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Simple Summary: Most patients with pancreatic cancer initially respond to the first-choice drug
gemcitabine, but the cancer cells rapidly acquire drug resistance, resulting in poor survival. In
this study, we investigated whether the serotonin (5-hydroxytryptamine, 5-HT) system plays an
important role in gemcitabine resistance and the maintenance of pancreatic cancer stem cells (CSCs)
in association with an Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator of transcription.
Herein, we demonstrate that long-term exposure of PDAC cells to 5-HT leads to enhanced EZH2
expression which, in turn, allows upregulation of TPH1 and 5-HT7, resulting in EZH2-TPH1-5-HT7

axis operating in a feed-forward manner. The results suggest that the EZH2-TPH1-5-HT7 axis may be
a highly efficient therapeutic target against drug-resistant pancreatic ductal adenocarcinoma (PDAC).

Abstract: In the present study, we investigated the regulatory mechanisms underlying overexpression
of EZH2, tryptophan hydroxylase 1 (TPH1), and 5-HT7, in relation to gemcitabine resistance and
CSC survival in PDAC cells. In aggressive PANC-1 and MIA PaCa-2 cells, knock-down (KD) of
EZH2, TPH1, or HTR7 induced a decrease in CSCs and recovery from gemcitabine resistance, while
preconditioning of less aggressive Capan-1 cells with 5-HT induced gemcitabine resistance with
increased expression of EZH2, TPH1, and 5-HT7. Such effects of the gene KD and 5-HT treatment
were mediated through PI3K/Akt and JAK2/STAT3 signaling pathways. EZH2 KD or GSK-126 (an
EZH2 inhibitor) inhibited activities of these signaling pathways which altered nuclear level of NF-kB,
Sp1, and p-STAT3, accompanied by downregulation of TPH1 and 5-HT7. Co-immunoprecipation
with EZH2 and pan-methyl lysine antibodies revealed that auto-methylated EZH2 served as a
scaffold for binding with methylated NF-kB and Sp1 as well as unmethylated p-STAT3. Furthermore,
the inhibitor of EZH2, TPH1, or 5-HT7 effectively regressed pancreatic tumor growth in a xenografted
mouse tumor model. Overall, the results revealed that long-term exposure to 5-HT upregulated
EZH2, and the noncanonical action of EZH2 allowed the expression of TPH1-5-HT7 axis leading to
gemcitabine resistance and CSC population in PDAC.

Keywords: pancreatic ductal adenocarcinoma; gemcitabine-resistance; cancer stem cells; Enhancer
of zeste homolog 2; tryptophan hydroxylase 1; 5-HT7

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) accounts for over 90% of pancreatic cancer
cases worldwide and is one of the most aggressive human malignancies. It is the only
cancer type in which the five-year survival rate (8% in metastatic PDAC) has not improved
over the last several decades despite advances in surgical and other cancer treatments [1].
Gemcitabine is the first line chemotherapeutic drug for PDAC. However, the rate of
response to gemcitabine is poor, and PDAC rapidly develop resistance [2,3].

Genomic studies of PDAC have revealed four frequently mutated genes, KRAS, TP53,
CDKN2A, and SMAD4. The activating mutation in KRAS is present in 80–90% of pancreatic
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cancers [4], and this mutation results in overactivation of various signaling molecules,
such as Raf/MEK/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-
kinases (PI3Ks)/Akt [5]. These signaling molecules mediate early distant metastasis,
resistance to conventional chemotherapy [6,7], and development of pancreatic cancer stem
cell (CSC) characteristics [8]. In addition to the genetic alterations, it is found that aberrant
activation of epigenetic regulatory mechanisms, DNA methylation and post-translational
histone modifications also play an important role in PDAC progression [9]. The epigenetic
alterations are also responsible for over-activation of the growth signaling pathway and
the silencing of tumor suppressor and cell cycle checkpoint genes in PDAC [10,11].

Enhancer of zeste homolog 2 (EZH2) is an enzymatic catalytic subunit of polycomb
repressive complex 2 (PRC2) that can alter gene silencing by trimethylation of lysine in
histone 3 (H3K27me3), a form of chromatin structure modulation [12]. In addition, EZH2
also exerts PRC2-dependent methylation of non-histone proteins and PRC2-independent
gene transactivation [13]. Moreover, EZH2 interacts with intracellular signaling molecules.
For example, phosphorylation of EZH2 at Ser21 by Akt methylates STAT3, leading to
constitutive STAT3 activation [14]. This phenomenon could possibly explain constitutive
activation of STAT3 in PDAC cells which overexpress EZH2 [15] and lack JAK2 activation
mutation [16]; however, it has not been proven in PDAC yet. In various cancer cells, EZH2
is known to play a critical role in the maintenance [17,18] and expansion [19] of stem cell-
like characteristics through activation of stemness-associated signaling pathways. EZH2
not only activates NF-kB through epigenetic silencing of disabled homolog 2-interacting
protein (DAB2IP), a GTPase activating protein [20], but also directly binds to NF-kB, leading
to activation of target gene expressions [21]. On the other hand, EZH2 gene expression
itself is regulated by NF-kB and other transcription factors [22].

Serotonin (5-hydroxytryptamine, 5-HT), synthesized by tryptophan hydroxylase
(TPH) 1 in the periphery and by TPH2 in the central nervous system [23], exerts vari-
ous physiological and pathophysiological actions including mitogenic action for a wide
range of normal and tumor cells [24,25]. Normally, 95% of peripheral 5-HT is synthesized
in the enterochromaffin cells, and it is transported and stored in the platelets [23]. The
way for most peripheral cells to receive such 5-HT action is either a paracrine method,
contacting 5-HT secreted from activated platelets [26,27], or an autocrine method, in which
5-HT is secreted from the cell itself with increased TPH1 expression [24,28]. During ges-
tational pancreatic β-cell proliferation, TPH1 induction and subsequent 5-HT activity
through the autocrine-paracrine loop was accompanied by an increase in EZH2 expres-
sion [29]. However, the mechanisms underlying their concurrent upregulation have not
been elucidated.

Similar to the non-neuronal action of 5-HT, including dedifferentiation of acinar cells
and promotion of regeneration after pancreatitis [30], overexpression of 5-HT1B and 5-HT1D
receptors stimulates pancreatic cancer progression by promoting proliferation and invasion
of PDAC [31]. On the other hand, 5-HT7 receptors are known to stimulate proliferation
and invasion of breast cancer cells via the PI3K/Akt pathway [28]. However, the linkage of
5-HT receptors to JAK/STAT3 signaling pathway in PDAC remains unclear.

In the present study, we examined the regulatory mechanisms underlying the over-
expression of EZH2, TPH1, and 5-HT7 in PDAC, in relation to CSCs and gemcitabine
resistance. Also, we investigated whether long-term exposure to TPH1-derived or exoge-
nous 5-HT induces pancreatic cancer cells to a gemcitabine-resistant phenotype, and the
mode of operation of the TPH1-5-HT-5-HT7 axis. Finally, we confirmed a critical role of
the EZH2-TPH1-5-HT-5-HT7 axis in gemcitabine-resistant pancreatic cancer growth in an
in vivo xenograft tumor model.

2. Materials and Methods
2.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM) and RPMI-1640 were obtained from
Hyclone (Logan, UT, USA). Keratinocyte serum-free medium, recombinant endothelial
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growth factor (rEGF), bovine pituitary extract (BPE), fetal bovine serum (FBS), penicillin,
and streptomycin were obtained from Gibco (Grand Island, NY, USA). Stattic and gemc-
itabine were purchased from Tocris (Bristol, UK), wortmannin from Biomol International
(Plymouth Meeting, PA, USA), Trizol from Life Technologies Inc. (Carlsbad, CA, USA).
Fedratinib, SB-269970, telotristat was purchased from Selleckchem (Houston, TX, USA),
and GSK-126 from MedChemExpress (Princeton, NJ, USA). Antibodies against p-PI3K,
PI3K, p-Akt, Akt, p-JAK2, JAK2, p-STAT3, STAT3, EZH2, and NF-κB P65 were purchased
from Cell Signaling Technology Inc. (Beverly, MA, USA); 5-HT1A, 5-HT1B, Nanog, CD44,
Sp1, and EZH1 were from Abcam (Cambridge, MA, USA); TPH1 from Invitrogen (Carls-
bad, CA, USA); β-Actin and Lamin B from Santa Cruz Biotechnology (Dallas, Texas, USA).
FITC-anti-human CD44, APC-anti-human CD24, PE-anti-mouse IgG2B, FITC-anti-mouse
IgG1 kappa isotype control, APC-anti-mouse IgG2a kappa isotype control antibodies were
purchased from Biolegend (San Diego, CA, USA). Two types of anti-5-HT7 antibodies were
purchased from Novus Biologicals (Littleton, CO, USA) and R&D system (Minneapolis,
MN, USA) for immunoblotting and flow cytometry, respectively.

2.2. Cell Culture and Viability Assay

Human PDAC cell lines (PANC-1, MIA PaCa-2, Capan-1, and Capan-2) and normal
pancreatic ductal epithelial cell lines (H6c7) were purchased from the Korean Cell Line
Bank (Seoul, South Korea) and Kerafast (Boston, MA, USA), respectively. PDAC cell lines
were cultured in DMEM (PANC-1 and MIA PaCa-2) or RPMI-1640 medium (Capan-1 and
Capan-2) supplemented with 10% FBS and 1% penicillin/streptomycin. H6c7 cells were
maintained in keratinocyte serum-free medium supplemented with rEGF and BPE. All
the cells were incubated at 37 ◦C under a 5% CO2. For measurement of cell viability, cells
were seeded in 96-well plate in 1% FBS containing media. After cells were treated with
vehicle or drugs for 48 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) (Merck, Burlington, MA, USA) dye solution was added. After 4 h, the solution
was removed, and dimethyl sulfoxide was added to dissolve the formazan crystal. The
absorbance was measured at 540 nm using a microplate reader (Versamax, Molecular
Devices, Inc., San Jose, CA, USA).

2.3. Protein Extraction and Western Blotting

Cells were lysed using the radioimmunoprecipitation assay (RIPA) buffer (Thermo
Scientific, Waltham, MA, USA) containing 1× protease and phosphatase inhibitor cocktail
(Thermo Scientific) for total protein extraction. Nuclear and cytoplasmic proteins were
extracted using NE-PER Nuclear and cytoplasmic extraction reagent, respectively (Thermo
Scientific). Proteins separated by SDS-PAGE were transferred onto nitrocellulose mem-
brane (Whatman GmbH, Dassel, Germany), and immunoblotted with specific primary
and secondary antibodies. The immunoblots were visualized using an ECL kit (Thermo
Scientific) and imaged using LAS-4000 mini system (Fuji, Tokyo, Japan).

2.4. siRNA Transfection

Cells were seeded in antibiotic-free DMEM high glucose media and transfected using
MISSION esiRNAs (100 nM) targeting HTR7, TPH1, EZH1 or EZH2 (Sigma-Aldrich, St
Louis, MO, USA) using DharmFECT reagent 4 (Thermo Scientific) for 72 h. The esiRNAs
are comprised of a heterogeneous pool of siRNA (natural RNA, no modifications) that
all target the same mRNA sequence, so that these multiple silencing triggers lead to
highly specific and effective gene knockdowns with lower off-target effects than single,
chemically-synthesized siRNA.

2.5. Flow Cytometry Analysis

Single cell suspension (1 × 107 cells/mL) in cold PBS containing 3% FBS were stained
with anti-human 5-HT7 or isotype control antibodies for 30 min, followed by PE-anti-mouse
IgG2B-secondary antibody, APC-anti-human CD24, and FITC-anti-human CD44 for 30 min
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in the dark at 4 ◦C. Stained cells were washed twice and analyzed by flow cytometry
(FACSVerse Cytometer, BD Biosciences, San Jose, CA, USA).

2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Trizol-extracted total RNA was converted to cDNA using the GoScript reverse tran-
scription system (Promega Corporation, WI, USA). mRNA levels were quantified using a
QuantiTect SYBR Green PCR kit (Qiagen, Valencia, CA, USA). Primers were obtained from
Bioneer Corporation (Daejeon, South Korea). The primer sequences used were TPH1 (sense 5′-
GCCAGTCATCCAGGAACATT-3′ and anti-sense 5′-ATTGTTTGGCCAGAAGATGC-3′), HTR7
(sense 5′-TGAGTCTAGGCGTTGTGGTG-3′ and anti-sense 5′-TGCTTGGAAAAGCCTTCTGT-
3′), EZH2 (sense 5′-TTGTTGGCGGAAGCGTGTAAAATC-3′ and anti-sense 5′-TCCCTAGT
CCCGCGCAATGAGC-3′), and internal control GAPDH (sense 5′-ACCACAGTCCATGCC
ATCAC-3′ and anti-sense 5′-TCCACCACCCTGTTGCTGTA-3′).

2.7. Sphere Formation Assay

One thousand cells were seeded on an ultra-low adhering 24-well plate (Corning
Incorporated Costar, Corning, NY, USA) in prEGM media (Lonza, Basel, Switzerland) and
allowed to form spheres. After four days, the spheres were treated with vehicle or chemical
inhibitors (1 and 3 µM). After 11 days of drug treatment, images of spheres were captured
using an inverted microscope (IX73, Olympus, Tokyo, Japan). The number of spheroids
over 50 µm in diameter was counted by using Image J 1.48v software (National Institute of
Health, Bethesda, MD, USA).

2.8. Immunoprecipitation

Total and nuclear proteins (100 µg) were immunoprecipitated with IP-grade EZH2,
pan methyl lysine antibody (1 mg/mL), or IgG (1 mg/mL) (Sigma-Aldrich) for 16 h at 4 ◦C.
Protein A agarose beads (50 µL) (Thermo Scientific) was added in the immunoprecipitated
solution for 1 h at 4 ◦C. Then, the immune complexes were collected after centrifugation
at 3000× g, 2 min at 4 ◦C. The pellet was washed with PBS (twice), re-suspended in 25
µL of 1× sample buffer (62.5 mM Tris-HCl pH 6.8, 2.5% SDS, 0.002% Bromophenol Blue,
0.7135 M (5%) β-mercaptoethanol, 10% glycerol), and heated at 95 ◦C for 5 min. After
centrifugation at 12,000× g, 30 s at 4 ◦C, supernatant (IP samples) was collected.

2.9. Anti-Tumor Activity Measurement Using a Xenograft Tumor Model

Female BALB/c nude mice (OrientBio, Gyeonggi, South Korea) were subcutaneously
inoculated with 1 × 107 PANC-1 cells/Matrigel (1:1) at the right flank. After tumor volume
reached approximately 300 mm3, mice in the first set of experiments were administered
intraperitoneally (i.p.) with drugs (gemcitabine (50 mg/kg), telotristat (1 or 10 mg/kg),
SB-269970 (1 or 10 mg/kg), or GSK-126 (10 mg/kg)) once a day for six days a week (n = 5).
In a different set of experiments, a mouse tumor model was made with the same method as
before, except the number of mice in each group (n = 6). In this second set of experiments,
mice were administered with gemcitabine (50 mg/kg), GSK-126 (10 mg/kg), or gemcitabine
plus drugs (telotristat (10 mg/kg), SB-269970 (10 mg/kg), or GSK-126 (10 mg/kg)). Tumor
volume was calculated using the equation (l × b2)/2, where l and b were the larger and
smaller dimensions of each tumor. On the final day of treatment, tumors were excised from
sacrificed mice by CO2 gas inhalation, and tumor weight was measured.

The mouse experiments were performed following the institutional guidelines of the
Institute of Laboratory Animal Resources and approved by the Institutional Animal Care
and Use Committee of Yeungnam University.

2.10. Statistical Analyses

Data from more than three independent experiments were averaged and expressed as
mean± SEM. Statistical significance was determined with the one-way analysis of variance
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(ANOVA), followed by the Newman-Keul’s comparison method, using Graph Pad Prism
5.0 (San Diego, CA, USA). p-values less than 0.05 were considered statistically significant.

3. Results
3.1. EZH2 Supports TPH1-5-HT7 Axis to Regulate Gemcitabine Resistance and Cancer Stem Cell
Population in Pancreatic Cancer Cells

To investigate the relationship between intrinsic gemcitabine resistance and the ex-
pression of EZH2 and 5-HT system genes in pancreatic cancer cells, we first compared the
levels of resistance and those gene expressions between PDAC cell lines. H6c7 was used
as a negative control cell line for gemcitabine resistance (GemR). PANC-1 cells exhibited
the strongest gemcitabine resistance, followed by MIA PaCa-2, Capan-1, and Capan-2 cells
(Figure 1A). Corresponding to GemR levels, the level of EZH2, TPH1 and 5-HT7 receptor
expressions was the highest in PANC-1, followed by MIA PaCa-2, Capan-1, and Capan-2
(Figure 1B and Figure S1A), whereas EZH1, 5-HT1A, and 5-HT1B levels did not correlate
with GemR levels, and they were higher in Capan-1 and Capan-2 cells than PANC-1 and
MIA PaCa-2 cells (Figure 1B). Treatment of PANC-1 and MIA PaCa-2 cells with GSK-126,
an EZH2 inhibitor (Figure 1C and Figure S1B), or EZH2 knock-down (KD) with siRNA
transfection (Figure 1D and Figure S1C) down-regulated the expression of TPH1 and 5-HT7.
In addition, KD of TPH1 or 5-HT7 induced suppression of each other’s expression without
changes in EZH2 mRNA (Figure S1D) and protein (Figure 1E) levels. Down-regulation
of these genes with siRNA induced recovery from gemcitabine resistance in PANC-1 and
MIA PaCa-2 cells (Figure 1F). On the other hand, prolonged exposure of H6c7 and Capan-1
cells to 5-HT (10 µM, 96 h) induced gemcitabine resistance (Figure 1G), accompanied by
up-regulation of EZH2, TPH1, and 5-HT7 expressions (Figure 1H). The results indicate that
EZH2 acted as an upstream regulator of the TPH1-5-HT7 axis to maintain gemcitabine resis-
tance of PDAC cells. In addition, prolonged exposure of Capan-1 cells to 5-HT significantly
enhanced sphere formation in Capan-1 cells (Figure 1I).

We then investigated whether EZH2-TPH1-5-HT7 axis regulates the pancreatic CSC
population, which is responsible for chemo-resistance and cancer relapse [32], using FACS
analysis and sphere forming ability. The CSC population in each cell line detected with
antibodies against pancreatic CSC markers, CD24 and CD44 [18,33], was 5.42, 5.44, 0.83,
and 0.05% in PANC-1, MIA PaCa-2, Capan-1, and Capan-2, respectively (Figure 2A).
The CSC population in PANC-1 and MIA PaCa-2 cells were significantly reduced by
silencing TPH1, 5-HT7, or EZH2 (Figure 2B). In PANC-1 cells, the CD24/CD44-positive
CSC population was mostly positive for 5-HT7 (Figure 2C), whereas the 5-HT7-positive CSC
population (CD24/CD44/5-HT7) in MIA PaCa-2 cells was much smaller than CD24/CD44-
double positive population (Figure 2D). However, both cell lines responded similarly
to the KD of the EZH2-TPH1-5-HT7 axis gene, with a decrease in the triple-positive
(CD24/CD44/5-HT7) population (Figure 2C,D). Interestingly, the inhibitory effect of EZH2
KD on 5-HT7 level in CSCs was much greater than that of either 5-HT7 or TPH1 KD,
indicating that regulatory action of EZH2 in 5-HT7 expression involved mechanisms other
than the signaling associated with TPH1 and 5-HT7.
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of PANC-1 and MIA PaCa-2 cells with GSK-126 for 48 h inhibited 5-HT7 and TPH1 expressions. (D) Down-regulation of 
5-HT7, TPH1, EZH1 and EZH2 expression by EZH2 siRNA (100 nM) in PANC-1 and MIA PaCa-2 cells. NT represents non-
target. (E,F) After transfection of PANC-1 and MIA PaCa-2 cells with HTR7, TPH1, or EZH2 siRNA, expression levels of 
5-HT7, TPH1, and EZH2 (E) and gemcitabine sensitivity (F) were measured. * p < 0.05 compared to non-target siRNA 
(siNT)-transfected group. # p < 0.05 compared to the vehicle-treated control. (G,H) H6c7 and Capan-1 cells turned out to 
be gemcitabine-resistant phenotype by treatment with 5-HT (10 μM) for 96 h (G). Time-dependent treatment with 5-HT 
up-regulated 5-HT7, TPH1, and EZH2 expression (H). (I) Sphere forming ability of Capan-1 cells pretreated with 5-HT (10 
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Sensitivity of PANC-1, MIA PaCa-2, Capan-1, Capan-2, and H6c7 cells to gemcitabine was determined by measuring cell
viability after gemcitabine treatment for 48 h. * p < 0.05 compared to H6c7 cells. (B) Expression levels of EZH1, EZH2,
TPH1, and 5-HT receptors (5-HT7, 5-HT1A, 5-HT1B) in PANC-1, MIA PaCa-2, Capan-1, Capan-2, and H6c7. (C) Treatment
of PANC-1 and MIA PaCa-2 cells with GSK-126 for 48 h inhibited 5-HT7 and TPH1 expressions. (D) Down-regulation of
5-HT7, TPH1, EZH1 and EZH2 expression by EZH2 siRNA (100 nM) in PANC-1 and MIA PaCa-2 cells. NT represents
non-target. (E,F) After transfection of PANC-1 and MIA PaCa-2 cells with HTR7, TPH1, or EZH2 siRNA, expression levels
of 5-HT7, TPH1, and EZH2 (E) and gemcitabine sensitivity (F) were measured. * p < 0.05 compared to non-target siRNA
(siNT)-transfected group. # p < 0.05 compared to the vehicle-treated control. (G,H) H6c7 and Capan-1 cells turned out to
be gemcitabine-resistant phenotype by treatment with 5-HT (10 µM) for 96 h (G). Time-dependent treatment with 5-HT
up-regulated 5-HT7, TPH1, and EZH2 expression (H). (I) Sphere forming ability of Capan-1 cells pretreated with 5-HT
(10 µM) for 96 h was measured. Images of spheres were captured after 14 days of culture in the serum-free medium. Scale
bar (white colored) represents 200 µm at original magnification of 4×. The number of spheroids over 50 µm in diameter was
counted. * p < 0.05, compared to untreated control group. The uncropped Western Blot images can be found in Figure S3.

We then examined whether the EZH2-TPH1-5-HT7 axis was linked to PI3K/Akt and
JAK2/STAT3 signaling pathways, which are associated with drug resistance [6,7] and
pancreatic CSC characteristics [8]. In PANC-1 and MIA PaCa-2 cells, the phosphorylation
of PI3K/Akt and JAK2/STAT3 were suppressed by KD of EZH2-TPH1-5-HT7 axis gene
(Figure 3A) and GSK-126 treatment (Figure 3B).
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Figure 2. Effects of silencing 5-HT7, TPH1 and EZH2 on pancreatic CSC population. (A) PANC-1, MIA PaCa-2, Capan-1, and
Capan-2 cells stained with antibodies specific to pancreatic CSC surface markers, CD44-FITC and CD24-APC, were analyzed
by FACS. Bar graph indicates relative number of CSCs population (CD24+CD44+) determined from three independent
experiments. (B) Relative number of CD24+CD44+ population after KD of HTR7, TPH1, or EZH2 in PANC-1 and MIA
PaCa-2 cells. (C,D) The relative CSC population expressing CD24, CD44, and 5-HT7 in PANC-1 (C) and MIA PaCa-2 (D)
cells after KD of HTR7, TPH1, and EZH2. * p < 0.05, compared to siNT-transfected group. # p < 0.05, compared to siHTR7-
or siTPH1-transfected group.
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Figure 3. Effects of EZH2-TPH1-5-HT7 axis inhibition on the activation of PI3K, Akt, JAK2, and STAT3 in PANC-1 and MIA
PaCa-2 cells. (A) Cells were treated with siRNA of HTR7, TPH1, and EZH2. * p < 0.05, compared to siNT-transfected group.
(B) Cells were treated with GSK-126 for 48 h. * p < 0.05, compared to vehicle-treated control group. The uncropped Western
Blot images can be found in Figure S4.

We further investigated the relative contribution of PI3K/Akt and JAK2/STAT3 path-
ways in the maintenance of the CSC population by measuring sphere-forming ability of
the cells in the presence of the signaling molecule inhibitors. At fixed concentrations (1 and
3 µM) which were selected based on cell viability response to the inhibitors (Figure S2A),
gemcitabine did not inhibit sphere formation of PANC-1 and MIA PaCa-2 cells, whereas in-
hibitors of PI3K/Akt, JAK2/STAT3, and EZH2/TPH1/5-HT7 axis significantly suppressed
the sphere formation of PANC-1 and MIA PaCa-2 in a concentration-dependent manner
(Figure 4A,B). In both PANC-1 and MIA PaCa-2 spheres, the expressions of CD44, a CSC
surface marker, and Nanog, a stemness-associated transcription factor (TF), were most
significantly suppressed by GSK-126, followed by telotristat (TPH1 inhibitor), fedratinib
(JAK2 inhibitor), stattic (STAT3 inhibitor), wortmannin (PI3K inhibitor), and SC-66 (Akt
inhibitor) (Figure 4C and Figure S2B). Interestingly, EZH2 expression in the spheres was
down-regulated by the inhibitors except telotristat and SB-269970, whereas TPH1 and
5-HT7 expressions in the spheres were suppressed by all the inhibitors in both PANC-1
and MIA PaCa-2 (Figure 4C and Figure S2B). The results indicate that although PI3K/Akt
and JAK2/STAT3 signaling pathways were commonly involved in the expression of EZH2,
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TPH1, and 5-HT7, the regulatory mechanism for the expression and action of EZH2 was
different from that for the TPH1-5-HT7 axis in PDAC cells. To reveal this difference, we
examined whether the gene transcriptional repression action of EZH2 is linked to these
signaling pathways. We found that EZH2 KD increased expression of DAB2IP and PTEN
(Figure 4D), which are known to inhibit Ras and PI3K, respectively [34–37].
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Figure 4. Effects of signaling inhibitors and EZH2-TPH1-5-HT7 KD on sphere formation and expression of DAB2IP and
PTEN in PANC-1 and MIA PaCa-2 cells. (A–C) PANC-1 and MIA PaCa-2 cells were treated with 1 or 3 µM of gemcitabine,
wortmannin, SC66, fedratinib, stattic, SB-269970, telotristat, and GSK-126 for 11 days, and measured sphere formation.
Images of spheres captured after 11 days of the inhibitor treatment (A). Scale bar (white colored) represents 200 µm at
original magnification of 4×. The number of spheroids over 50 µm in diameter were counted (B). * p < 0.05 compared
to the vehicle-treated control group. Immunoblots of CD44, Nanog, EZH2, TPH1, and 5-HT7 from the 1 µM of each
inhibitor-treated spheres (C). * p < 0.05 compared to the vehicle. (D) DAB2IP and PTEN expression in the cells treated with
siRNA of EZH2, TPH1, or 5-HT7 gene. * p < 0.05, compared to siNT-transfected group. The uncropped Western Blot images
can be found in Figure S5.

3.2. EZH2-Regulated Signaling Pathways Potentiate Nuclear Translocation of TFs Linked to
TPH1-5-HT7 Axis in Pancreatic Cancer Cells

We also examined which TFs were responsible for the upregulation of EZH2, TPH1,
and 5-HT7 expressions. In PANC-1 and MIA PaCa-2 cells, EZH2, TPH1, and 5-HT7
expressions were down-regulated by treatment with mithramycin A (Sp1 inhibitor), PDTC
(NF-κB inhibitor), and stattic (STAT3 inhibitor), but not by SR11302 (AP-1 inhibitor) and
KG-501 (CREB inhibitor) (Figure 5A), suggesting Sp1, NF-κB, and STAT3 were involved
in these gene expressions. In an inverse proportion to the extent of EZH2 decrease by the
TF inhibitors, DAB2IP and PTEN protein levels were increased by treatment with the TF
inhibitors (Figure 5A). The nuclear levels of Sp1, NF-κB, and p-STAT3 were inhibited by
gallein (Gβγ inhibitor) (Figure 5B). However, nuclear Sp1 and NF-κB levels were more
suppressed by PI3K/Akt inhibitors than by JAK2/STAT3 inhibitors, while nuclear p-STAT3



Cancers 2021, 13, 5305 9 of 16

level was reduced in the opposite direction by those inhibitors (Figure 5B). Moreover,
telotristat and SB-269970 reduced the nuclear p-STAT3 level, but not the NF-κB or Sp1 level
(Figure 5B). In 5-HT-pretreated Capan-1 cells, similar regulatory actions of the inhibitors of
signaling molecule (Figure 5C) and TFs (Figure 5D) in the expression of EZH2, TPH1 and
5-HT7 were observed.
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leading to 5-HT7, TPH1 and EZH2 expression. (A) Immunoblots of 5-HT7, TPH1 and EZH2 in PANC-1 and MIA PaCa-2
cells treated with mithramycin A (Mith A, 0.1 µM), SR11302 (10 µM), KG-501 (10 µM), PDTC (10 µM), or stattic (10 µM) for
24 h. (B) Nuclear levels of SP-1, p-STAT3, and NF-κB (p65) in PANC-1 and MIA PaCa-2 cells treated with gallein (10 µM),
wortmannin (3 µM), SC66 (3 µM), fedratinib (3 µM), stattic (3 µM), SB-269970 (3 µM), telotristat (3 µM), or SB203580 (10 µM)
for 48 h. Immunoblots are the representative of three independent experiments, and results are the mean ± SEM in the
bar diagram. * p < 0.05 compared to the vehicle-treated control group. (C,D) Immunoblots of 5-HT7, TPH1 and EZH2
expression in Capan-1 cells. Cells were pretreated with 5-HT (10 µM) for 96 h prior to the treatment with signaling molecule
inhibitors for 48 h (C) and with transcription factor inhibitors for 24 h (D). The bar graphs represent the means ± SEM from
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3.3. Automethylated EZH2 Serves as a Binding Scaffold for Methylated NF-κB and Sp1,
and Unmethylated p-STAT3, in a PRC2-Independent Manner

To further identify whether EZH2 acted as a scaffold for NF-κB, STAT3, and Sp1 to
up-regulate EZH2-TPH1-5-HT7 gene expressions, we performed co-IP experiment with
anti-EZH2 antibody. Co-precipitation of EZH2 with nuclear NF-κB was found in PANC-1
(Figure 6A), MIA PaCa-2, and Capan-1 cells (Figure 6B), and the binding was further
enhanced by 5-HT treatment (Figure 6B). Similarly, binding of EZH2 with Sp1 and STAT3
was observed, and such binding was further increased by 5-HT treatment (Figure 6B).
However, SUZ12, a component of PRC2, was not precipitated with EZH2 (Figure 6B),
indicating that such scaffold action of EZH2 was PRC2-independent. We also examined
whether transactivation ability of EZH2 was associated with auto-methylation activity
of EZH2, which induces self-activation and methylation of other proteins [38]. In the
total protein co-immunoprecipitates with anti-pan methyl lysine antibody, EZH2 and
NF-κB were highly methylated, and Sp1 methylation was relatively low level, whereas
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signaling molecules, PI3K, Akt, JAK2, and STAT3 were not methylated in both PANC-1
and MIA PaCa-2 cells (Figure 6C). In the nuclear protein precipitates with anti-pan methyl
lysine antibody, it was confirmed that nuclear STAT3 and p-STAT3 were not methylated
(Figure 6D). Moreover, EZH2 KD or GSK-126 treatment significantly suppressed the
methylation of nuclear NF-κB and Sp1, in addition to blocking methylation of EZH2 itself
(Figure 6D).
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Figure 6. EZH2 binds to TFs, and methylates Sp1 and NF-κB. Nuclear and total proteins extracted from PANC-1, MIA
PaCa-2, and Capan-1 cells. For IP-immunoblotting data, antibodies used for co-immunoprecipitation (IP) and western
blotting (WB) were labeled as blue and red, respectively. (A) Co-IP of NF-κB and EZH2 in PANC-1 cells treated with 5-HT
(10 µM) for 96 h. IgG represents a control antibody used for IPs. The In represents input control. Prior to carrying out
the IP experiments, cell lysates were subjected to the respective WB as input controls. (B) Co-IP of STAT3, Sp1, NF-κB,
SUZ12, and EZH2 in PANC-1, MIA PaCa-2, and Capan-1 cells treated with or without 5-HT (10 µM) for 96 h. (C) Co-IP and
immunoblot analysis of PI3K, AKT, JAK2, p-STAT3, STAT3, Sp1, NF-κB, and EZH2 in PANC-1 and MIA PaCa-2 cells at
basal level. (D) PANC-1 cells were treated with EZH2 siRNA (100 nM), GSK-126 (10 µM), SB-269970 (3 µM), or telotristat
(3 µM) for 48 h. Cell lysates were immunoprecipitated with pan methyl lysine antibody and immunoblotted with pSTAT3,
STAT3, EZH2, Sp1, or NF-κB antibody. The bar graphs represent the mean ± SEM of relative density of each protein from
three independent experiments. * p < 0.05 compared to the vehicle-treated control group. The uncropped Western Blot
images can be found in Figure S7.

3.4. Antitumor Effects of EZH2-TPH1-5-HT7 Axis Inhibition in PANC-1 Xenograft Tumor Model
in Mice

Next, we confirmed that the EZH2-TPH1-5-HT7 axis is a useful therapeutic target
against drug-resistant pancreatic cancer, using an in vivo tumor model in which PANC-1
cells were subcutaneously transplanted. Compared to the vehicle-treated control group,
treatment with gemcitabine (50 mg/kg) induced a slight decrease in PANC-1 tumor size,
whereas telotristat (1 or 10 mg/kg) and SB-269970 (1 or 10 mg/kg) significantly reduced
tumor growth in a dose-dependent manner (Figure 7A,B). In addition, telotristat and
SB-269970 at a dose of 10 mg/kg started regressing tumor-growth on day 31 of drug
treatment (Figure 7A,C). Throughout the treatment period of 42 days, the body weight
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of drug (telotristat or SB-269970)-treated mice was not significantly different from that
of control mice (Figure 7D). In a separate set of experiments, treatment with GSK-126
(10 mg/kg) showed a similar response, and tumor size started to regress on day 31 of
treatment (Figure 7E,F). The tumor regression effect of GSK-126 plus gemcitabine was
not significantly different from that of GSK-126 alone (Figure 7E). Similarly, the effect of
co-administration of telotristat or SB-269970 with gemcitabine was not different from that
of combinated treatment of GSK-126 with gemcitabine (Figure 7E). However, the tumor
weight in the group co-administered with GSK-126 and gemcitabine was significantly lower
than that of the GSK-126 only group. In addition, the effect of co-administration of other
drugs and gemcitabine was not significantly different from that of combinated treatment
of GSK-126 and gemcitabine (Figure 7G). Body weight of mice co-treated with gemcitabine
and the other drugs was not significantly different from that of control mice until treatment
day 31. Thereafter, the body weight of GSK-126 alone mice or the combinated treatment
group was significantly decreased compared to that of control group (Figure 7H).
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cells. (A–D) BALB/c nude mice xenografted with PANC-1 cells were administered i.p. with gemcitabine (50 mg/kg),
telotristat (1 and 10 mg/kg), SB-269970 (1 and 10 mg/kg) for 42 days (6 days per week) (n = 5). Tumor volume (mm3) was
measured twice a week (A). Representative images showing gross appearance of tumor in mice (B) and weight of excised
tumor at the time of sacrifice (C). Mouse body weight during the drug administration period (D). * p < 0.05 compared to
the vehicle-treated control. (E–H) In a separate set of mouse tumor models, mice were administered i.p. with drug alone
(50 mg/kg gemcitabine or 10 mg/kg GSK-126) or gemcitabine plus drug (10 mg/kg of GSK-126, SB-269970, or telotristat)
for 38 days (n = 6). Tumor volume (E), gross appearance of tumor in mice (F), and tumor weight (G) at the time of sacrifice,
and mouse body weight during the treatment period (H). * p < 0.05 compared to the vehicle-treated control. # p < 0.05
compared to GSK-126-treated group.

4. Discussion

It has been reported EZH2 and 5-HT derived from peripheral TPH1 in cancer tissues
independently contributes to cancer malignancy by stimulating cancer cell proliferation
and invasion [28,39–41]. The present study demonstrated for the first time that EZH2
permits up-regulation of 5-HT system genes, TPH1 and 5-HT7, leading to drug resistance
and CSC maintenance in PDAC. In addition, we also revealed that such noncanonical EZH2
action is mediated through the PI3K/Akt and JAK2/STAT3 pathways in a feed-forward
manner in association with 5-HT7.

Previous studies on pancreatic cancer cell lines and human tumor tissue microarray
have shown the role of 5-HT1B, 5-HT1D, or 5-HT2B in 5-HT-induced cancer cell proliferation
and metabolism [31,39,42]. However, the most recently discovered 5-HT receptor, 5-HT7, is
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increasingly reported as a new therapeutic target to inhibit cancer proliferation, migration,
and invasion [28,42–44]. The current study demonstrated an additional important role
of 5-HT7 in inducing drug resistance and CSCs in pancreatic cancer by elucidating the
mechanism regulating 5-HT7 expression: that is, inhibition of 5-HT7 by its antagonist
or removal of 5-HT via TPH1 inhibition suppressed 5-HT7 expression in PANC-1 and
MIA PaCa-2 cells. Similarly, TPH1 expression was also inhibited by a TPH1 inhibitor
and 5-HT7 antagonist. Such mutual regulation of TPH1 and 5-HT7 expression via 5-
HT in PDACs suggests that TPH1-5-HT-5-HT7 axis operates in a feed-forward manner
in PDAC cell lines. In addition, in Capan-1 cells expressing very low level of TPH1
and 5-HT7, 5-HT treatment up-regulated TPH1 and 5-HT7 expressions accompanying
gemcitabine resistance. Notably, EZH2 inhibition down-regulated EZH2 itself, TPH1 and 5-
HT7 expression, whereas inhibition of TPH1-5-HT-5-HT7 axis reduced expression of TPH1
and 5-HT7, but not of EZH2. The results indicate that EZH2 acts as a master regulator
permitting the expression of TPH1 and 5-HT7, forming EZH2-TPH1-5-HT-5-HT7 axis.

EZH1, a paralog of EZH2, is widely expressed in non-proliferating adult cells, whereas
EZH2 is preferentially expressed in proliferating cells [45]. EZH1 complements EZH2 in
maintaining stem cell identity and executing pluripotency [46]. In the current study, we
found EZH2 KD with esiRNA slightly decreased EZH1 expression levels, although we
used EZH2 esiRNA with guaranteed specificity and effectiveness. The result may be due
to their 63% sequence homology and the 94% identity of their SET domain. This result
suggests that it will be important to use a highly specific silencing strategy and to perform
rescue experiments in a future study. In addition, a recent study reported that EZH1 is
globally distributed in the chromatin of aggressive lymphomas, and both EZH1 and EZH2
play critical roles in the chromatin regulation [47]. Given the report, a future study is also
required to determine whether EZH1 also contributed to the modulation of TPH1 and
5-HT7 pathways in pancreatic cancer cells.

The operation of TPH1-5-HT-5-HT7 axis utilized PI3K/Akt and JAK2/STAT3 signal-
ing pathways that were activated through Gβγ components of the receptor, consistent with
our previous findings in breast cancer cells [28]. There is a report that indicates the JAK2
signaling pathway is linked with TPH1 induction by activation of prolactin receptor, a
cytokine receptor, in pancreatic β cells [29,48]. Here, the current study first reported that
JAK2/STAT3 is linked to 5-HT7 receptor in PDAC cells, in addition to the PI3K/Akt signal-
ing pathway. We also demonstrated that 5-HT-enhanced EZH2 also regulated PI3K/Akt
and JAK2/STAT3 signaling pathways. In addition, the fact that PI3K/Akt activity was
dependent not only on the Gβγ component but also on Ras, which is overactivated by gain-
of-function mutation in PDAC, was confirmed by the results that 5-HT7 KD or treatment
with inhibitor (SB-269970) maintained PI3K/Akt-dependent NF-κB nuclear translocation
and EZH2 expression level. Moreover, our study confirmed that EZH2 KD, but not TPH1-
5-HT7 KD, induced an increase in the expression of DAB2IP and PTEN, which inhibit Ras
and PI3K, respectively [34–37]. These results demonstrate that once EZH2 is expressed,
it performs a master regulatory action on intracellular signaling pathways through two
directions, (1) activation of PI3K/Akt and JAK2/STAT3 through transactivation of TPH1-
5-HT7 expressions, and (2) supporting PI3K/Akt activity by inhibition of the signals that
inhibit PI3K/Akt through downregulation of DAB2IP and PTEN (Figure 8). Despite the
present results with PDAC cell lines, future studies will be needed to further evaluate the
molecular pathways of the EZH2-TPH1-5-HT7 axis in vivo.

As confirmed by co-immunoprecipitation with EZH2 and pan methyl lysine antibod-
ies, the trans-activating action of EZH2 was performed in two sequential processes. That is,
(1) methylation of EZH2 itself and TFs (NF-kB and Sp1), and (2) methylated EZH2 binds
to TFs (NF-kB, Sp1, and p-STAT3), regulating gene expressions. The automethylation of
EZH2 is reported as a self-activating mechanism for PRC2 [38]. However, in the current
study we found that SUZ12 was not binding with EZH2, indicating the PRC2-independent
action of EZH2 in PDAC as reported in breast cancer [49]. Interestingly, although nuclear
p-STAT3 was involved in EZH2 transactivating action, p-STAT3 as well as STAT3 were
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not methylated in PDAC, which is different from other cancer cell types that methylated
STAT3 by EZH2 is involved in tumorigenesis of glioblastoma stem-like cells [14].

Overall, EZH2 permits transactivation of TPH1 and 5-HT7, allowing the TPH1-5-HT-
5-HT7 axis to stimulate PI3K/Akt and JAK2/STAT3 pathways in a feed-forward manner in
PDAC, leading to maintenance of pancreatic CSC populations and drug resistance. The
transactivation of TPH1 and 5-HT7 was further reinforced by removal of the PI3K/Akt
inhibitory signals, such as DAB2IP and PTEN. The critical role of the EZH2-TPH1-5-
HT-5-HT7 axis was confirmed in an in vivo mouse tumor model showing similar tumor
regressing effects of GSK-126, telotristat, and SB-269970.
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Figure 8. Schematic summary of noncanonical permissive action of EZH2 on TPH1-5-HT7 expression in PDAC. 5-HT
activates PI3K/Akt and JAK2/STAT3 through Gβγ linked to 5-HT7. Together with Ras-activated ERK signaling, these
signaling pathways enhance the nuclear level of Sp1, NF-κB, and p-STAT3, leading to EZH2 upregulation. Under the
permissive action of EZH2, p-STAT3 is required for upregulation of TPH1 and 5-HT7, whereas Sp1 and NF-κB contribute
to transcriptional repression of DAB2IP and PTEN. Through its noncanonical action, EZH2 activates intracellular signal-
ing pathways through two ways, (1) activation of PI3K/Akt and JAK2/STAT3 through transactivation of TPH1-5-HT7

expressions, and (2) maintenance of the PI3K/Akt activity by inhibition of its inhibitory signals through downregulation of
DAB2IP and PTEN.

5. Conclusions

In pancreatic cancer, long-term exposure to 5-HT in an autocrine or paracrine manner
induced PRC2-independent EZH2 action that supported the TPH1-5-HT7 axis, leading to
gemcitabine resistance and a CSC population increase. The inhibition of the EZH2-TPH1-5-
HT-5-HT7 axis was effective in regressing gemcitabine-resistant pancreatic cancer growth
in vivo, suggesting that the axis may be a potential therapeutic target for the treatment of
drug-resistant PDAC.
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10.3390/cancers13215305/s1, Figure S1. Effect of HTR7, TPH1, or EZH2 KD on the expression of
protein or mRNA of EZH2 and 5-HT system, Figure S2. Effects of PI3K/Akt and JAK2/STAT3
inhibitors on cell viability and sphere forming ability of PANC-1 and MIA PaCa-2 cells, Figure S3.
Uncropped Western Blot images for Figure 1, Figure S4. Uncropped Western Blot images for Figure 3,
Figure S5. Uncropped Western Blot images for Figure 4, Figure S6. Uncropped Western Blot images
for Figure 5, Figure S7. Uncropped Western Blot images for Figure 6.
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