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Decision-making is assumed to be supported by model-free and model-based systems:

the model-free system is based purely on experience, while the model-based system

uses a cognitive map of the environment and is more accurate. The recently developed

multistep decision-making task and its computational model can dissociate the

contributions of the two systems and have been used widely. This study used this

task and model to understand our value-based learning process and tested alternative

algorithms for the model-free and model-based learning systems. The task used in this

study had a deterministic transition structure, and the degree of use of this structure in

learning is estimated as the relative contribution of the model-based system to choices.

We obtained data from 29 participants and fitted them with various computational

models that differ in the model-free and model-based assumptions. The results of

model comparison and parameter estimation showed that the participants update

the value of action sequences and not each action. Additionally, the model fit was

improved substantially by assuming that the learning mechanism includes a forgetting

process, where the values of unselected options change to a certain default value

over time. We also examined the relationships between the estimated parameters and

psychopathology and other traits measured by self-reported questionnaires, and the

results suggested that the difference in model assumptions can change the conclusion.

In particular, inclusion of the forgetting process in the computational models had

a strong impact on estimation of the weighting parameter of the model-free and

model-based systems.

Keywords: decision-making, reinforcement learning, computational model, model-based learning, action

sequence, forgetting process

INTRODUCTION

Computational models are tools used to understand decision-making processes. One successful
model designed for this purpose was developed by Daw et al. (2011) and can dissociate the
contributions of two value-based learning systems to choice behavior. One such system is the
model-free system in which values are incrementally learned through direct experience. The other
system is a model-based system in which values are calculated using a “model,” or cognitive map, of
the environment (Tolman, 1948) to calculate its values. The relative contributions of these systems
have been estimated by applying computational models or logistic regression models to data from
the two-step decision task (Daw et al., 2011). The framework of the two learning systems has
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enabled productive discussions and has helped to construct
theories in cognitive, psychopathological, and neuroscience
research by revealing developmental changes in model-based
weight (Decker et al., 2016), the predominance of model-free
choice under certain circumstances (Otto et al., 2013), the neural
basis of the model-free and model-based systems (Smittenaar
et al., 2013; Daw and Dayan, 2014; Lee et al., 2014) and the
relationships of the two systems with clinical symptoms such as
those observed in obsessive-compulsive disorder (OCD) (Voon
et al., 2015; Gillan et al., 2016).

The widely used computational model for the two-step
decision task (Daw et al., 2011) provides a favorable parameter
allowing prediction of stress conditions or OCD tendencies.
However, to increase our understanding of cognitive processes,
we still need to examine alternative algorithms of the model-free
and model-based systems other than those used in the widely
used computational model. For example, although the model-
free and model-based values are often assumed to be calculated
in parallel, some studies have suggested the existence of an
interaction between the model-free and model-based systems
(Dezfouli and Balleine, 2013; Gershman et al., 2014; Toyama
et al., 2017). In addition, differences in model construction may
substantially influence parameter estimation (Katahira, 2018)
because when a computational model is applied to data, the
data can be explained only by adjusting the parameters under
the framework of the model. Therefore, improving the model
data fit can diminish possible noise and biases in parameter
estimation and minimize undesirable, misleading results.
Thus, the purpose of this study is to examine alternative
hypotheses regarding the model-free and model-based
systems by comparing candidate computational models with
different algorithms.

In this study, we used the two-step decision task developed
by Kool et al. (2016), which is a variation of the task developed
by Daw et al. (2011). This task has a few desirable features.
First, the model-based weighting parameter, which is a key
parameter in the computational model, seems to be relatively
easy to interpret when estimated from the data obtained during
this task. In the original two-step task, participants learn and
use a stochastic action-state transition structure (the “model”
of this task); therefore, this weighting parameter reflects the
degree of learning of the model in addition to the degree
of willingness to use it. On the other hand, the Kool two-
step task has a deterministic transition structure where each
action leads to specific subsequent state in a deterministic
manner, which is relatively easy to learn for participants.
Therefore, the model-based weighting parameter is presumed
to reflect greater use of the model. In addition, the simplicity
of the Kool two-step task in other respects1 can also suppress
unexpected strategies that participants may use to make choices

1For example, participants make two successive choices in the Daw two-step task

but only one choice in the Kool two-step task. There are four options with different

reward outcomes in the second stage of the Daw two-step task and two options

with different reward outcomes in the second stage of the Kool two-step task. In

addition, the current condition of each option is easy to assess in the Kool task

using gradual integral point feedback, whereas the Daw two-step task uses binary

feedback based on hidden probability.

and can reduce the noise in the parameter estimates given
by a computational model. This advantage is critical because
a computational model cannot treat all possible strategies or
intentions2. Therefore, we selected the Kool two-step task to
develop a computational model with reduced noise and to
consider the algorithms underlying model-free and model-based
decision-making. Specifically, using this task, we examined the
computational assumptions that we proposed in Toyama et al.
(2017) for the Daw two-step task and an additional assumption
unique to learning in tasks with a deterministic structure, such
as the Kool two-step task. We will explain these assumptions
in detail after we outline the procedure of the Kool two-
step task.

In the Kool two-step task, participants are required to choose
an action (i.e., choose a rocket) in the first stage, which is
followed by a second-stage state (a screen with an alien) and a
reward outcome (Figure 1). The participants’ goal is to maximize
the total reward amount. In each trial, the first stage is shown
as one of the two states, including two options (state A with
rockets 1 and 2 and state B with rockets 3 and 4). A key
feature of this task is that one of the rockets in each state
is always followed by a specific second-stage state, while the
other rocket is always followed by the other second-stage state
(rockets 1 and 3 always lead to second-stage state C, and rockets
2 and 4 always leads to second-stage state D). Thus, this task
encourages participants to use the task structure, or “model,”
to base their choices on their past outcome experiences. For
example, when a participant wins a large reward in a previous
trial but the current first stage is different from the previous
first stage, the participant must use the model of the transitions
to consider which rocket leads to the previously experienced
second-stage state.

Using this task, we examined several reinforcement learning
(RL) models to express the integrated algorithm of the model-
free and model-based learning systems. The assumptions that
we examined in the new models are inspired by psychological
considerations. First, we considered cognitive savings regarding
the values to be updated during learning. Deterministic
probability is a special case of stochastic probability; however, if
the transition is deterministic, we do not need to discriminate
successive actions. The algorithm of the model-free system is
typically the SARSA (state-action-reward-state-action) temporal-
difference (TD) learning model (Rummery and Niranjan,
1994), where the values are updated for all experienced
state-action pairs (Figure 2A, left). However, if a choice
is deterministically followed by certain state-action pairs, a
parsimonious computational algorithm where only the value of
the first action is computed can be assumed (Figure 2A, right). In
the Kool two-step task, computing the values of first-stage actions
is sufficient because the subsequent actions in the second stage

2For example, considering that the final stage in the Daw two-step task has

multiple options, the participants may intend to visit the same final state after

they are not rewarded in that state because they can try the option that they did

not choose in the previous trial. However, this strategy is not included in the

existing computational models; thus, this choice behavior is sometimes regarded

as a model-free strategy.

Frontiers in Human Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 153

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Toyama et al. Parsimonious Learning Algorithm With Forgetting

FIGURE 1 | The two-step task used in the experiment (left panel) and its outcome design (right panel). Two stages were included in each trial. The first stage

started with one of the two states: state A, which included two rockets, or state B, which included two other rockets. The participants selected one of the two rockets,

which deterministically led to a specific second-stage state (action 1 to State C and action 2 to State D). After the subject pressed the spacebar key in the

second-stage state, the outcome reward was displayed as an integer point value ranging from 1 to 9. This point value changed slowly and independently according to

Gaussian random walks, but the same values applied to all participants.

FIGURE 2 | A conceptual framework for the examined assumptions. (A) The standard model-free algorithm is the SARSA temporal-difference (TD) learning model,

where the values are computed for all state-action pairs (standard value updating). We examined another possibility in which only the action values in the choice stage

are computed (parsimonious value updating). (B) The originally used model-based system assumes that the expected values for all state-action pairs are calculated

anew each time using the transition-probability model of the task (the forward-looking model-based system). This system carries a high calculation cost but realizes

fully model-based updating. As another possibility, we applied model-based updating for the credit assignment problem (the backward-looking model-based system).

This system updates only the state-action pairs relating to the last state that produced the outcome based on the transition-probability model of the task, but it works

efficiently with similar accuracy to the forward-looking model-based system when the transition probabilities are stable. (C) In the standard TD learning algorithm, the

values of unselected options are assumed to remain unchanged (without forgetting). We examined another possibility in which the values of unselected options

change to a certain default value over time (with forgetting).

are deterministic. Additionally, cognitive resources can be saved
by using this type of chunk unit (Miller, 1956).

When a computational model uses the above parsimonious
computational algorithm, a typical model-based system is
impossible to apply because the typically used model-based
system is a forward-looking system, calculating the expected
values of each action using the Bellman equation for the
estimated values of the future step (Figure 2B, left). Thus, we
applied a backward-looking model-based system similar to the
system that we applied to the data from the Daw two-step task
(Toyama et al., 2017). The backward-looking model-based system

assumes that “credit assignment of the outcome” is implemented
in a model-based manner (Figure 2B, right). The impact of the
outcome reward directly updates the actions that can lead to
the last state that produces this outcome. The advantage of this
model-based updating is that participants do not need to activate
the representations of all state-action values but only the values
of states and actions associated with the last state.

In addition, regarding the model-free system, we applied the
concept of memory decay in the model-free part of RL. In the
standard TD learning algorithm, the values of the unselected
options are assumed to remain unchanged (Figure 2C, left).
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However, this assumption is unnatural given that memory decays
over time (i.e., forgetting). A few studies have introduced a
learning model with a forgetting process (Figure 2C, right) in
which the unselected option values are assumed to gradually
approach zero (Barraclough et al., 2004; Ito and Doya, 2009).
Our previous study (Toyama et al., 2017) extended this model
by adding a new parameter, “default value,” such that we could
freely set the endpoint of forgetting instead of restricting it to
zero. The default value represents an expected value for options in
the absence of knowledge or experience related to the relationship
between options and outcomes.

Overall, the examined computational models have some or
all of these assumptions. These models were compared using
data from the Kool two-step task. In addition, to test the
effect of model construction on the parameter estimates, we
compared the computational models in terms of the relationship
between the estimated parameter values and subjects’ scores on
questionnaires regarding obsessive tendencies, impulsivity, and
other psychological features.

MATERIALS AND METHODS

Participants
Thirty-four undergraduate students at Nagoya University
participated in the experiment. The data from two participants
were excluded because the participants were unable to complete
the training session by themselves due to their misunderstanding
of the instructions, and three participants were excluded because
they did not pass the exclusion criteria (see section Exclusion
criteria). Thus, the data from the remaining 29 participants were
analyzed (13males, 16 females; ageM= 18.7 years, SD= 0.9). All
participants provided written informed consent in accordance
with the Declaration of Helsinki. The protocol was approved by
the ethical committee of Nagoya University.

Apparatus
Participants were seated ∼50 cm in front of a 21.5-inch iiyama
ProLite monitor with a screen resolution of 1920 × 1080 pixels
and a refresh rate of 60Hz. Instructions and stimuli were
presented using the computer program Inquisit 5 Lab (2016) by
Millisecond Software in Seattle, Washington.

Two-Step Task
The task procedure was almost the same as the two-step task
originally proposed by Kool et al. (2016, 2017), although we
slightly changed the cover story and settings. The participants’
goal was to maximize their reward by their choice of rockets.

Each participant completed 253 trials, which were divided into
two blocks separated by 30-s breaks. Each trial consisted of two
stages. In the first stage, the participants were required to select
one of two rockets (downloaded from Freepik.com) by pressing
the F key for the left rocket or the J key for the right rocket within
2.5 s. This stage was characterized by one of two states: state A
always included rockets 1 and 2, and state B included rockets 3
and 4. The subsequent second-stage state was based on the first-
stage choice. Rockets 1 and 3 were always followed by state C
in the second stage, and rockets 2 and 4 were always followed

by state D in the second stage. In the second stage, each state
included one unique alien (downloaded from pngtree.com). The
participants were required to press the space bar within 1.5 s to
obtain a reward from the alien. Each alien produces a reward
feedback value ranging from 1 to 9. These feedback values for
each alien changed slowly over the course of the task according
to a Gaussian random walk (mean = 0, σ = 0.025) with bounds
of 0.25 and 0.75 and was displayed as an integer on the screen.
Auditory stimuli were played when participants made a choice
(bell sound) and when they obtained a reward (money sound).

At each stage, if no response wasmade within the time limits, a
message reading, “Too late!!” was presented, and the participants
proceeded to the next trial.

Instructions and Training Session Before
the Task
Before the task, the participants were informed that the positions
of the rockets and the response speed within time limits would
have no relationship with subsequent feedback or the total
experimental time and that the choice of rockets is only related
to the transition to the second-stage states. The participants
were also repeatedly told that each rocket in each first stage
was connected decisively with one of the two aliens in the
second stage and that the reward from each alien would change
slowly and independently over time depending on these aliens’
moods within the range from 1 to 9. Thus, the participants were
informed that they would obtain greater rewards by focusing on
the moods of each alien. The participants were also informed
in advance that they could receive additional monetary rewards
along with their total earned points in this task. Specifically,
the participants were paid U1,000, with an additional monetary
reward of either U300 (if they earned more than 1,300 points) or
U200 (if they earned fewer than 1,300 points).

The participants also completed a training session to learn
the structure of the task in advance; in this session, they were
required to repeatedly choose the rockets connected with one
of the two aliens in the training trials without time limits or
feedback, and if they succeeded in more than 5 consecutive trials
for each alien, then they were next trained with 18 trials with time
limits and feedback. The stimuli used in the training session were
completely different from the stimuli used in the real task.

Task Settings
The reward probabilities were the same for all participants, but
the order of the first-stage state during the task was deliberately
controlled in advance, and each participant was allocated to one
of four sequences (see Supplementary Text 1.1, Figure S1 and
Table S1). The full series of 253 trials started with one of the
two first-stage states, and the same first-stage state was repeated
within 6 trials. Except for the first trial, 180 trials started with the
same first-stage state as the previous trial, and the remaining 72
trials started with a different first-stage state from the previous
trial. In the former class of trials, participants do not need to
use the transition model, whereas in the latter class of trials,
participants need to use the transition model if they wish to
use the information from previous feedback. For the analysis in
the results section, we conveniently refer to the former trials as
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MF (model-free) trials and the latter trials as MB (model-based)
trials. The choices predicted by the model-free and model-based
systems are similar in the MF trials but not in the MB trials.

Exclusion Criteria
In the analyses, we excluded the data from uncompleted trials
(i.e., those in which the choice was not made within 2.5 s) and
the data from trials in which the response time was <120ms,
which were considered anticipated responses that did not reflect
the stimulus types. Two participants who had more than 20%
of their trials omitted based on these criteria were excluded. In
addition, we excluded one participant who chose the same rocket
in each first-stage state in more than 90% of the trials. Thus, the
data of 29 participants were used for the subsequent analyses (rate
of excluded trials: max 8%, mean 1%).

Questionnaires
After the two-step task, the participants completed the Japanese
versions of several questionnaires. OCD tendencies was assessed
using the Obsessive-Compulsive Inventory (OCI) [Foa et al.,
1998, Japanese version: Ishikawa et al., 2014], depression was
assessed using the Self-Rating Depression Scale (SDS) (Zung,
1965; Japanese version: Fukuda and Kobayashi, 1973), trait
anxiety was examined using the trait portion of the State-Trait
Anxiety Inventory (STAI) (Spielberger et al., 1970; Japanese
version: Shimizu and Imae, 1981), stress was evaluated using
the Perceived Stress Scale (PSS) [Cohen et al. (1983); Japanese
version: Sumi (2006)], and impulsivity was assessed using the
Barratt Impulsivity Scale 11th version (BIS-11) (Patton et al.,
1995; Japanese version: Kobashi and Ida, 2013).

COMPUTATIONAL MODELS

We first describe two basic models (the parallel model and
the parsimonious learning-rate adjustment model, Figure 3) as
candidates to explain the data for the two-step task. In addition,
we introduce some variations of the forgetting process that can
be combined with these models.

Parallel Model (Original Model)
For data from the Kool two-step task, a computational model
developed byDaw et al. (2011) is ordinarily used. This model uses
the forward-looking model-based system and assumes that the
model-free and model-based values are computed in parallel and
combined as a net value for a choice weighted by the weighting
parameter w (Figure 3, left). Hereafter, we call this model the
parallel model (or P model).

Value Calculation
The model-free learning system uses a SARSA (λ) TD learning
rule (Rummery and Niranjan, 1994) and updates state-action
values, QMF

(

si, t , ai, t
)

, at each stage i of each trial t. In the
current task, two states are included in each stage (sA and
sB for s1,t , and sC and sD for s2,t). In each of the first-stage
states, two actions are available, and ai, t ∈ a1, a2 denotes the
selected action. In the second-stage state, only one action is

available. In both stages, the selected state-action value is updated
as follows:

QMF

(

si,t , ai,t
)

← QMF

(

si,t , ai,t
)

+ αL

(

ri,t + QMF

(

si+1,t , ai+1,t
)

−QMF

(

si,t , ai,t
))

,

(1)

where 0 ≤ αL ≤ 1 is the learning rate parameter and 0 ≤ ri,t ≤ 1
denotes the reward in trial t, which is linearly transformed from
actual feedback ranging from 1 to 9. Specifically, the selected first-
and second-stage values, respectively, are updated as follows:

QMF

(

s1,t , a1,t
)

← QMF

(

s1,t , a1,t
)

+ αL

(

QMF

(

s2,t , a2,t
)

− QMF

(

s1,t , a1,t
))

, (2)

QMF

(

s2,t , a2,t
)

← QMF

(

s2,t , a2,t
)

+ αL

(

r2,t − QMF

(

s2,t , a2,t
))

. (3)

The second-stage reward prediction error (RPE), which reflects
the difference between the expected and actual reward, also
updates the first-stage value but is downweighted by the eligibility
trace decay parameter λ as follows:

QMF

(

s1,t , a1,t
)

← QMF

(

s1,t , a1,t
)

+ αLλ
(

r2,t − QMF

(

s2,t , a2,t
))

, (4)

where λ denotes the trace decay parameter that modulates the
magnitude of the effect of the second-stage RPE on the first-stage
value. This type of updating is called the eligibility trace rule and
enables efficient value updating (Sutton and Barto, 1998).

The model-based values, QMB, for each action are defined by
the Bellman optimality equation. In short, an option value is
computed anew each time as a sum of the maximum values of the
possible subsequent state-action values weighted by the transition
probabilities for the respective states. The transition probability
determines this weight. Thus, model-based values QMB

(

sj, ak
)

,
where sj ∈ sA, sB, sC, sD, and ak ∈ a1, a2 in the first stage and
ak = a1 in the second stage, are calculated as follows:

QMB

(

sj, ak
)

=
∑

s′

T(s′|sj, ak)max
a

QMB(s
′, a). (5)

Here, T
(

ś
∣

∣sj, ak
)

is a transition-probability function representing
the probability of moving to state ś after choosing action ak at
state sj. a represents possible actions at state ś, and the max
operator indicates the maximum of all action values in state ś.
In the Kool two-step task, the transition probability from the
first-stage action to the second-stage state is determinate, and
the second-stage state simply requires the subject to press the
space bar. Thus, the first-stage model-based values are equal to
the model-based value in state ś because T

(

ś
∣

∣sj, ak
)

= 1 when
j is A or B. Regarding the second stage (i.e., when j is C or D),
model-based values are equivalent to model-free values because
no transition to a further stage occurs.

Finally, QMF and QMB are integrated to generate a net value
for choice with a model-based parameter 0 ≤ w ≤ 1
(Daw et al., 2011):

QNET

(

sj, ak
)

= wQMB

(

sj, ak
)

+ (1− w)QMF

(

sj, ak
)

. (6)

The second-stage QNET values are equal to QMB and QMF .

Frontiers in Human Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 153

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Toyama et al. Parsimonious Learning Algorithm With Forgetting

FIGURE 3 | A schematic of value updating in the parallel model (left panel) and the parsimonious learning-rate adjustment model (right panel). The panels show the

difference in value updating in the two models when the agent selected action 1 in state A followed by state C and an outcome. The parallel model assumes that

model-free values are updated for the experienced state-action pairs and that model-based values are updated for every state-action pair. These values are mixed

according to a model-based weighting parameter w. On the other hand, the parsimonious learning-rate adjustment model updates only the first-stage actions relating

to the state that produced the outcome based on the transition-probability model. In the example shown in this figure, the value of action 1 in state A is updated by

the outcome in state C. At the same time, the value of action 1 in state B is also updated but downweighted by the model-based weighting parameter w.

Choice Bias
These net values determine the first-stage choice probability of
choosing action a among the candidate actions, P

(

a1,t = a|s1,t
)

,
as follows:

P
(

a1,t = a|s1,t
)

(7)

=
exp

[

β · QNET

(

s1,t , a
)

+ π · rep
(

s1,t , a
)

+ ρ · resp
(

s1,t , a
)]

∑

á exp
[

β · QNET

(

s1,t , á
)

+ π · rep
(

s1,t , á
)

+ ρ · resp
(

s1,t , á
)] .

Here, three free parameters represent particular propensities in
the choice process: β , often called inverse temperature, adjusts
how sharply the value difference between options is reflected in
the choice probability; π determines the degree of perseveration
in the same option; and ρ expresses the degree of key-response
stickiness. rep(a) is an indicator variable that equals one if a
is a first-stage action and is the same as the action chosen in
the previous trial and zero otherwise. resp(a) is an indicator
variable that equals one if a is a first-stage action using the same
response key pressed in the previous trial and zero otherwise.
Thus, the parameters π and ρ express perseveration (when the
values are positive) or switching (when the values are negative)
in favor of one option or one side, respectively. If β = 0,
then calculated value differences have no influence on choice
probabilities, and if β →∞, then the maximum-value option is
always chosen.

Among these parameters, β is usually included in any RL
model. In the two-step tasks, Daw et al. (2011) used π but
did not use ρ, whereas Kool et al. (2016) used both π and
ρ. We examined the models lacking π , ρ, or both, but they
were not supported by model selection; therefore, in the Results

section, we will report the models using both π and ρ as
free parameters.

Parsimonious Learning-Rate
Adjustment Model
As another framework, we propose a parsimonious
computational model applying cognitive savings of the values
to be updated (Figure 3, right). Under this framework, a
deterministic action sequence after one makes a choice is
regarded as a unit for valuation, and only the action values
in the choice stage are computed. In the current task, the
choice stage corresponds to the first stage. This framework
realizes computational savings and one practical solution for
the problem of temporal granularity in TD learning. In this
framework, where only the first-stage values are updated, the
forward-looking model-based system cannot calculate the
model-based values because it needs the future state values
(see Equation 5). Therefore, we applied the backward-looking
model-based system in which the degree of value updating
by outcome is adjusted in a model-based manner (Figure 2B,
right). When there are multiple sets of choices before the
outcome feedback, the eligibility trace decay parameter is
adjusted in a model-based manner (Toyama et al., 2017),
but when there is only one choice, as in the case of the Kool
two-step task, the system can be implemented by adjusting
the learning rate parameter. Thus, we refer to this model
as the parsimonious learning-rate adjustment model (the
parsimonious LA model, hereafter called the “LA model” for
brevity). This model has another parsimonious aspect: it uses
the backward-looking model-based system, which assumes
only one value for one action (in contrast, the forward-looking
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model-based system calculates model-free and model-based
values in parallel and combines them into a net value for
each action).

Value Calculation
In this model, a deterministic action sequence followed by a
choice is the unit for valuation, and only the action values
in the choice stage are updated. In the Kool two-step task,
these values correspond to the values of the first-stage rockets,
Q(sA, a1), Q(sA, a2), Q(sB, a1) and Q (sB, a2) . Here, choosing
a1 deterministically leads to sC, and choosing a2 leads to sD. We
use Q in this model because one value for one action is assumed.
The first actions of the deterministic state-action sequences are
updated as follows:

Q
(

s1,t , a1,t
)

← Q
(

s1,t , a1,t
)

+ αL

(

r2,t − Q
(

s1,t , a1,t
))

. (8)

The puremodel-free value calculation ends here. If the backward-
looking model-based system works, then the other state-action
pair that leads to the same second-stage state with a1,t is also
updated as follows:

Q
(

s1,t , a1,t
)

← Q
(

s1,t , a1,t
)

+ wαL

(

r2,t − Q
(

s1,t , a1,t
))

. (9)

Here, the weight of model-based updating is adjusted by amodel-
based parameter 0 ≤ w ≤ 1. The pure model-based system
(w = 1) equally updates all the actions eligible for the outcome.
For example, if an agent receives a certain amount of reward after
choosing rocket 1, then he can speculate that the same reward
would have been obtained if he had chosen rocket 3. Thus, he
updates the value of rocket 3 in the same manner as rocket 1.

The LA model obviously has simpler calculations than the
P model.

Choice Bias
This process is identical to that introduced in the P model
(Equation 7).

Forgetting Process
The values of unselected actions (including the actions of the
unvisited state) are not updated in typical RL. However, these
values can naturally be considered to decay through a forgetting
process. The following equation is one algorithm for this process:
the values of unselected actions are updated as follows in each
step when a selected action is updated by Equations 2, 3 in the
parallel model and by Equation 8 in the LA model:

QMF

(

s̃i,t , ãi,t
)

← QMF

(

s̃i,t , ãi,t
)

+ αF

(

µ− QMF

(

s̃i,t , ãi,t
))

, (10)

where 0 ≤ αF ≤ 1 is the forgetting rate parameter and 0 ≤ µ ≤ 1
is the default-value parameter to which the values of unselected
options are regressed. QMF

(

s̃i,t , ãi,t
)

represents the unselected
and unvisited state-action values in stage i at trial t (such that
(

s̃i,t , ãi,t
)

6=
(

si,t , ai,t
)

for each i). As a predicted tendency, a small
µ promotes the avoidance of unselected options, whereas a large
µ promotes a propensity for unselected options. Strictly, this
tendency is determined by comparison with the recently chosen
option value. This forgetting algorithm was first examined for a

multistep decision-making task in our previous paper (Toyama
et al., 2017) and improved themodel fit for the data from the Daw
two-step task, but they are still not widely used. Additionally,
the current study examines a model without a forgetting process
(where αF = 0) and three types of models with a forgetting
process: the first model assumes that the values of unselected
options gradually approach zero (where αF is a free parameter
and µ = 0), the second model assumes that they approach 0.5,
which corresponds to the least biased value (where αF is a free
parameter andµ = 0.5), and the thirdmodel assumes that people
have their own default value to which the values approach (where
both αF and µ are free parameters).

MEASURES OF MODEL FITTING AND
SELECTION CRITERIA

We used the R function “solnp” in the Rsolnp package
(Ghalanos and Theuss, 2015) to estimate the free parameters.
For a comparison of these models, we computed the
Akaike information criterion [AIC; Akaike (1974)], which is
given by

AIC = −2LL+ 2k, (11)

where LL is the log likelihood and k is the number of free
parameters. The model with a smaller value is considered the
preferredmodel.We used this criterion to compare the predictive
ability of the models.

RESULTS

Overall Model Comparison and
Estimated Parameters
The negative LL and AIC of each participant were calculated
for each model and were summed over all participants (n =
29) (Table 1). These models differ in the combination of the
basic model (the parallel model or the LA model) and the
forgetting process (no forgetting, forgetting in which µ = 0,
forgetting in which µ = 0.5, or forgetting in which µ is a
free parameter) and were denoted as the P, P-F0, P-F05, P-FD,
LA, LA-F0, LA-F05, and LA-FD models. Table 1 also includes
the results of the SARSA (λ) TD model that uses the pure
model-free system and does not include the forgetting process,
which is equivalent to the parallel model in which w = 0
for comparison. Among the models, the best-fitting model was
the LA-F05 model, which showed the smallest AIC, followed
by the LA-FD model. To examine the total improvement by
the best-fitting model (the LA-F05 model) compared with the
ordinarily used parallel model (the P model), we subtracted
the AIC of the LA-F05 model from that of the P model for
each participant. This calculation showed that the data for
28 of the 29 participants supported the LA-F05 model. In
sections Overall model comparison and estimated parameters
and Model differences and the estimated weighting parameters,
additional comparisons are performed to determine whether
the fitting improvement was attributed to the backward-looking
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TABLE 1 | Information concerning the models compared on the basis of their fit to the choices of 29 participants.

Model Basic model Forgetting Default value Free parameters # –LL AIC

SARSA (λ) TD Model-free – – αL, β, π , ρ, λ 5 4,661 9,612

P Parallel – – αL, β, π , ρ, w, λ 6 3,435 7,219

P-F0 Parallel o Fixed (µ = 0) αL, β, π , ρ, w, λ, αF 7 3,284 6,974

P-F05 Parallel o Fixed (µ = 0.5) αL, β, π , ρ, w, λ, αF 7 3,048 6,503

P-FD Parallel o o αL, β, π , ρ, w, λ, αF , µ 8 3,024 6,511

LA Learning-rate adjustment – – αL, β, π , ρ, w 5 3,447 7,184

LA-F0 Learning-rate adjustment o Fixed (µ = 0) αL, β, π , ρ, w, αF 6 3,292 6,931

LA-F05 Learning-rate adjustment o Fixed (µ = 0.5) αL, β, π , ρ, w, αF 6 3,055 6,457

LA-FD Learning-rate adjustment o o αL, β, π , ρ, w, αF , µ 7 3,032 6,469

This list provides information for the free parameters, negative log likelihood (–LL) and Akaike information criterion (AIC) summed over all participants (n= 29) for each model. The models

differ regarding the basic model with parallel (P) or parsimonious learning-rate adjustment (LA). The models also differ regarding their forgetting-process assumptions: no forgetting,

forgetting with a fixed default value (F0 or F05), or forgetting with a free default value parameter (FD).

model-based system of the LA models, forgetting process,
or both.

Table 2 shows the estimated parameters using the P, LA,
P-F05, LA-F05, P-FD, LA-FD models for the comparison.
Interestingly, for most of the participants, the estimated learning
rates were extremely high. In addition, in the parallel models,
the estimated λ values were also extremely high for most of
the participants. Therefore, we examined additional parallel
models in which αL and λ were fixed at 1 and additional
LA models in which αL was fixed at 1. These reduced
models showed lower AIC values (Table S2) compared with
the models including the full parameters (hereafter called the
full models). Interestingly, if αL and λ are set to one, then
the parallel models have a similar structure to the LA models
in which αL is set to one. In these models, the second-
stage state values are equal to the last piece of feedback
if αL = 1, and the last piece of feedback is directly
reflected in the first-stage value because λ = 1. Thus, such
specific parallel models behave similarly to the LA models,
which do not distinguish the first-stage state-action value and
the following second-stage state-action value. Note that these
results support the parsimonious updating assumed in the
LA models but provide no information on the comparison
between the forward-looking and the backward-looking model-
based systems.

Effect of the Model-Based System
In the full models, the AIC values were lower in the LA models
than those in the parallel models: The LA model was favored
over the P model, the LA-F05 model was favored over the P-
F05 model, and the LA-FD model was favored over the P-FD
model (favored by more than 20 of 29 participants in each
comparison; ps < 0.005 for the paired t-tests). However, in the
reduced models, no significant differences in AIC values were
observed between the basic models with any forgetting process
assumptions (i.e., all ps > 0.10 in the paired t-tests).

Based on this result, the higher AIC values in the parallel
models than those in the LA models among the full models are
attributable to the effect of the redundant free parameters in the

parallel models, and the difference in the model-based system
(parallel or LA) is not critical for fitting improvement.

Effect of the Forgetting Processes
Regardless of the model comparisons among the full models or
those among the reduced models, the models with forgetting
processes were favored. Here, we show only the results of the
full models, but the similar results were obtained for the reduced
models (Supplementary Text 1.2).

Most participants showed reduced AIC values in the LA-
FD model vs. the LA model [Figure 4A, favored by 27 of 29
participants, t(28) = −6.30, p < 0.001] and in the P-FD model
vs. the P model [Figure 5A, favored by 27 of 29 participants,
t(28) = −6.24, p < 0.001]. These results strongly suggest that
the forgetting process cannot be neglected in constructing the
framework of value-based learning.

Among the models with forgetting processes, assuming that
the default value was a free parameter was preferred rather
than assuming it was 0, with lower AIC values in the LA-FD
model than those in the LA-F0 model by 28 of 29 participants
[Figure 4B, t(28) = −6.60, p < 0.001] and in the P-FD model
than those in the P-F0 model by 28 of 29 participants [Figure 5B,
t(28) = −6.37, p < 0.001]. However, we did not find significant
differences between the LA-F05 and LA-FD models (Figure 4C,
p = 0.34) or between the P-F05 and P-FD models (Figure 5C,
p = 0.28), although 20 participants favored the LA-F05 model
over the LA-FD model and the P-F05 model over the P-FD
model according to the AIC scores. These results may reflect
the current task setting in which the average expected outcome
over the task was close to 0.5 (when the points in the task
were linearly transformed to the range of 0–1); the expected
outcome was 0.46 under random choice and 0.53 on average
among the participants.

Model Differences and the Estimated
Weighting Parameters
In the previous section, we reported that the model fits were
improved by using the reduced models: the LA models in
which αL was fixed and the P models in which αL and λ were
fixed. To assess the influence of fixing these parameters on the
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TABLE 2 | Estimated parameter values.

Model Percentile (%) αL β w π ρ λ αF µ

P 25 0.98 3.34 0.70 −0.45 −0.33 0.17 – –

50 1.00 4.31 0.90 –0.16 –0.15 0.97 – –

75 1.00 5.39 1.00 0.24 −0.04 1.00 – –

LA 25 1.00 3.19 0.71 −0.42 −0.33 – – –

50 1.00 4.06 0.87 –0.15 –0.14 – – –

75 1.00 5.37 1.00 0.26 −0.05 – – –

P-F05 25 0.86 5.37 0.49 0.16 −0.31 0.88 0.21 Fixed (0.5)

50 1.00 7.59 0.67 0.40 –0.18 1.00 0.30 Fixed (0.5)

75 1.00 10.53 0.74 0.61 −0.06 1.00 0.49 Fixed (0.5)

LA-F05 25 0.88 5.69 0.43 0.21 −0.32 – 0.23 Fixed (0.5)

50 0.97 7.71 0.57 0.45 –0.17 – 0.30 Fixed (0.5)

75 1.00 10.43 0.76 0.62 −0.04 – 0.52 Fixed (0.5)

P-FD 25 0.84 5.24 0.51 0.16 −0.32 0.89 0.21 0.46

50 1.00 8.28 0.64 0.52 –0.17 1.00 0.28 0.53

75 1.00 10.09 0.75 0.95 −0.06 1.00 0.45 0.62

LA-FD 25 0.84 5.30 0.44 0.16 −0.32 – 0.23 0.47

50 0.91 8.43 0.58 0.63 –0.16 – 0.27 0.52

75 1.00 11.02 0.80 1.00 −0.06 – 0.47 0.62

The best-fitting parameter values are shown as themedian and 25th and 75th percentiles across participants. Themodels differ regarding the basic model with parallel (P) or parsimonious

learning-rate adjustment (LA). The models also differ regarding their forgetting-process assumptions: no forgetting, forgetting with a fixed default value (F05), or forgetting with a free

default value parameter (FD). Median values are written in bold.

FIGURE 4 | Model comparison by differences in the Akaike information criterion (AIC) scores in the parsimonious learning-rate adjustment models (LA models). The

AIC scores of the LA models were compared. One of the models has no forgetting process (LA), and the other three have a forgetting rate parameter for the forgetting

process and either a free default-value parameter (LA-FD), a fixed default value of 0 (LA-F0), or a default value of 0.5 (LA-F05). (A) The LA-FD model was favored over

the LA model (red bars favor the LA-FD model, and blue bars favor the LA model). (B) By including a default-value parameter, the data fit was improved (red bars favor

the LA-FD model, and blue bars favor the LA-F0 model). (C) No statistically significant improvement was observed by fixing the default value at 0.5 (red bars favor the

LA-F05 model, and blue bars favor the LA-FD model). Note that the scales of the vertical axis are different among the panels.

estimation of the weighting parameter w, we conducted linear
regression analyses and confirmed that the estimations of w were
not different between the full models and the reduced models
(Figure S2). Therefore, in the following analyses, we report the
results of the full models.

First, we examined differences in the basic models with respect
to the estimations of w. Figure 6A shows the linear regression
of the LA model on the P model (intercept = −0.1, slope
= 1.1, R2 = 0.76), and Figure 6B shows the linear regression

of the LA-FD model on the P-FD model (intercept = −0.1,
slope = 1.1, R2 = 0.84). Some estimation differences emerged
between the P models and the LA models, but the estimated
regression slopes were close to 1. We also examined the influence
of the forgetting processes on the estimations of the weighting
parameter w. Figure 6C shows the linear regression of the P-
FD model on the P model (intercept = 0.1, slope = 0.7, R2 =
0.41), and Figure 6D shows the linear regression of the LA-FD
model on the LA model (intercept= 0.2, slope= 0.5, R2 = 0.27).
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FIGURE 5 | Model comparison by differences in the Akaike information criterion (AIC) scores in the parallel models (P models). The AIC scores of the P models were

compared. One of the models has no forgetting process (P), and the other three have a forgetting rate parameter for the forgetting process and either of a free

default-value parameter (P-FD), a fixed default value of 0 (P-F0), or a default value of 0.5 (P-F05). (A) The P-FD model was favored over the P model (red bars favor the

P-FD model, and blue bars favor the P model). (B) By including a default-value parameter, the data fit was improved (red bars favor the P-FD model, and blue bars

favor the P-F0 model). (C) No statistically significant improvement was observed by fixing the default value at 0.5 (red bars favor the P-F05 model, and blue bars favor

the P-FD model). Note that the scales of the vertical axis are different among the panels.

FIGURE 6 | The correspondence of the estimated weighting parameter w by different models. Regarding the weighting parameter w, the correspondence (A) by the

parallel model (P model) and the parsimonious learning-rate adjustment model (LA model), (B) by the P model with forgetting (P-FD model) and the LA model with

forgetting (LA-FD model), (C) by the P model and the P-FD model, and (D) by the LA model and the LA-FD model are shown. Each panel shows the coefficient of

determination (R2), regression line intercept, and regression line slope. Red lines indicate linear regression lines. The data on the black lines indicate complete

correspondence between the estimations by the two models.

The regression analyses revealed that the models with forgetting
processes had lower estimated w values than those in the models
without forgetting processes.

Relationships Between Estimated
Parameters and Data Characteristics or
Scores on the Self-Reported
Questionnaires
The analyses in this section were conducted to understand the
characteristics of the model parameters. As observed previously,
the P-F05 and LA-F05 models showed lower AIC values
than the P-FD and LA-FD models, respectively, although no
significant differences were noted. However, in this section, we
mainly used the parameters estimated by the P-FD and LA-
FD models to avoid possible estimation biases of w caused
by fixing µ to 0.5 for some participants. We also provide
the results of the analyses using the P and LA models
for comparison.

Sensitivity to the Previous Outcome and the

Weighting Parameter
The computational models were developed supposing that the
weighting parameter w reflects use of the “model,” or the
transition structure; therefore, we examined this assumption
from the statistical characteristics of the obtained data.
Considering that the Kool two-step task includes trials that
prompt the use of the transition structure (MB trials) and trials
that do not (MF trials), if a participant uses the “model,” he or she
can be predicted to behave similarly in both types of trials, and
this tendency is expected to be captured by the parameter w.

To confirm this prediction, we focused on sensitivity to the
outcome experienced in the previous trial. Generally, people
revisit the state that recently produced high rewards. This pattern
was also evident in our data. Figure 7A shows the probabilities of
revisiting the same second-stage state for three previous outcome
conditions, which are designated Low (1∼3 points), Medium
(4∼6), and High (7∼9). This probability was lowest in the
Low condition (M =0.28, SE = 0.02) and highest in the High
condition (M = 0.88, SE = 0.02). Next, we calculated the ratio
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FIGURE 7 | (A) This boxplot shows the average probabilities of revisiting the second-stage state that was visited in the previous trial given low (1∼3 points), medium

(4∼6 point), and high (7∼9 points) previous rewards. This probability obviously changed depending on the previous outcome. (B) This boxplot shows the average

sensitivity to the previous outcomes (SPO) for choices in model-based (MB) trials and model-free (MF) trials. This sensitivity is calculated as the average ratio of the

probability of revisiting the same second-stage state after a high reward to the same probability after a low reward. This score was significantly higher in MF trials than

that in MB trials. (C) This panel shows the relationship between the parameter w estimated by the LA-FD model and the difference in SPO between the MF and MB

trials (1SPO). A negative relationship was found between these variables, showing that participants with a low w were more sensitive to the previous reward in the MF

trials vs. the MB trials.

of the probabilities in the High and Low conditions, High/(High
+ Low), and defined this value as the index of sensitivity to the
previous outcome (SPO). This index was significantly lower in the
MB trials than that in the MF trials [Figure 7B, t(28) = −5.32, p
< 0.001) as expected because only the MB trials require use of
the “model” to reach a certain second-stage state based on the
previous outcome.

Those who can use the “model” should show a similar SPO
in both the MF and MB trials, whereas those who cannot use
the “model” should exhibit a higher SPO in the MF trials than
that in the MB trials. Therefore, if the parameter w reflects
use of the “model,” then a difference in the SPO (1SPO),
which is defined by subtraction of the SPO in the MB trials
from the SPO in the MF trials, can be predicted to negatively
correlate with the parameter w. Then, we conducted Pearson
correlation analyses between the estimated w and 1SPO, as
well as the SPO in the MF trials and the SPO in the MB
trials. When using the w estimated by the LA-FD model, the
parameter w showed a positive relationship with the SPO in
the MB trials (r = 0.37, p = 0.048) but not with the SPO in
the MF trials (r = −0.25, p = 0.19). Importantly, the 1SPO
showed a strong negative correlation with the parameter w (r
= −0.72, p < 0.001, Figure 7C), indicating that participants
with a high w behave the same in the MF and MB trials,
whereas participants with a low w base their choices on the
previous outcome less often in the MB trials than in the MF
trials. Notably, such correlations were not observed with other
parameters (all rs < 0.33). These results suggest that the model-
based parameter w uniquely captures use of the “model,” or the
transition structure.

As a reference, we conducted the same analyses for the w
estimated using the other models. In any models, the estimated
w had no significant relationships with the SPO in the MF trials
(all rs < 0.30) but had moderate positive relationships with the
SPO in the MB trials (P-F05: r = 0.42, p = 0.022; LA-F05: r =
0.46, p = 0.012; P-FD: r = 0.27, p = 0.16; LA: r = 0.44, p =

0.017; P: r = 0.42, p = 0.025). Regarding the relationships with
1SPO, the models with forgetting processes showed relatively
stronger negative correlations (P-F05: r = −0.74, p < 0.001;
LA-F05: r = −0.77, p < 0.001; P-FD: r = −0.66, p < 0.001),
although the models without forgetting showed no or weak
negative correlations (LA: r = −0.33, p = 0.08; P: r = −0.38, p
= 0.042). Taken together, the parameter w reflects the similarity
of the magnitude of the effect of the latest outcome on choices in
the MB trials to that in the MF trials, which is more clear when
the models with forgetting processes are used.

Relationship With Total Reward
We next examined which parameter correlates with the total
value of rewards obtained. Kool et al. (2016) reported that the
model-based parameter w correlated with the total obtained
reward. Contrary to this expectation, we did not find any
relationship between w and total rewards (P: r = 0.24, p =
0.21; LA: r = 0.25, p = 0.19; P-FD: r = −0.15, p = 0.42; LA-
FD: r = −0.11, p = 0.57). This unexpected result may have
occurred because the relationship was too weak to detect from
the current small sample size. In fact, our simulation using
200 samples generated from the best-fit parameter sets revealed
positive relationships between w and the average reward in all
models (Figure S3).

In addition, many other factors may be related to total rewards
other than w, such as the reward schedule of the second-
stage states and the contributions of other parameters to agents’
choices. In particular, we found a strong positive correlation
between total rewards and the value-based parameter β (P: r =
0.82, p < 0.001; LA: r = 0.81, p < 0.001; P-FD: r = 0.77, p <

0.001; LA-FD: r = 0.78, p < 0.001). We also found a moderate
positive correlation between total rewards and the forgetting rate
αF when using the models with forgetting processes (P-FD: r =
0.44, p = 0.017; LA-FD: r = 0.48, p = 0.008), which may reflect
the nature of this task that the immediately preceding outcome is
the most informative.
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TABLE 3 | Associations of estimated parameter values with psychopathology and other traits.

αL β w π ρ λ αF µ

Correlation with OCI

P −0.59 −0.42 –0.31 0.37 –0.11 0.06

LA −0.62 −0.40 –0.36 0.37 –0.10

P-FD –0.24 −0.39 –0.10 –0.12 –0.11 0.06 –0.19 –0.06

LA-FD –0.31 –0.36 –0.07 –0.13 –0.11 –0.21 –0.04

Correlation with STAI

P –0.34 0.02 0.08 –0.09 0.04 –0.21

LA −0.38 0.03 0.11 –0.11 0.02

P-FD –0.01 0.12 0.07 –0.03 –0.04 0.11 0.32 0.02

LA-FD –0.12 0.15 0.05 –0.03 –0.03 0.29 0.08

Correlation with SDS

P –0.08 –0.01 0.15 –0.04 –0.10 –0.32

LA –0.06 0.00 0.15 –0.05 –0.11

P-FD 0.20 –0.03 0.12 –0.10 –0.12 0.09 0.41 0.02

LA-FD 0.06 0.00 0.14 –0.07 –0.11 0.41 0.09

Correlation with PSS.10

P –0.07 0.06 0.23 –0.27 –0.14 −0.44

LA –0.07 0.06 0.18 –0.27 –0.13

P-FD 0.08 0.10 0.25 –0.34 –0.18 –0.10 0.39 –0.06

LA-FD –0.09 0.14 0.31 –0.36 –0.16 0.39 –0.05

Correlation with BIS11

P –0.09 –0.20 0.29 0.10 –0.18 –0.36

LA –0.10 –0.19 0.25 0.10 –0.18

P-FD 0.07 –0.09 0.54 0.01 –0.25 –0.01 –0.10 –0.03

LA-FD –0.04 –0.07 0.56 –0.02 –0.23 –0.12 –0.05

The questionnaires used in this study were the Obsessive-Compulsive Inventory (OCI) for obsessive-compulsive disorder, the trait portion of the State-Trait Anxiety Inventory (STAI) for

trait anxiety, the Self-Rating Depression Scale (SDS) for depression, the Perceived Stress Scale (PSS) for stress, and the Barratt Impulsivity Scale 11th version (BIS-11) for impulsivity.

The correlations of their scores with the model parameters are shown. Model parameters were estimated using the parallel model (P), the parsimonious learning-rate adjustment model

(LA), the P model in which µ is a free parameter (P-FD), or the LA model in which µ is a free parameter (LA-FD). Italic: p < 0.10. Bold: p < 0.05.

Relationships With Self-Reported Psychopathology

or Other Traits
Previous studies have reported a negative association between the
weighting parameter and psychopathology, especially obsessive-
compulsivity (Voon et al., 2015; Gillan et al., 2016; Patzelt
et al., 2018). Considering that the model structure is critical for
parameter estimation, we examined the relationships between
the estimated parameter values and scores on questionnaires
regarding psychopathology and other traits using the P, LA, P-FD,
and LA-FD models (Table 3; the results of the reduced models
are provided in Table S3 as a reference). The w estimated by the
models with forgetting processes had no significant relationship
with self-reported OCD tendencies as measured by the OCI
contrary to our expectation (P-FD: r = −0.10, p = 0.60; LA-FD:
r = −0.07, p = 0.71), whereas the w estimated by the models
without forgetting processes showed weak negative correlations
(P: r =−0.31, p= 0.098; LA: r =−0.36, p= 0.056).

This change in the correlations can be explained as follows:
(1) the reduction in the AIC values by using the P-FD or LA-
FD model instead of the P or LA model showed a marginally
significant negative correlation with OCI scores (r = −0.33, p
= 0.079; r = −0.34, p = 0.072); (2) this negative correlation
indicates that the effect of the forgetting process was greater in

participants with low OCI scores than that in participants with
high OCI scores; (3) the values of w estimated by the models with
forgetting processes (the P-FD and LA-FD models) were lower
than those estimated by the models without forgetting processes
(the P or LAmodels); (4) therefore, thew of participants with low
OCI scores decreased more than that of participants with high
OCI scores, causing the negative correlations betweenw and OCI
scores to nearly disappear.

When the models with a forgetting process were used for
model fitting, the weighting parameter w showed a moderate
positive relationship with impulsivity as measured by the BIS
11 (P-FD: r = 0.54, p = 0.003; LA-FD: r = 0.56, p = 0.001),
which was surprising because impulsivity is generally considered
negatively correlated with model-based behavior. A possible
explanation for this result may be related to the role of w in
this task; that is, a greater w can heighten the effect of the
previous outcome, especially in the MB trials. Therefore, in
this study using healthy university students, higher impulsivity
may have heightened the effect of the last outcome on the
current choice, which may have been reflected by a greater
w. Returning to the relationship with OCD, other parameters
showed some correlations with OCI scores (negative correlation:
αL and β; positive correlation : π).
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The current correlation results may not be generalizable
because of the small number of participants and the restricted
population. However, the results showed how the differences
between the computational models greatly affect the parameter
estimates and their relationships with other indices.

DISCUSSION

We compared several computational models for data from a
two-step task with a deterministic transition structure (Kool
et al., 2016). Based on model comparisons and parameter
estimations, the participants appeared to use a parsimonious
computational algorithm. That is, reward feedback seemed to
directly update the first action of the deterministic state-action
sequences. In addition, model fits were improved by including
forgetting processes, which update unselected option values. In
the model with a forgetting process, the weighting parameter w
strongly corresponded to the statistically characterized degree of
“model” use, i.e., use of the transition structure. In addition, we
showed the possibility that the models with forgetting processes
result in different conclusions compared to the original model
in terms of the relationships between the model parameters
and psychopathology.

Parsimonious Value Computation
Model comparisons and estimated parameters supported a
learning process including parsimonious value computation,
which assumes that values are updated for deterministic state-
action sequences but not for every state-action pair. Such
computational savings are useful in a real environment because
computing every action value would require too many resources.
Consider buying a canned coffee from a vending machine. You
first decide which coffee you will buy, insert a coin, push the
appropriate button, take the coffee out of the bottom box, open
it, and taste it. These processes can be divided infinitely, but if
the taste of the obtained coffee is not good, you will reevaluate
only the first choice. An action sequence becomes automatic or
habitual with repetition, and until the sequence is interrupted,
individual actions do not need to be evaluated. Therefore, in the
task with the deterministic transition structure, the deterministic
action sequence can be regarded as a unit for value computation,
and this view is supported by our results. Previous studies have
also shown that an action sequence is used in the learning process
(Dezfouli and Balleine, 2013; Dezfouli et al., 2014).

Interestingly, parameter estimation revealed that the choices
in the current task were based on a more heuristic learning
process; that is, the participants seemed to have recorded only
the last outcome of each choice, which was presumed from
our finding that the estimated learning rate (αL) was almost 1
for most of the participants (Figure 8A). These estimates were
higher than those reported by Kool et al. (2017): median αL =

0.82). Multiple potential reasons may explain the high learning
rates in our data. First, the participants had sufficient time to be
affected by the last outcome because the time limit for making a
choice was longer than the periods that are ordinarily used [e.g.,
Kool et al. (2017) used a 1.5-s time limit]. Second, based on the
nature of this task, the best method to predict the next option
values is to record only the information from the immediately

preceding outcome, or setting the learning rate to 1, because
the outcomes change randomly and slowly every trial; most
of the participants may have used this type of strategy. This
heuristic learning process was revealed by fitting the data with
the computational model. Obtaining this finding only from the
statistical descriptions of the data is difficult.

Forgetting Process
In our previous study (Toyama et al., 2017), we showed that the
forgetting process, which assumes memory decay for unselected
actions, improved the fit of the computational model for the
data from the Daw two-step task. This result was replicated in
the current study using the Kool two-step task. Because memory
capacity is limited, retaining all action values in a stable manner is
difficult. The values become noisy over time. Thus, the inclusion
of forgetting processes may be reasonable to express natural
choice behavior by the RL model. The standard RL model does
not assume this process possibly because it was first developed in
the field of engineering andmay not need to assume that memory
decay occurs.

In the current study, the models with the default value fixed at
0.5 showed the lowest AIC. Considering that expected outcome
was 0.46 under random choice in our task, fixing the default
value at 0.5 for all participants was reasonable, although the
models including the default value as a free parameter also
showed good model data fits, and variance in µ was observed
among the participants (Figure 8B). The value ofµ influences the
likelihood of choosing the recently unselected options (Toyama
et al., 2017). This tendency can be distinguished from a mere
increase in choice randomness because randomness is expressed
by the inverse temperature parameter (β). Instead, µ expresses
the value-based expectation assigned to the recently unselected
options. Thus, if we use the model without a forgetting process,
then choice shifts to unselected options are all erroneously
expressed, for example, by decreasing β and the perseveration
parameter (π). Thus, proper model construction is important to
reduce the erroneous bias of the parameters.

Situations in which the forgetting process can affect the
learning process are easy to conceptualize. For example,
cognition regarding the task condition can affect the forgetting
process. In a situation where the reward outcomes change
frequently, the expectation for unselected options also becomes
uncertain quickly, and the agent may change options often
(expressed as a high forgetting rate). On the other hand, in a
situation where the reward outcomes are stable, the expectation
for unselected options is also stable (expressed as a low forgetting
rate). Individual trait differences can also affect the forgetting
process. For example, the difference between optimistic and
pessimistic outlooks may be expressed as an individual difference
in default values. Thus, the computational model with a
forgetting process is expected to provide new insights in research
related to value-based decision-making.

Model-Based System
In this study, we could not determine which type of model-
based system was used: the forward-looking or the backward-
looking model-based system. This ambiguity emerged because
a specific situation occurred (i.e., the estimated αL and λ were

Frontiers in Human Neuroscience | www.frontiersin.org 13 May 2019 | Volume 13 | Article 153

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Toyama et al. Parsimonious Learning Algorithm With Forgetting

FIGURE 8 | Histogram of the estimated parameter values of 29 participants. (A) Histogram of estimated learning rates. (B) Histogram of estimated default values. The

reward average in this task was 4.7 points (equal to 0.46 in the computational model).

almost one), implying that the current task was not appropriate
to clarify which type of model-based system was used, and future
studies using a proper task design that reflects the advantages
and disadvantages of the two model-based systems are required.
However, based on our previous work (Toyama et al., 2017) and
this study, the backward-looking model-based system may work
as well as the forward-looking system or more efficiently.

Model-Based Parameter
The interpretation of the weighting parameter w is sometimes
ambiguous in terms of whether it reflects the degree of learning
about the transition model or the use of the transition model.
The Kool two-step task has the advantage of restricting the
parameter’s meaning. Because this task has a clear deterministic
transition structure, w is expected to mostly reflect the difference
in the degree of model use among participants. In fact, we
demonstrated the correspondence between the estimated w
and individual differences in the model-free and model-based
sensitivity to the previous outcome. This correspondence was
found even when the parameter was estimated by the original
parallel model, but the correlation was weaker than that when the
parameter was estimated by the models with forgetting processes.

Use of the Model Parameters as Indices
Previous studies have repeatedly found reduced use of themodel-
based system, which is defined by a low weighting parameter
value, in OCD patients (Voon et al., 2015) and in participants
with high OCD-like symptom severity as measured by self-
reported questionnaires in a large-scale online study (Gillan
et al., 2016; Patzelt et al., 2018). This stable predictability
is a critical advantage of the parallel model. Our study also
moderately replicated this finding when the parallel model was
used, although only a marginally significant negative correlation
was observed, possibly because of the small sample size. For
example, Gillan et al. (2016) estimated that more than 1,000
participants were needed in their study using the Daw two-step
task to achieve statistically significant results.

On the other hand, this correlation almost disappeared when
the parameter w was estimated by the models with forgetting
processes, implying that we must be careful when interpreting

this parameter. First, considering that the model fits were
improved for most of the participants by assuming that forgetting
occurs, their choice data included a property corresponding to
the forgetting process. Then, if the data are estimated by the
models without forgetting, these models are forced to reflect this
property only by their parameters. Our result showed that the
values of w were estimated in a more model-based direction
compared with the values estimated by themodels with forgetting
processes. The value changes affected the correlation between
OCI scores and w, which may reflect the varying effect of
the forgetting process among participants. Thus, the models
with forgetting processes seem to lose their predictive ability
for OCD tendencies, or at least their interpretability for OCD
became complicated. OCD may require interpretation with a
combination of parameters.

When using the models with forgetting processes, we found
positive relationships between the weighting parameter w and
impulsivity and between the forgetting rate αF and depression or
stress. Of course, considering the small sample size of this study,
future studies are required to assess whether these models can
provide useful predictive parameters. For example, the models
must be applied to a large dataset for correlation analyses with
clinical metrics and cognitive function. The model parameters
must also be confirmed to be sufficiently recovered using various
simulated behaviors (Palminteri et al., 2017). Ideally, the crucial
parameters should be able to be appropriately estimated even
when behaviors have additional or fewer characteristics than
assumed in the models. In addition, regardless of differences
in the model, task setting is also important to improve the
sensitivity of the weighting parameter to individual differences.
In the current task, more than twice as many MF trials as MB
trials were included. By increasing the ratio of MB trials in future
studies, the relationships between w and other individual traits
may be clearer.

Although some future challenges remain, model fitting was
notably improved for most of the participants by assuming a
forgetting process, and as a result, the relationships between
the parameters and self-reported psychopathology changed. If
a data characteristic cannot be captured by a model, the model
still must express the characteristic using its model parameters,
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which sometimes leads to misinterpretation of the parameters
(Katahira, 2018). Therefore, the models with forgetting processes
should be examined as candidate models to understand our
cognitive process in future studies.

CONCLUSION

The current study showed that participants favored the models
with parsimonious computation, which assumes that the values
are updated for action sequences, and a forgetting process,
which assumes memory decay for unselected option values.
Additionally, we confirmed that the estimated model-based
weighting parameter could capture individual differences in
“model use.” To date, however, most learning models do not
contain psychological aspects such as cognitive savings and
memory decay. Thus, research using the proposed model will
force re-evaluation of how the features of the learning process
correlate with psychopathology or abnormal decision-making
and will enrich the study of the theory and neural basis of
learning processes.
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