biomarkers for PD and APD in two
independent cohorts [11].

B-NGF was also significantly down-regulated in MSA
compared to PD patients. B-NGF is a trophic factor for
sympathetic and sensory fibers found in the peripheral
nervous system and in the central nervous system in
cholinergic neurons projecting to the cerebral cortex
and hippocampus. 3-NGF has neuroprotective effects in
cholinergic neurons [35-37]. Therefore, the reduction in
B-NGF levels may indicate a more advanced neuronal
cell loss in MSA. B-NGF was not identified as a potential
biomarker to differentiate PD from MSA in the above-
mentioned double cohort study [11], which highlights
the importance of independent biomarker discovery
studies in different cohorts and laboratories.

In contrast to the previously published study using
PEA for biomarker identification of PD and APD [11],
we did not find significantly different levels of FGEF-5,
VEGEF-A and FGF-19 in PD versus MSA, despite observ-
ing a similar trend, i.e. higher expression levels in PD
than in MSA. These differences between our and this
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previous study could possibly be explained by our rela-
tively small number of MSA patients in comparison to
PD patients (3-fold difference). A more likely explan-
ation, however, could be that our cohort had unique
characteristics, namely all patients who were included in
our study had a clear evidence of a form of parkinson-
ism, but with uncertainty of the specific diagnosis at
baseline. Moreover, the diagnosis of the patients has
been re-evaluated after 3 years of follow-up and updated
again 12 years after inclusion according to the revised
clinical criteria. This is unlike the previous study, in
which, despite including a few uncertain cases in one of
the two cohorts, most patients had a clear diagnosis at
CSF withdrawal. Moreover, they followed their patients
for no more than 5 years [11, 38, 39].

ROC analysis showed that the combination of DNER
and B-NGF do not yield a higher AUC than each of
them individually. However, they could be valuable in a
bigger panel including biomarkers of different biological
processes, such as NFL. In our cohort of study, NFL
alone yielded the same diagnostic accuracy as NFL in
combination with DNER and B-NGF. The poor added
value of these two inflammatory proteins might be
caused by their lower expression levels and the remodu-
lation of the immune system at older age, losing the abil-
ity to fine-tune inflammation [40]. Further studies need
to determine the positive impact of adding these inflam-
matory proteins to a larger diagnostic panel to discrim-
inate PD from MSA patients but our data suggests that
such impact is likely to be minimal.

It can be hypothesized that PD (or MSA) patients with
more pronounced neuroinflammation than others will
have a more severe disease progression. For this reason,
we correlated levels of CSF proteins at baseline with di-
sease progression over a 3-year time-frame. Both MCP-1
and MMP-10 showed a significant positive correlation
with parameters of PD progression. MCP-1 plays an im-
portant role in monocyte recruitment and propagation of
inflammation. Previous studies showed that plasma levels
of MCP-1 correlated with cognitive decline in patients
with Alzheimer’s disease [41]. Other studies in mouse
models suggest that MCP-1 causes neuronal loss and that
its downregulation is neuroprotective [42, 43]. MMP-10 is
a secreted metalloproteinase with a key role on modula-
tion of macrophage activation and function. MMP-10 is
not expressed in unchallenged tissues, but is increased in
response to a variety of insults [44]. Thus, a positive cor-
relation of MMP-10 CSF levels with disease progression
might indicate increased inflammation and neuronal loss.

The major strength of our study is the uniqueness of
our patient cohort. Patients with diagnostic uncertainty
were included in the study and their diagnosis was ree-
valuated after 3 and 12 years. Thus, our study exactly re-
flects the clinical situation when biomarkers are actually
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needed, i.e. biomarkers have diagnostic value when the
diagnosis is not yet clear. Unlike our study, many bio-
marker studies have been performed with patients with a
clear-cut diagnosis, but in such situations biomarkers will
not add anything to the diagnostic work-up.

Our study also presents four limitations. First, our group
of MSA patients was relatively small, which may have af-
fected our analyses. However, the patients were very well-
defined as a result of the long-term follow-up. Second, the
final diagnosis was based on clinical evaluation according
to international diagnostic criteria, but has not been con-
firmed yet by neuropathologic examination. This may
have caused potential misdiagnoses, but we have reduced
this risk by the very long follow-up of the patients. For
most patients, a ‘silver standard’ diagnosis can be made
after some 3 years of follow-up, when the rate of progres-
sion is known, new red flags may have appeared, and the
levodopa responsiveness has been tested. Third, the dis-
ease progression is calculated based on the 3-year follow-
up scores. A stronger correlation of biomarkers with prog-
nosis might be observed with data from longer follow-up
periods. Fourth, the study did not include patients with
other forms of atypical parkinsonism, such as PSP, CBS
and DLB, due to the small number of patients with these
diagnoses included in the longitudinal study.

Conclusions

In summary, our results show 16 differentially expressed
proteins. Among these proteins, DNER and B-NGF are
especially interesting as they can discriminate MSA from
PD, although our data show that their contribution may
be limited. Our study also suggests that baseline CSF
levels of MCP-1 and MMP-10 may serve as biomarkers
of PD progression. This finding, however, requires
further replication in independent cohorts.
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