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Traumatic axonal injury (TAI) is a major cause of death and disability among patients with severe traumatic brain injury (TBI);
however, no effective therapies have been developed to treat this disorder. Neuroinflammation accompanying microglial
activation after TBI is likely to be an important factor in TAIL In this review, we summarize the current research in this field,
and recent studies suggest that microglial activation plays an important role in TAI development. We discuss several drugs and
therapies that may aid TAI recovery by modulating the microglial phenotype following TBI. Based on the findings of recent
studies, we conclude that the promotion of active microglia to the M2 phenotype is a potential drug target for the treatment of TAL

1. Introduction

Traumatic brain injury (TBI) is a leading cause of disability
and mortality among young patients worldwide [1, 2]. Neu-
roinflammation accompanying the activation of microglia
and other effector cells following TBI has been suggested as
an important mechanism of secondary TBI [3-7]. Microglia
are major immune response cells in the central nervous sys-
tem (CNS). In addition to robust post-TBI inflammatory
responses, neuroinflammation can also be long-lasting, lead-
ing to persistent neural injuries that impede repair, or even
enhance neurodegenerative disease risk [8-13]. Such inflam-
matory responses can also include the recruitment of
immune cells from the blood, mainly infiltrating macro-
phages [14]. Active microglia can transform to the M1 phe-
notype, to secrete proinflammatory and cytotoxic mediators
that mediate neuronal dysfunction and cell death, or to the
M2 phenotype, to participate in phagocytosis and secrete
anti-inflammatory cytokines and neurotrophic factors that
are important for neural protection and repair [3, 15, 16].
Most studies on the effects of microglia following TBI
have examined focal injury, including cerebral contusions
and lacerations. However, axons in white matter are also
highly susceptible to injury, making traumatic axonal injury

(TAI) one of the most common pathologies of TBI and a crit-
ical factor for prognosis [17-21]. Diffuse axonal injury
(DAI), which occurs mainly in the corpus callosum, thala-
mus, and brain stem, has been documented to be a leading
cause of mortality and severe conscious disturbance follow-
ing severe TBI [18, 19, 22]. Therefore, the objective of this
review was to elucidate the relationship between neuroin-
flammation and TAI and discuss microglia as therapeutic
targets for TAL

2. Microglia and TAI

Microglial reactions after TBI have been well established, and
microglial assembly in association with TAI has also been
documented [23-26]. The most common sites of microglial
clustering following TBI are the corpus callosum, internal
capsule, and brain stem, where axonal injuries tend to be
concentrated [23, 27]. To determine the relationship between
axonal injury and activated microglia/macrophages (CD68+
cells), Wilson et al. [27] analyzed parafiin-embedded mate-
rials from the pons of head injury patients with DAI-linked
disability, and found that CD68+ cells were colocated with
terminal deoxynucleotidyl transferase dUTP nick-end label-
ing- (TUNEL-) positive staining in the corticospinal tracts
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and the medial lemnisci, which showed Wallerian degenera-
tion. This spatial relationship between axonal injury and
CD68+ cells suggests that microglia/macrophages are likely
to be involved in TAIL Unlike focal cerebral injury, axonal
injury occurs mainly in the corpus callosum, internal capsule,
and brain stem, where the blood-brain barrier (BBB) is rela-
tively intact, and the number of infiltrating macrophages is
very limited. In further studies that analyzed brain samples
from TBI survivors, patients who had survived 12-13 years
post-TBI showed immunoreactivity that was attributed to
brain tissue microglial/macrophage activation (CD68+ and
ionized calcium-binding adapter molecule- (Iba-) 1+) [28,
29]. And the activated microglial/macrophage was associated
with the f-amyloid precursor protein (APP) immunoreactiv-
ity, which represented axonal transport impairment and was
a biomarker for axonal injury [28]. These findings indicate
that activated microglia/macrophages can persist for long
periods post-TBI at axonal injury sites.

Recent studies have shown that microglia in white matter
are activated rapidly after TBI, in a manner associated with
axonal injury. In a confocal 3D analysis of the physical rela-
tionship between microglia and DAI in diffuse mild TBI in
minipigs, a significant increase in the number of activated
microglia (Iba-1+) was observed at 6h after TBI, accompa-
nied by APP+ proximal axonal swelling, especially in the
thalamus [30]. However, microglial activation in white mat-
ter may be delayed compared to that in grey matter. Csuka
et al. [31] reported that activated microglia become apparent
in white matter regions including the corpus callosum, inter-
nal capsule, and optic tract from 24 to 48 h and up to 2 weeks
after TBI, whereas such microglial changes were detectable
via OX6+ in grey matter nuclei as early as 4h after TBI. In
a human study, Oemichem et al. [32] also reported delayed
microglial accumulation at the site of axonal injury com-
pared to focal cerebral injury in the cortex. They performed
immunohistochemical double-labeling to demonstrate axo-
nal injury using the S-APP antibody and microglia using
the CD68 antibody simultaneously in 40 individuals who
had survived from 3 h to 15 days post-TBI, and found that
microglial/macrophage clusters in areas of axonal injury
accumulation were sporadic and did not occur until 4 days
post-TBL

Besides, imaging examinations also revealed the close
relationship between activated microglia and TAI in the
acute phase. In a study of the effects of controlled skull
impact at the bregma on TAI induction in mice, magnetic
resonance diffusion tensor imaging (DTI), which is used to
detect axonal injury in neural axons [33], showed significant
axonal damage in the corpus callosum, accompanied by
hypertrophic microglia, characterized by CD11b immuno-
histochemistry, through post tissue analysis after impact
[34]. A study of repetitive mild TBI in mice used DTT and dif-
fusion kurtosis imaging (DKI), and obtained similar results,
showing that activated microglia, detected as CDI11b+,
accompanied axonal injury after TBI [35].

After the acute phase of TBI, progressive neuroinflamma-
tion is associated with sustained microglial activity. Subacute
or chronic neuroinflammation is more apparent in white
matter than in grey matter [36, 37], and probably leads to
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long-term neural function damage. Significantly higher
immunoreactive microglial activity for galectin-3/mac-2-ir,
a myelin degradation marker, was observed within the
injured corpus callosum of mice with midline closed-skull
injury than in that of sham mice at 28 days post-TBI [36].
Another study examined the effect of controlled cortical
impact (CCI) on TBI induction and observed activated
microglia, detected as ED1+, along the entire injured side of
the corticospinal tract (CST) at 2 months post-TBIL; the
CST exhibited obviously degenerating myelinated axons
[38], and activated microglia of the hindbrain pyramids
intermingled with degenerating CST nerve axons. Several
studies using animal models have reported that microglial
activation in white matter is correlated with chronic axonal
injury post-TBI [39-42]. Human studies have also shown
that sustained microglial activity, which is closely related to
chronic neuroinflammation, leads to axonal injury [13, 43—
46]. Based on positron emission tomography (PET) and
magnetic resonance imaging of the PET ligand [''C](R)-
PK11195(PK) in TBI patients, microglial activity can persist
for up to 17 years post-TBI [37]. In the chronic phase after
TBI, no increase in PK binding was observed at the original
site of focal cerebral injury, but there was a significant
increase at the thalami, occipital cortices, and posterior limbs
of the internal capsules, where axonal injury was obvious. In
a study that examined microglial density and morphology in
brain sections of TBI patients 10-47 years post injury, TBI
survivors (>3 months) exhibited extensive, densely packed,
CR3/43- and/or CD68-immunoreactive microglia in the cor-
pus callosum combined with white matter degeneration,
compared to age-matched, uninjured control participants.
These reactive microglia were present in 28% of patients with
survival of 1-18 years post trauma [44].

Thus, as the main CNS scavengers, microglia are acti-
vated rapidly post-TBI, and they are probably closely related
to TAIL The effects of microglia post-TBI are complex, and
the mechanisms leading to TAI have not yet been elucidated.
For example, in addition to neuroinflammation induction,
activated microglia clear myelin debris which is a proinflam-
matory mediator produced by primary TAI [8, 47, 48], and
contribute to anti-inflammatory effects; whereas, long-term
activated microglia at the TAI site can cause neuroinflamma-
tion with other effector cells, which contributes to chronic
degenerative changes [44] such as chronic traumatic enceph-
alopathy (CTE), a frequent consequence of repetitive mild
TBI [49]. Focal cerebral injuries are seldom associated with
mild TBI, but can lead to diffuse axonal injuries marked by
B-APP [50]. For this reason, TAI is often analyzed based on
mild TBI. Repetitive mild TBI is common in specific popula-
tions such as boxers or American football athletes. In patients
with chronic neuroinflammation, repetitive mild TBI leads to
CTE [49, 51], which is typically characterized by pathological
changes such as activated microglia/macrophages in white
matter, accompanied by axonal injury [10, 49, 51-53].
Because mild TBI is associated with the infiltration of small
numbers of macrophages through the broken BBB, these
findings indicate that microglia are probably the key to the
relationship between TBI and CTE and other neurodegener-
ative diseases.
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FIGURE 1: Microglia and TAI traumatic brain injury will activate
microglia rapidly, and microglia will transform from the resting
state to the activated state. In the acute phase, activated microglia
include proinflammatory and anti-inflammatory phenotypes
which will play a role in axonal damage and repair, respectively.
While in the chronic phase, activated microglia are mainly
proinflammatory and will take part in the long-term process of
axonal injury after TBI.

Based on these studies, activated microglia are closely
related to acute or chronic TAI and are therefore likely to
be an important cause of axonal injury (Figure 1).

3. Post-TAI Microglial Polarization

Microglia are important cellular components of the CNS
immune system, accounting for 0.5%-16.6% of all CNS cells
[54, 55]. In healthy brains, microglia remove debris and met-
abolic products through phagocytosis without changing phe-
notype, thereby maintaining the microenvironment. When
injuries occur, microglia become reactive, causing significant
changes in their morphological features and gene expression
levels [3, 14, 56-58].

Active microglia have two different polarization pheno-
types, M1 and M2 (Figure 2).

M1 activation transforms microglia to potent proinflam-
matory effector cells, which secrete proinflammatory cyto-
kines including IL-18, IL-6, TNF-a, IFN-f, and COX-2.
Microglial M1 activation occurs through three main path-
ways: LPS, IFN-y, and GM-CSF [56, 59, 60].

In contrast, M2 activation transforms microglia to anti-
inflammatory effector cells that inhibit inflammatory reac-
tions and promote tissue repair. M2 polarization can be
divided into at least three subtypes: M2a, M2b, and M2c.
M?2a-polarized microglia are induced by IL-4 and IL-13,
which activate the STAT6/IRF4 signaling pathway [56].

M2a-polarized microglia secrete the anti-inflammatory cyto-
kine IL-10, and are characterized by the upregulation of
arginase-1 (Arg-1), transglutaminase-2, RELM-«, and YM1,
which antagonize MI-polarized microglia [61]. M2c-
polarized microglia are induced by IL-10 and glucocorti-
coids, and are characterized by phagocytosis and its benefits,
associated with clearing cell debris from the brain [62]. M2b-
polarized microglia can also be induced by IL-1R ligands, and
exhibit both anti-inflammatory and proinflammatory func-
tions in the CNS, secreting IL-1f3, TNF-«, and IL-10, an
anti-inflammatory cytokine. M2b-polarized microglia have
an M1 marker (CD86) and an M2 marker (IL-10"8"), and
are therefore considered to be mixed-activation microglia
[62-64]. It is important to remember that microglial pheno-
type descriptions are based on macrophage research, and
microglia are not simply “macrophages in the CNS.” Micro-
glial and macrophage polarization probably do not occur via
completely the same mechanisms [65].

The phenotypes of reactive microglia occurring post-TBI
have been well elucidated, but they are mainly based on focal
cerebral injuries. Both M1- (indicated by CD86+/CD11b+)
and M2- (indicated by CD206+/CD11b+) polarized micro-
glia/macrophages increase significantly in CClI-induced
injured brains post-TBI, peaking at 1 and 4 weeks post-TBI,
respectively [66]. Most of the studies of microglial polariza-
tion after focal injury in different animal models have
obtained similar results, with M2-polarized microglia
increasing first and M1-polarized microglia persisting for
longer periods of time [67-71]. The relationship between
microglial polarization and TAI has been examined in fewer
studies, but shows a similar trend to that during focal cerebral
injury.

The number of M1-like microglia/macrophages in the
corpus callosum was shown to increase during the first week
after CCI-induced TBI in an animal model; their levels
remained elevated for at least 14 days, as detected by
reverse-transcription polymerase chain reaction (RT-PCR)
and immunofluorescence staining. Abundant axonal injury
in white matter, detected by immunohistochemical staining
for neurofilament SMI-32, was strongly correlated with the
number of Ml-like phagocytes (markers: iNOS, CD11b,
CD16, CD32, and CD86), whereas M2-like phagocytes
(markers: CD206, Argl, CCL-22, Ym1/2, and IL-10) peaked
at 5 days and decreased rapidly and significantly thereafter
[72]. These changes are consistent with those reported in
focal cerebral cortex injury, but with a slower phenotypic
shift from M2 to M1 polarization. At 7 days after TBI, M1-
and M2-polarized microglia/macrophages were found to
have increased according to RT-PCR and immunofluores-
cent staining (M1 marker: CD16; M2 marker: CD206), with
Iba-1 as a marker for activated microglia; however, more
M1-polarized microglia were found in the corpus callosum,
accompanied by upregulation of proinflammatory factors
NO, TNF-a, and IL-6 [73]. These findings suggest that the
M1 phenotype promotes TAl-associated neuroinflamma-
tion. However, some studies have reported earlier M1 polar-
ization and related TAI. Reactions with TNF-a, a
proinflammatory factor mainly secreted by M1-polarized
microglia, have been detected in the lysosomes of microglia
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FIGURE 2: Active microglial phenotypes: microglia can be activated by different types of cytokines. Active microglia have two polarization

phenotypes, M1 and M2 [3, 4, 57].

in the corpus callosum as early as 30 min post-TBI in rats;
these reactions were correlated with secondary axonal injury,
detected 1 h post-TBI [74]. Based on these findings, it appears
that M1-polarized microglia/macrophages are activated quite
early too, and closely associated with post-TBI axonal injury.

4. Traumatic Axonal Injury Treatment
Targeting Microglia

To date, human and animal studies have shown a close
relationship between microglial activation and TAI, sug-
gesting that microglia are a possible target for the treatment
of this disorder. After TBI, M2-polarized microglia tend to
exert their protective effects mainly by releasing anti-
inflammatory cytokines, promoting tissue repair and regen-
eration, and facilitating phagocytosis, whereas M1-polarized
microglia primarily exhibit proinflammatory effects that
lead to neuronal injury. Based on current studies of post-
TBI focal cerebral injury, post-TBI microglial activation
and polarization are similar in both white and grey matter.
M2-polarized microglia increase first, but then decrease
quickly, whereas MI-polarized microglia increase slowly
and persist for longer periods of time.

Because M1 is more likely to lead to TAI post-TBI and
M2 plays a neuroprotective role and improves axonal injury,

anti-neuroinflammatory treatment methods that promote
M2 polarization while inhibiting M1 polarization have been
shown to enhance neural function after TBI. Therefore,
microglial polarization could also be developed as a target
therapy for TAI, which is an important pathological effect
of TBL

4.1. Peroxisome Proliferator-Activated Receptors (PPARSs).
PPARs are ligand-activated transcription factors belonging
to the nuclear hormone receptor superfamily [75]. At least
three different types of PPAR have been identified, PPAR-
a, PPAR- B, and PPAR-y [75, 76]. PPAR regulates neuroin-
flammation in the CNS; in stroke, spinal cord injury, and
neurodegenerative disease animal models, PPAR agonists
have been shown to be effective at protecting neural func-
tions [75, 76].

Both fenofibrate, a PPAR-« agonist, and pioglitazone, a
PPAR-y agonist, have been shown to attenuate microglia-
derived, nitric oxide-induced axonal injury in vitro [77]. In
another study, diffuse brain injury was induced in rats by lat-
eral fluid percussion injury (LFPI), and rosiglitazone was
administered to induce PPAR-y activation, which promoted
microglial polarization to the M2 phenotype, as shown using
CD206 and YM1 markers [78]; in the acute phase, the M2
and M1 phenotypes were significantly increased and
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suppressed as shown by CD16 and CD86 markers, respec-
tively. TAI was shown to be relieved through the detection
of B-APP and Bielschowsky’s silver staining at 24, 48, and
72 h after injury, and neurological outcomes improved. Con-
versely, GW9662, a PPAR-y antagonist, inhibited microglial
polarization toward the M2 phenotype and aggravated
inflammation, with more severe axonal injury and poorer
neurological outcomes [78].

4.2. Minocycline. Minocycline is a classical antibiotic with
anti-inflammatory and neuroprotective effects; it has been
shown to inhibit M1 polarization and promote M2 polariza-
tion [79, 80]. Several animal studies have shown that minocy-
cline improves neurological function by inhibiting post-TBI
microglial activation [81-83]. However, the effects of mino-
cycline on post-TBI TAI have not been elucidated.

The combined administration of minocycline and N-
acetylcysteine in a mild-CCI rat model of TBI enhanced both
M1- and M2-polarized microglia/macrophage activation in
the corpus callosum at 2 days post-TBI, leading to the atten-
uation of white matter damage and improvement of neuro-
logical function [84]. However, some studies have reported
contrasting results. In weight reduction-induced TBI in mice,
minocycline was shown to reduce focal cortex injury by
attenuating microglial activation by 59% at 24h post-TBI,
as detected by CD11b. Moreover, TBI-induced locomotor
activity was relieved at 48 h post-TBIL. However, axonal inju-
ries evaluated by S-APP at 24h post-TBI were unaffected
[85]. These findings are consistent with those reported in a
study of abuse head trauma (AHT) in a neonatal rat model,
that acute minocycline administration decreased microglial/-
macrophage activation in the corpus callosum, such that
effects were abolished by 7 days post-TBI; however, axonal
injury, cerebral atrophy, and neurological function were not
improved [86]. Extending the minocycline administration
period to 9 days post-TBI led to even more severe neurodegen-
eration in the group with poorer neurological function [87].

A clinical trial of minocycline efficacy involving 15
patients with TBI was reported in 2018. Minocycline was
shown to inhibit chronic microglial activation, as assessed
using ''C-PBR28 PET; however, white matter damage and
brain atrophy were markedly increased [43].

4.3. Erythropoietin. Several studies have reported that
erythropoietin (EPO) administration protects neurological
function post-TBI [88, 89]. One mechanism for this phe-
nomenon is the regulation of inflammation through
microglial/macrophage polarization toward the M2 pheno-
type [90-92]. In a study examining the effects of EPO on
TAI, rats subjected to diffuse TAI followed by 30min of
hypoxia were administered with recombinant human
EPO-a (50001U/kg); EPO was found to reduce axonal
injury in white matter and enhance sensorimotor and cog-
nitive recovery, as detected by NF-200, and low levels of
activated microglia/macrophages (CD68+) and IL-1f3 were
detected [93]. These results revealed that TAI could be
attenuated by EPO therapy, partly through the modulation
of microglia/macrophage activation.

4.4. SMM-189. SMM-189 is a cannabinoid type 2 (CB2)
receptor inverse agonist. SMM-189 has been shown to con-
vert human microglia from the M1 to the M2 phenotype
in vivo [94]. In that study, a mild TBI mouse model was
established using a focal left-side cranial blast; mild TBI
was accompanied by widespread axonal injury surrounded
by activated microglia (Iba-1+), mainly in the medial lemnis-
cus, lateral lemniscus, cerebellar peduncles, deep cerebellar
white matter, and pyramidal tract. SMM-189 has also been
shown to partially reverse TBI-induced neural dysfunction
including motor, visual, and emotional deficits by attenuat-
ing axonal injury. Moreover, a later study reported the effects
of SMM-189 on the modulation of microglial polarization
in vivo after mild TBI [95].

4.5. Progranulin (PGRN). PGRN is a multifunctional growth
factor involved in neuroinflammation with protective effects
against neurodegenerative diseases [96]. Microglia/macroph-
age marker expression was compared between wild-type
(WT) and granulin-deficient mice post-TBI; the results sug-
gested that PGRN is produced in CD68-positive microglia
and suppresses excessive inflammatory responses related to
activated microglia after TBI, as detected by Iba-1, CD68,
and CD11b [97, 98]. PGRN expression was found to be sup-
pressed after spinal cord injury, whereas its immunoreactiv-
ity was colocalized with activated microglia/macrophages
(CD68 and CD11b positive), indicating the close relationship
between PGRN and microglia/macrophage activation [99].
PGRN-deficient mice were found to exhibit more obvious
perilesional axonal injury than WT mice, despite similar
overall brain tissue loss and neurological outcomes, with sim-
ilar numbers of activated microglia/macrophages (Iba-1+) in
both groups [100]. However, the expression levels of pro-
and anti-inflammatory cytokines were elevated and sup-
pressed, respectively, in PGRN-deficient mice. These findings
suggest that PGRN modulates the polarization of microglia/-
macrophages toward the M2 phenotype while attenuating
the associated TAL

4.6. Laquinimod and Fingolimod. Laquinimod is an orally
administered immunomodulator that was initially developed
to treat multiple sclerosis (MS). In some animal models of
diseases such as experimental autoimmune encephalomyeli-
tis (EAE), laquinimod has been shown to inhibit microglial
activation and attenuate axonal injury in CNS [101, 102].
In a moderate TBI study, laquinimod was administered to
mice before and after TBI, and the brains were collected at
3 and 120 days post-TBI. Laquinimod was found to decrease
axonal injury, enhance neurogenesis at an early stage, and
prevent cerebral atrophy. Laquinimod also decreased mono-
cyte infiltration into the brain, and further gene expression
analysis revealed that it inhibited post-TBI microglial activa-
tion [103].

Fingolimod is an immunosuppressive synthetic com-
pound produced by modifying metabolites extracted from
Isaria sinclairi [104]; like laquinimod, it was initially devel-
oped to treat MS. Post-CCI fingolimod administration in
mice was found to attenuate activated microglia/macro-
phages, as detected by Iba-1, and to augment the M2/M1



ratio and decrease axonal damage; treated mice also showed
decreased immunoinflammatory response and improved
neurological deficits post-TBI [105]. However, another study
showed that administering fingolimod to suppress post-TBI
inflammation did not improve neurological function [106].

4.7. Estrogen and Progesterone. Although the effects of sex on
TBI outcomes have not been elucidated, studies have shown
that the female sex hormones progesterone and estrogen
suppress brain injury and improve neurological function
[107-112]. Following diffuse brain injury in rats, progester-
one administration reduced axonal and neuronal injury and
markedly attenuated caspase-3 immunoreactivity [113].
Post-TBI administration of female sex steroids has been
shown to induce anti-neuroinflammatory effects by modulat-
ing microglia/macrophage activation, producing neural pro-
tective effects [112, 114]. For example, in a CCI model of TBI,
postovariectomy female mice with severe cerebral injuries at
multiple brain sites showed enhanced microglial activation
compared to intact females, as indicated by Iba-1 [107]. In
post-TBI rats, the G1 agonist of estrogen receptor GPR30
was found to improve M2 polarization, as indicated by
Argl and IL-4, leading to induced neural protection [115].

4.8. Omega-3 Polyunsaturated Fatty Acids (w-3 PUFAs). Sev-
eral w-3 PUFAs, including docosahexaenoic acid (DHA), a-
linolenic acid, and eicosapentaenoic acid, play key roles in
human metabolism [116]. Recent studies have shown that
w-3 PUFAs regulate post-TBI inflammatory and immune
responses [117, 118]. In a CCI-induced TBI mouse model,
DHA administration was found to inhibit microglia/ma-
crophage activation, as detected by Iba-1, and decrease accu-
mulation of B-APP; reduced neurofilament light levels in
plasma at 28 days also indicated axonal injury attenuation
[119]. Several studies have also reported that w-3 PUFAs
inhibit post-TBI neuroinflammation by suppressing micro-
glia/macrophage activation and promoting polarization
toward the M2 phenotype [120-124].

4.9. Histone Deacetylase Inhibition (HDAC). The HDAC
inhibitor 4-dimethylamino-N-(5-(2-mercaptoacetylamino)-
pentyl)benzamide (DMA-PB) has been reported as a
potential therapy for inhibiting neuroinflammation by sup-
pressing post-TBI microglial activation, as detected by OX-
42 [125]. In a closed TBI mouse model, DMA-PB was con-
firmed to improve neurological function and decrease cere-
bral damage [126]. Administration of the HDAC inhibitor
Scriptaid to a post-CCI mouse model showed that it
enhanced long-term white matter preservation following
TBI; damage to axons and the myelin sheath of the corpus
callosum and striatum was assessed by a loss of myelin basic
protein and an increase in abnormally dephosphorylated
neurofilament protein, and by measuring the loss of myelin
[73]. Scriptaid has also been shown to promote microglial
polarization toward the M2 phenotype both in vitro and
in vivo, as evaluated by CD206 detection and increased IL-
10 gene expression, in a process modulated by the PI3K/Akt
signaling pathway [73, 127].
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4.10. Suppressors of Cytokine Signaling (SOCS). SOCS pro-
teins and cytokines comprise a family of intracellular pro-
teins that are major negative regulators of the JAK/STAT
pathway [128]. After mild TBI, SOCS2 overexpressing trans-
genic (SOCS2Tg) mice showed functional improvement,
with lower cerebral lesion volume than control mice; after
moderate TBI, levels of M2-polarized microglia/macro-
phages were increased around the cerebral injury lesion, as
detected by CD206, whereas no difference in M1-polarized
cell levels was detected by CD16/32 [129]. Other SOCS fam-
ily members have been shown to inhibit inflammation by
modulating microglial/macrophage polarization, and several
TBI therapies such as hypothermia and melatonin have been
found to be associated with these effects [130-132].

4.11. Complement Components. Several complement compo-
nents including Clq, C3, and CR3 regulate microglia-
synapse interactions following TBI; the accumulation of
these components leads to chronic microglia/macrophage
activation [133, 134]. The membrane attack complex
(MAC) of the complement system is detectable in the trau-
matized brain soon after TBIL In post-TBI mice, blocking
MAC by inhibiting C6 was shown to reduce axonal loss
and promote neurologic function, with decreased microglia/-
macrophage accumulation, detected by Iba-1 [135]. Blocking
MAC has also been shown to inhibit post-TBI chronic
inflammation by suppressing microglia/macrophage activa-
tion, as detected by Iba-1 [134].

4.12. IL-1 Receptor Antagonist (IL-1ra). IL-1 is a classic pro-
inflammatory cytokine whose expression is significantly
elevated post-TBI [136]. M1 phenotype microglia/macro-
phages are a major source of IL-1 post-TBI. Post-TBI
administration of IL-1ra has been shown to induce anti-
inflammatory properties and promote neurological func-
tion [137-139] by inhibiting microglia/macrophage activa-
tion. IL-1ra administration has also been shown to
decrease microglial activation, as detected by Iba-1, and
cerebral edema during the acute phase of TBI in mice,
and to attenuate chronic-phase TAI [140]. A single-
center randomized clinical trial (RCT) of IL-1ra reported
its safety, good brain penetration, and ability to modify
neuroinflammatory reactions, demonstrating its potential
as a neural protective agent [141]. IL-1ra administration
has also been shown to increase cytokines, as detected by
granulocyte-monocyte colony stimulating factor (GM-
CSF) and IL-1f, and Ml-polarized microglia, indicating
that it may be insufficient to classify IL-1ra as merely an
anti-inflammatory cytokine [142].

4.13. Stem Cells. Stem cell transplantation is a potential ther-
apy for several neural system diseases, including TBI. Stem
cells have been shown to regulate the activation and polariza-
tion of microglia/macrophages, mainly by inducing a shift
toward the M2 phenotype [143-147], which is likely to be
one of the main mechanisms for this therapy. Stem cell ther-
apy has been demonstrated to improve TBI outcomes effec-
tively in some clinical trials [148-151].
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In a severe CCl-induced TBI model, the transplantation
of neural stem cells (NSC) was reported to reduce the inten-
sity of activated microglia significantly, as detected by Iba-1,
and promote microglial polarization from the M1 to the M2
phenotype, especially around the axonal injury sites. These
changes were accompanied by reduced axonal injury, but
without decreasing the volume of cerebral contusions [143].
Similar results were reported in a study using human amnion
epithelial cells and bone marrow mesenchymal stromal cells
to treat TBI in rats [152-154].

Stem cell therapy is inhibited by reduced BBB penetra-
tion efficiency. Exosomes, which are extracellular vesicles
secreted from cells, containing noncoding RNA, proteins,
and other small substances, can easily pass through the
BBB. Several studies have shown that exosomes secreted by
stem cells can modulate microglial/macrophage polarization
[68, 155], and may be more effective when injected through
peripheral vessels.

4.14. Hypothermia. Hypothermia, which can reduce intracra-
nial pressure and has neural protective effects, is a popular
therapeutic option for severe TBI. Hypothermia has been
shown to attenuate TAI in different TBI animal models
[156-159]. The protective mechanisms of hypothermia
include decreasing cerebral oxygen metabolism, inhibiting
internal harmful cytokines, preventing apoptosis and, most
importantly, inhibiting neuroinflammation [160, 161]. In a
disease model of hypoxic-ischemic encephalopathy, hypo-
thermia was shown to attenuate axonal injury by inhibiting
microglial activation, as detected by Iba-1 [162]. Another
TBI study showed that the ratio of M1- to M2-polarized
microglia was significantly lower in the cortical and hippo-
campus regions after 24h of hypothermia therapy at 33°C
than in the control group [70].

Besides, several other therapies, including clofazimine, a
Kv1.3 channel blockade [163], lacosamide [164], and vascu-
lar endothelial growth factor- (VEGF-) C [165], have been
shown to improve TAI by targeting the activation and polar-
ization of microglia/macrophages.

5. Limitations and Future Directions

Though recent studies have shown the capacity of microglia
as potential drug targets for TAI, there are still several limita-
tions. The effects of microglial activation are complex; for
example, conflicting reports on the effects of minocycline
on patient outcomes [43, 84, 85] indicate that simply inhibit-
ing microglia/macrophage activation may not be effective in
improving patient outcomes. Similar results were revealed
in several other studies. For example, CD11b-TK (thymidine
kinase) mice developed as a valganciclovir-inducible model
of microglia/macrophage deletion were used to establish a
closed-skull TBI model; at 7 days post injury, valganciclovir
was found to reduce the microglia/macrophage population
dramatically in the corpus callosum and external capsule,
but it did not attenuate axonal injury, as detected by silver
staining, APP accumulation, neurofilament labeling, and
electron microscopy. Longer treatment with valganciclovir
even led to neural toxic effects [166].

Moreover, microglial activation is a long-term phenome-
non following TBI. The close relationship between axonal
injury and microglial activation can be detected several years
post-TBI. As a result, transient therapy targeting microglia
may not effectively protect against axonal injury. Acute min-
ocycline administration, which affects microglia only tran-
siently, did not attenuate cerebral injuries including TAI [86].

Besides, most studies observe microglial responses using
macrophage markers or gene expression. Although axonal
injury occurs mainly in the corpus callosum, internal capsule,
and brain stem, where few macrophages can infiltrate
through the intact BBB, it remains difficult to differentiate
infiltrating macrophages and activated microglia after TBI

Based on the findings of recent studies, the ideal method
for targeting microglia to attenuate TAI is to promote micro-
glial polarization to the M2 phenotype (anti-inflammation)
and to inhibit polarization to the M1 phenotype (proinflam-
mation) at the appropriate times. However, it is difficult to
describe all types of polarized microglia as simply pro- or
anti-inflammation. The terminology used to describe micro-
glial phenotypes is based on macrophage research, and is
probably insufficient to discuss macrophages in the CNS; a
new classification system for microglia should be developed
in a future study. Nevertheless, despite these controversies
and limitations, the body of literature supports targeting
microglia as a potential TAI therapy.

6. Conclusion

TAI is a major cause of death and severe disability secondary
to TBI; however, effective treatments remain limited. Recent
studies suggest that post-TBI microglial activation plays an
important role in the pathology of axonal injury, and that
neuroinflammation, which is closely related to post-TBI
microglial activation, is a potential target for pharmaceutical
therapy. However, simply inhibiting microglial activation
may be insufficient for attenuating axonal injury.

In addition to its neuroinflammatory effects, activated
microglia have shown neural protective effects. Potential
TAI treatments could target microglia by regulating the phe-
notype of activated microglia at appropriate times. The com-
plex nature of microglial phenotype alteration requires
further investigation to determine the optimal intervention
time. Active microglia persist in white matter for long
periods after TBI, and are probably related to various neural
degenerative diseases. Treatment endpoints also require fur-
ther investigation.
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