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A realistic description of the variability in bacterial growth and division is critical to

produce reliable predictions of safety risks along the food chain. Individual-based

modeling of bacteria provides the theoretical framework to deal with this variability, but

it requires information about the individual behavior of bacteria inside populations. In

this work, we overcome this problem by estimating the individual behavior of bacteria

from population statistics obtained with flow cytometry. For this objective, a stochastic

individual-based modeling framework is defined based on standard assumptions during

division and exponential growth. The unknown single-cell parameters required for running

the individual-based modeling simulations, such as cell size growth rate, are estimated

from the flow cytometry data. Instead of using directly the individual-based model,

we make use of a modified Fokker-Plank equation. This only equation simulates the

population statistics in function of the unknown single-cell parameters.We test the validity

of the approach by modeling the growth and division of Pediococcus acidilactici within

the exponential phase. Estimations reveal the statistics of cell growth and division using

only data from flow cytometry at a given time. From the relationship between the mother

and daughter volumes, we also predict that P. acidilactici divide into two successive

parallel planes.

Keywords: individual-based modeling, stochastic modeling, cell cycle, bacterial growth and division, modified

Fokker-Planck equation, flow cytometry, coccoid bacteria, predictive microbiology

1. INTRODUCTION

Population- and individual-based modeling are usually presented as incompatible approaches,
although both describe the same system at different levels (Fahse et al., 1998; Wilson, 1998).

Traditionally, deterministic population-based models have been the underlying method behind
predictive microbiology (Baranyi and Roberts, 1995). These models have been successfully applied
to, for example, monitoring of food spoilage andmicrobial safety (Koutsoumanis andNychas, 2000;
Ross et al., 2000), smart sensing of food quality (García et al., 2015, 2017), Quantitative Microbial
Risk Assessment (Cassin et al., 1998; Membré and Lambert, 2008), and design and control of food
processes (Simpson et al., 1993; Alonso et al., 2013).

Over the last 15 years, stochastic individual-based modeling emerged as a promising tool to
produce realistic estimations of safety risks along the food chain by describing the variability of
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single-cell behavior and small populations (Ferrer et al., 2009;
Augustin et al., 2015; Koutsoumanis and Aspridou, 2017).
Often, contamination of food starts with a small number of
bacteria that adapt and proliferate on a given food matrix.
At low cell concentrations, standard deterministic population
models fail to predict the variability of the bacterial population.
This is so because, at low initial cell numbers, heterogeneity
between individuals and its influence on the division times
become relevant and have a net influence on the population.
Consequently, the behavior of individual cells cannot be
neglected when assessing possible health risks along the food
chain, either during storage or during distribution.

There are still many challenges in individual-based modeling,
including the lack of information about single-cell behavior
inside a population. The emergence of individual-based
modeling was possible thanks to two main factors: (1) the
increase of computer processing power and (2) the availability
of single-cell measurements using new techniques such as the
“mother machine” microfluidic device (Wang et al., 2010).
However, the information from single-cell measurements is
limited in those techniques where cells have to be isolated from
the population. That was illustrated for example by Gangan and
Athale (2017), who showed the difference in single-cell growth
in a “mother machine” or in a population.

In this work, we hypothesize that population statistics of
cell volume encode information about single-cell growth and
division that can be used for individual-based modeling. For
this purpose, we derive a modified Fokker-Planck Equation
(forward Kolmogorov equation) describing the population
volume distribution. The underlying idea is similar to that
in Alonso et al. (2014) who derived a backward Kolmogorov
equation to estimate single-cell growth using time-to-division
distributions. We should remark that not only our approach is
different, but it extends the previous theory to consider not only
single-cell growth but also single-cell division. This allows us to
simulate the individual-based modeling of bacterial growth and
division.

In the first part of the work, we will test theoretically
how population statistics obey a modified Fokker-Planck
equation that encodes single-cell information. The equivalent
individual-based modeling approach is derived in parallel to
check consistency. Both models simulate single-cell growth
and division assuming that cell volumes grow exponentially
and cells divide following the sizer principle, i.e., division
occurs at a critical volume (Métris et al., 2005; Alonso et al.,
2014; Robert et al., 2014). Whereas, exponential growth of
cell volume is a standard principle in bacterial physiology
(Fishov et al., 1995), the main trigger of bacterial division
is still a matter of controversy (Taheri-Araghi et al., 2015).
There are three major paradigms: the sizer, timer, and adder
principle depending on whether division is triggered by a
certain volume, time, or after growing a given volume. As
in most predictive microbiology studies (Métris et al., 2005;
Alonso et al., 2014), we focus on fully adapted cells (medium
growth is kept constant and measurements are within the
exponential phase) and the sizer principle remains the reasonable
assumption.

Once the theory is established, we combine the modified
Fokker-Planck equation with flow cytometry data to find
the single-cell behavior of Pediococcus acidilactici within the
exponential phase. The food industry is interested in this species
for several reasons, including its probiotic attributes (Planas
et al., 2004; Standen et al., 2015), its ability to valorize food
wastes (Vázquez et al., 2011; Banwo et al., 2013; Scatassa et al.,
2015), and its ability to produce a very potent and broad-
spectrum bacteriocin (pediocin SA-1) with high capacities as
food biopreservative (Ray, 1992; Anastasiadou et al., 2008;
Vázquez and Murado, 2008). P. acidilactici has been also selected
for being coccoid cells with interest in the food industry. This
shape makes easier to find correlations between side scatter
and volume, and differ from the well-studied Escherichia coli
(model of rod-shaped cells). We should stress that cell volume,
membrane area and diameter scale similarly when the cell is rod-
shaped, although that is not the case for round cells. For such
reason, along this work we consider the term size as equivalent to
volume, but not bacterial diameter or membrane area.

2. MATERIALS AND METHODS

This work combines theory with experimental data and requires
three types of methodologies to (1) develop models at the single-
cell and population level, (2) acquire data with flow cytometry
and optical density, and (3) determine the best parameters to
reconcile the theory with the experimental results.

2.1. Modeling at Single-Cell and Population
Levels
2.1.1. Individual-Based Modeling of Single-Cell

Bacterial Growth and Division
We tested different alternatives with stochastic or deterministic
division and growth, that are specific cases of the general
individual-based modeling approach we describe in this section.

The model assumes that the growth of the logarithm of
the single-cell volume is subject to a stochastic fluctuation δW
characterized by a Wiener process (Alonso et al., 2014):

δXi = µδt + ξδW with Xi = ln (V i) (1a)

where Xi represents the volume of cell i (V i) in a logarithmic
scale, µ represents the growth rate within the exponential phase
and ξ is the intensity of the stochastic fluctuation. For the
case of deterministic division ξ = 0 and cell volumes grow
exponentially.

The division was modeled by adding a new cell to the
population and resizing mother and newborn cell to the daughter
size. The division event is triggered when the size of one or
more cells is greater than a continuous random variable Xm with
statistics defined by the probability density function (pdf) of
mother sizes (fXm (x)):

If Xi ≥ Xm ∼ fXm (x), Xn+1 → Xi − ln (2) (1b)

Xi → Xi − ln (2) (1c)

where n is the number of cells in the population, i runs from 1 to n
and the daughter volume is half the mother volume (υd = υm/2).
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We tested different probability density functions to describe
the statistics of cell division, i.e., for the probability density
function of mother sizes fXm (x). The probability showing the best
agreement with the data suggests that the volume of the mothers
Vm is a random variable following a log-normal distribution
(Koch, 1966; Amir, 2014):

fXm (x) = N (xm, σ
2) with xm = ln (υm) (1d)

For simulating the deterministic division, σ was set to zero so that
the normal distribution turns into Dirac delta function centered
at the logarithm of the mother size xm.

Simulations were initialized with a single cell (X1 = xd =

ln (υd)) and run for a given time horizon where a given cell
and its offspring grow following (1a) and divide according to
the rule in (1b). We selected the Euler-Maruyama algorithm
to solve the stochastic differential equations for its simplicity
as compared with other numerical methods (Higham, 2001).
The bins of all the histograms to represent the population
statistics were determined using the Freedman-Diaconis rule
(Freedman and Diaconis, 1981). For convenience, simulations
of population dynamics from the proposed single-cell stochastic
model were performed on a cluster composed of 12 processing
nodes (openSUSE 11.0 Linux with 23.5 GB of RAM) and 160
processors in total, using the SGE task manager to distribute the
calculations among them.

2.1.2. Population Modeling Using the Modified

Fokker-Planck Equation
The statistic of the cell sizes in the population is formally
described by a probability density function (pdf) p(t, x) that
depends on size x and time t. For the sake of clarity, we keep
previous subsection notation: υ and x denote size in terms
of volume and natural logarithm of the volume, respectively.
Subindexes d and m denote daughter and mother respectively,
whereas fXm and fXd

are the corresponding pdfs for sizes. As
before, growth rate and fluctuation intensity are denoted by µ
and ξ , respectively. The function p(t, x) is the solution of the
following modified Fokker-Planck equation:

∂p(t, x)

∂t
=

ξ 2

2

∂2p(t, x)

∂x2
− µ

∂p(t, x)

∂x
︸ ︷︷ ︸

cell growth= ∂J(t,x)
∂x

+ 2fXd
(x)Z − fXm (x)Z

︸ ︷︷ ︸

division

− p(t, x)Z
︸ ︷︷ ︸

normalization

(2a)

being

Z =

∫ x

x
Fm(x)

∂J(t, x)

∂x
dx (2b)

p(t, x) = p(t, x) = 0 ∀t boundary conditions (2c)

p(0, x) = δ(x− xd) ∀x initial conditions (2d)

where fXd
(x) = N (xd, σ

2) is the pdf of daughter sizes, fXm (x) =
N (xm, σ

2) the pdf of mother sizes and FXm its cumulative
distribution function. The model is valid only for large domains
x ∈ [x, x] where no cell sizes are close to their (minimum and
maximum) boundaries.

Without the terms of division and normalization, Equation
(2a) is the classical Fokker-Planck equation of the stochastic

differential Equation (1a). It explains how the change in the
distribution of volumes depends on a diffusion term which is
proportional to the square of the fluctuation plus a convective
term proportional to the cell growth rate (Gardiner, 2004; Alonso
et al., 2014). To account for division, we have added two terms
proportional to the pdfs of daughter and mother volumes.
Normalization is required for p(t, x) to be a pdf. This is performed
via the last term in the right hand side.

Simulations were performed using the finite difference
discretization scheme in http://www.matmol.org/ (Vande
Wouwer et al., 2014) for the x domain. For all cases, the
discretization scheme consisted of 501 elements. That was
considered enough to approximate the equation since further
refinements resulted in negligible improvements in the accuracy
of the results. First derivatives were calculated using an upwind 5
points in the stencil and second derivatives with centred 5 points
in the stencil. Due to the hard non-linearity at division, not only
is a refined mesh in x required, but also a stiff time integrator.
Ode15s in Matlab (Shampine and Reichelt, 1997) was selected
for time integration of the resulted set of ordinary differential
equations after the spatial discretization.

2.2. Data Acquisition and Analysis
2.2.1. Microbiological Methods
Pediococcus acidilacticiNRRL B-5627 was kindly provided by the
Northern Regional Research Laboratory (Peoria, IL, USA). Stock
cultures of bacterium were stored at −80 ◦C in MRS commercial
medium (Pronadisa, Hispanlab S.A., Spain) with 25% glycerol.
The inoculum to study the growth dynamics of P. acidilactici was
prepared as follows:

1. One hundred and fifty milliliters of cellular suspension from
the cryotube was transferred to 5mL of MRS fresh medium
and then incubated at 30 ◦C in an orbital shaker at 200 rpm
for 16 h.

2. From the obtained culture, 1mL was added to an Erlenmeyer
flask with 150mL of MRS fresh medium and fermented at
30 ◦C/200 rpm for 22 h.

3. From the previous cultivation, serial 10-fold dilutions were
prepared in peptone-buffered solutions, and 0.1mL samples
were plated (MRS agar medium) in triplicate and incubated at
30 ◦C for 48 h.

Five individual colonies from plates were isolated and transferred
to 5 Erlenmeyer flasks with 200mL of MRS fresh medium and
cultivated at 30 ◦C/200 rpm. Samples from flasks were taken
each hour up to 17 h (except at 12 and 16 h). All samples
were separated in two aliquots, one of them was prepared
for cytometer evaluation following the indications described in
the next section. The other aliquot was centrifuged at 4,000 g
for 15min and the sediment washed twice and re-suspended
in distilled water at an appropriate dilution to measure the
optical density at 700 nm. The dry weight was estimated from a
calibration curve (G(g/L) = −0.008+ 0.342A700 + 0.028A2

700).
The percentage of viable cells smaller than certain diameters

was calculated during the exponential phase. The cultures at
8 h were filtered, under sterile conditions, through 1.2 and 1 µm
glass microfiber filters (Filter-Lab, Filtros Anoia S.A., Barcelona,
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Spain). Thus, in these filtered solutions and in the final unfiltered
culture (control), viable cells (colony forming units per mL) were
quantified by count onMRS-agar plate as it was mentioned in the
previous paragraph.

2.2.2. Flow Cytometer Data Acquisition
The abundance and size of P. acidilactici were determined with
a BD FACSCalibur flow cytometer (BD Biosciences, San José,
CA, USA) equipped with a laser emitting at 488 nm. Bacteria
samples were fixed with a P+G solution (1% paraformaldehyde
+ 0.05% glutaraldehyde) at 10% final concentration for 15min
in the dark. Then, samples were quickly frozen in liquid nitrogen
and stored at −80 ◦C. Prior to analysis, bacteria were stained
with SybrGreen I DNA dye (5mM final concentration) and
diluted adequately. Bacteria were detected in the flow cytometer
by their signature in a plot of Side Scatter (SSC) vs. FL1 (green
fluorescence). All the reagents and chemicals were purchased
from Sigma-Aldrich S.A. (St. Louis, MO, USA).

2.2.3. Estimation of P. acidilactici Population Growth
The logistic equation was used to fit the population growth data
(Zwietering et al., 1990; Peleg and Shetty, 1997). Biomass and
number of cells were obtained respectively by dry weight and
cytometry of P. acidilactici :

G =
Gm

1+ exp
[

2+ µp(λ − t)
] (3)

where G is the P. acidilactici growth as biomass or cells (g L−1

or cells mL−1). Gm represents the maximum growth or plateau
phase (g L−1 or cells mL−1), λ is the lag phase (h), t denotes the

time of culture (h) andµp =
4µ

p
m

Gm
is the specific growth rate of the

population (h−1) with µ
p
m being the maximum specific growth

rate (g L−1 h−1 or cells mL−1 h−1).
Non-linear least-squares method (quasi-Newton) was

applied for growth data modeling. Confidence intervals from
the parametric estimates (Student’s t-test) and consistency of
mathematical models (Fisher’s F-test) and residual analysis
(Durbin-Watson test) were evaluated by “SolverAid” macro
(Levie’s Excellaneous website: http://www.bowdoin.edu/~
rdelevie/excellaneous)

2.3. Model Calibration
Reliable single-cell parameters of P. acidilactici are unknown and
were estimated by minimizing the distance between the modified
Fokker-Planck Equations (2a–2d) and the data from the flow
cytometry. The unknown parameters are the growth rate µ, the
fluctuation intensity ξ , the statistics of the mother distribution
(xd and σ ) and the parameter relating mother and daughter
sizes ω. The estimated parameters were used to simulate single-
cell dynamics based on the individual-based modeling approach
(1a–1d).

The method of least squares was used to define the distance
between the model and the data. Essentially, it aims at
minimizing the differences between the stationary distribution
of sizes calculated with (2a–2d) and the stationary distribution
estimated from the data. The experimental distribution was

obtained using different replicates at one given time using
histograms with a number of bins given by the Freedman-
Diaconis rule. For noisy data, optimization could lead to a
multimodal problem, i.e., it has several sub-optimal solutions
(Vilas et al., 2017). To assure convergence to the global solution in
a reasonable time, the global optimizer Enhanced Scatter Search
(eSS) was employed (Egea et al., 2009).

3. RESULTS AND DISCUSSION

3.1. Population Statistics of Single-Cell
Growth and Division Obey a Modified
Fokker-Planck Equation
3.1.1. Deterministic Growth and Division
We first simulate the individual-based modeling of deterministic
growth and division. We assume that cell volumes grow
exponentially and cells divide following the sizer principle, i.e.,
division occurs at a critical volume (Métris et al., 2005; Alonso
et al., 2014; Robert et al., 2014). The adder model is more
realistic while cells are adapting to the growth media (lag phase),
but it becomes a sizer when, as in our case, cells are fully
adapted within the exponential phase (see Figure 1B in Sauls
et al., 2016). It should be noted that considering an adder model
would complicate considerably the derivation of the equivalent
Fokker-Planck equation without altering the final results.

Figure 1A shows the simulations of the deterministic single-
cell dynamics. All the cells have the same volume because they
grow and divide at the same velocity and time. For this example
only 3 parameters are required: the daughter volume (υd) and
the mother volume (υm = 4), depicted in dashed blue and red
lines, and the single-cell growth rate µ = 0.7. At time 0 there
is only one cell that grows until reaching the critical volume of
division (or mother volume). This cell divides into two cells of
half their volumes (daughter volume). Therefore, at time 1 there
are two cells that cannot be distinguished in the figure because
their dynamics overlap. The process is repeated until reaching a
population of 32 cells at time 5.

The dynamics of the population volume distribution obey a
modified Fokker-Planck equation that, as shown in Figure 1B,
consists of a pulse that oscillates between the daughter and
mother volumes. Each color line represents the distribution at
a different time and are simulated using the partial derivative
Equation (2a) with stochastic parameters set to zero (ξ = 0
and σ = 0) and the single-cell parameters in Figure 1A (υd =

2, υm = 4,µ = 0.7).
This model with deterministic growth and division is invalid

since the population statistics fluctuates instead of evolving to
a stationary distribution. Fishov et al. (1995) explained how
balanced exponential growth implies steady-state growth and
stationary frequency distribution of the various components that
constitute the cell. In words by Painter and Marr (1968) “the
distribution of each intensive random variable is time-invariant.”

3.1.2. Stochastic Growth and Deterministic Division
Single-cell measurements of bacteria suggest that growth is a
stochastic process (see for example Figure 1A in Deforet et al.,
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FIGURE 1 | Population statistics of bacterial growth obey a modified Fokker-Planck equation from which we can extract information about single-cell behavior.

(A) Simulation of the deterministic individual-based modeling approach shows that cells grow exponentially at the same rate and divide at the same time into two cells

with equal volume when reaching a critical size (the mother volume). (B) The statistics of the population volume obey a modified Fokker-Planck equation that oscillates

between mother and daughter volumes without reaching a stationary distribution. (C) Individual-based modeling with stochastic growth assumes that the logarithm of

the volume is subject to a stochastic fluctuation δW characterized by a Wiener process. (D) Simulation of the equivalent modified Fokker-Plank now shows that the

population volumes evolve to a stationary distribution. (E) Individual-based modeling can be used to estimate the histogram of the stationary distribution, but at the

expenses of expensive computations that scale exponentially with time and linearly with the number of cells in the population. The distribution is sharp and skewed to

the right and encodes single-cell features such as the mother and daughter volumes, fluctuation, and growth ratios. (F) The modified Fokker-Planck simulates the

continuous shape of the stationary distribution (red line) in a efficient way that is independent on the number of cells within the population. (G) The individual-based

modeling simulates stochastic growth and division. (H) The resulting stationary distribution of the population volumes is smooth and equivalent when calculated using

the individual-based modeling and the modified Fokker-Planck equation.

2015 for Pseudomonas aeruginosa). Alonso et al. (2014) proposed
an individual-basedmodeling approach reproducing such single-
cell dynamics. They assumed that the logarithm of the volume is
subject to a stochastic fluctuation δW characterized by a Wiener
process following Equation (1a). We use the same assumption
to model stochastic growth. Figure 1C shows simulations of the
single-cell dynamics with stochastic growth and deterministic
division. After the first division (time = 0.9) the dynamics of the
two daughter volumes differ and the same happens with division
times.

We confirm how simulations of the population statistics
with stochastic growth now evolve to a stationary distribution
(Figure 1D) as predicted by (Fishov et al., 1995). At time 0 the
distribution is a Dirac delta function that spreads and moves
between mother and daughter volumes. The rate of spread
depends on the intensity of the fluctuation ξ whereas the velocity

of the moving pulse is determined by the growth parameter
µ. Single-cell parameters are as in previous section (υd =

2, υm = 4,µ = 0.7) except for the fluctuation that it is
now ξ = 0.1.

The stationary distribution can be calculated either using a
large number of single-cell simulations (1a–1d) or solving the
modified Fokker-Planck equation (2a–2d). We plot in Figure 1E

the histogram for a population of 1e6 cells using the individual-
based modeling approach. The mode of the histogram coincides
with the daughter volume whereas the end of the histogram is the
mother volume. The shape depends on the growth rate µ and the
fluctuation ξ . Normalizing the area of this histogram we obtain
the blue probability density function in Figure 1F. The modified
Fokker-Planck equation, on the other hand, calculates directly
the probability density function (red line). Both approaches
coincide as shown in Figure 1F.
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Results with stochastic growth and deterministic division
evolve to a stationary distribution, but sharper than observed
experimentally. In fact, the distribution of E. coli is commonly
approximated for some authors by a smooth log-normal
distribution (Kaya and Koser, 2009; Athale and Chaudhari,
2011). In addition, the end of the distribution (the mother
volume) is not exactly the double of the mode (the daughter
volume) in experiments.

3.1.3. Stochastic Growth and Division
A great amount of works in the literature assumes stochastic
division and focus on the distribution of mother or daughter
sizes (Amir, 2014; Taheri-Araghi, 2015; Taheri-Araghi et al., 2015;
Sauls et al., 2016). Some works measure symmetric distributions
close to a normal distribution (Sauls et al., 2016), whereas others
assumed asymmetric distributions. That is the case of Koch
(1966) and Amir (2014) who concluded that the daughter volume
distribution is log-normal.

We extended our model considering that cells divide
stochastically with a certain probability, either normal (Sauls
et al., 2016) or log-normal (Amir, 2014). In other words, we
moved from a strict sizer model to a sizer model with stochastic
division. For the simulations in Figure 1G we assumed log-
normal division. Now cells may divide before or after reaching
the volume of 4 (red dashed line). As the model was implemented
in the logarithm of the volume X, the log-normal stochastic
division in the logarithm becomes a normal probability with
mean υm = 4 and a standard deviation that we assumed to be
σ = 0.1. The remaining parameters are kept as in the previous
section (υd = 2, vm = 4,µ = 0.7, ξ = 0.1).

As shown in Figure 1H, results from the individual-based
modeling coincide with the modified Fokker-Planck also for
stochastic growth and division.

We should note how it is critical to assume stochastic
growth and division to obtain realistic and smooth stationary
distributions where the mode is larger than the daughter
volume (υd).

3.1.4. Comparison of Individual-Based Modeling and

Population Modeling with the Modified

Fokker-Planck Equation
Individual-based modeling is a bottom-up approach providing
valuable information at the single-cell level, but it requires
parameters that cannot be easily measured (Ferrer et al., 2009;
Augustin et al., 2015). Themodified Fokker-Planck equation here
presented focuses on population statistics that can be measured
by flow cytometry. Comparisons between this equation and the
experimental data are sufficient to estimate single-cell parameters
that can be used for individual-based modeling.

The modified Fokker-Planck equation directly provides the
evolution of the volume distribution without the need of
predefining a probability density function. When populations
are not large enough, the histograms calculated with individual-
based modeling are too poor to extract relevant statistics. It is
then usually preferred to assume a certain family of probability
density functions. The precision of the modified Fokker-Planck
equation, however, depends only on the discretization method

to solve the partial differential equation, and works for large
and small populations whenever the assumptions of the Wiener
process are satisfied (Gardiner, 2004).

In addition, individual-based modeling is characterized
by requiring long computational times which make its use
prohibitive in applications that demand many model evaluations
(An et al., 2017), such as parameter estimation. The computation
time of individual-based modeling grows exponentially with
time, whereas the growth is linear for the equivalent modified
Fokker-Planck equation. Note that the individual-based
modeling approach requires one equation per cell. As cells
grow exponentially, computation time scales linearly with the
number of cells and exponentially with time. The modified
Fokker-Planck equation, however, is a unique partial differential
equation (PDE). Its computation time will depend on the degree
of discretization and the simulation time. For the examples in
Figure 1, computational times (2–6 s) are similar until time 15
(population of less than 3e4 cells) for both approaches. However
from this time the modified Fokker-Plank equation becomes
more efficient in orders of magnitude.

Moreover, the partial differential equation for stochastic
growth has a diffusion term allowing efficient simulations using
the appropriate techniques. Classical discretization methods
transform the partial differential equation into a large number
of ordinary differential equations. When the original equation
is diffusive, a number of methods are at hand to take
advantage of this property and significantly reduce the number
of ordinary differential equations, thus reducing computational
times (Trefethen, 2000; García et al., 2008).

3.2. Flow Cytometry Allows Estimation of
Volume Distributions for P. acidilactici
Flow cytometry is the standard technique for fast acquisition
of population statistics. It is commonly employed to estimate
different mammalian cell characteristics such as cell size using
forward scattered light. This technique is also useful for bacteria,
but as their diameters are close to the light wavelength (488 nm or
0.5 µm), side scattered light has better resolution and is preferred.
Figure 2A shows how side scattered light (y-axis) discriminates
among different bead diameters. Events in red, green, pink and
blue correspond with beads of diameters 0.2 , 0.5 , 1 , 2 µm,
respectively. Sizes smaller than 0.2 µm were below the detection
limit of the device.

Estimation of bacterial diameters from side scattered light
requires two steps: (1) to find the correlation between the bead
diameter and side scattered light and (2) to transform the bead
diameters to bacterial diameters. Figure 2B shows that the bead
diameter is a second order polynomial of side scatter (Julià et al.,
2000; Prats et al., 2010). However, bacteria and polystyrene beads
have different refractive indexes. To correct the differences in
the refractive index we make use of the linear relationship in
Chandler et al. (2011). The figure shows in the right y-axis the
final relationship between bacterial diameter (d) and side scatter
(SSC), outlined in the following expression:

d = a(p1 SSC
2 + p2 SSC + p3)+ b (4)
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FIGURE 2 | Flow cytometry is an efficient technique to extract volume distributions of coccoid bacteria such as Pediococcus acidilactici. (A) Side scatter light (y-axis)

discriminates among round beads of different diameters represented in red, green, pink, and blue for diameters 0.2, 0.5, 1, and 2 µm, respectively. (B) Bead diameter

correlates with side scatter as a second order polynomial (Julià et al., 2000; Prats et al., 2010) and can be transformed into bacterial diameter following the linear

relationship in Chandler et al. (2011). (C) Flow cytometry correlogram and gating (red box) of fluorescent dye Sybrgreen with side scatter light for Pediococcus
acidilactici after 8 h of growth. (D) Growth kinetics of P. acidilactici in terms of biomass and cell counting shows that the selected time where we took the sample

(t = 8 h) is within the exponential phase (error bars are the confidence of intervals for n = 5 and α = 0.05). (E) Estimated diameter distribution of five replicas of the

population of Pediococcus acidilactici at time 8. (F) Population volume distributions of Pediococcus acidilactici at time 8.

where SSC is the side scatter channel, a = 3.2911 and
b = −0.2769 are the parameters provided in Chandler et al.
(2011) to correct the differences in the refractive index and
p = [p1, p2, p3] = [6.13× 10−6 , − 0.0043, 0.94] the estimated
parameters of the second-order polynomial.

We acquired and processed side scatter data of P. acidilactici
at one sampling time after 8 h of growth. Figure 2C shows the
flow cytometry correlogram of Sybrgreen fluorescence and side
scatter for one of the replicates. Red points indicate beads used to
count the number of events.

The red box defines the gating where viable cells lie. We
used two sources of information to define the gating: Sybrgreen
fluorescence and experiments counting viable cells at different
diameters. Sybrgreen was helpful to determine those events with
too low DNA material to be consistent with a viable cell (upper
and lower horizontal lines of red box). They probably represent
either dead cells from the lag phase that have lost some of their
DNA material, or free DNA detected as an event. Only with this
gating, most diameters were between 1 and 2.5 µm as reported in
the literature (Holt, 1994). However, the first calibrations of the
model suggested that smaller cells were not able to divide. We
passed cells through a 1.2 µm filter and found that only about 2%

of the cells were viable. Consequently, we did not consider cells
smaller than 1.2 µm (left vertical line of the red box).

In order to assume that the selected sampling time (t = 8 h)
was within the exponential phase of growth, we estimated growth
kinetics in terms of biomass and cell counting. Figure 2D shows
the experimental curves with the standard sigmoid growth
pattern for lactic acid bacteria. Both cases are described by
the logistic equation (3) (R2 = 0.993–0.999). p-values from
Fisher’s F-test show consistency and robustness of the logistic
to appropriately describe these profiles (Table 1). It is noted
that no autocorrelation was observed in the fittings (data not
shown). All parameters were statistically significant (t-Student
test). The production of biomass was 25–30% lower as compared
to previous cultures (Vázquez and Murado, 2008) which may
be due to the minimum inocula employed in the present study.
Typically, inocula used for the production of bacteriocins from
lactic acid bacteria including P. acidilactici are much more
populated, reaching values of 105 − 107 cfu/mL and longer
productive periods (Vázquez et al., 2008).

Five data replicates at t = 8 h and the relationship in (4) were
combined to estimate the volume distribution of P. acidilactici.
Figure 2E shows the bacterial diameter distribution of different
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replicates at time 8 h calculated from relationship (4). Volume
distributions in Figure 2F are calculated by applying the volume
equation of a sphere to the diameter histograms. Error bars
show the mean and standard deviation of the histogram values
for the five replicates. The distribution is smooth and skewed
to the right, as expected from the modeling analysis in section
3.1. A similar behavior was observed in volume distributions
of E. coli growing inside a population (Gangan and Athale,
2017).

3.3. The Modified Fokker-Planck Equation
Is Combined with Flow Cytometry Data to
Find the Single-Cell Behavior of
P. acidilactici
The volume distributions of the P. acidilactici at time 8 h
provide enough information to find the single-cell parameters of
the modified Fokker-Planck equation. The problem consists in
finding the best set of parameters of the modified Fokker-Planck
equation that represents the experimental volume distributions
by solving a least square problem.

Preliminary computations demonstrated the inability of the
model in (2a–2d) to reproduce the data, suggesting that the

TABLE 1 | Summary of the parameter values obtained from the fittings of

P. acidilactici growths (biomass and cells production) to the logistic Equation (3).

Parameters Biomass Cells

Gm 0.990± 0.021 g L−1 (10.14± 0.72)× 108 cellsmL−1

µp 0.904± 0.021 h−1 1.163± 0.394 h−1

λ 8.23± 0.18 h 6.72± 0.61 h

µ
p
m 0.224± 0.018 g L−1 h−1 (2.95± 0.93)× 108 cellsmL−1h−1

R2 0.999 0.993

p-values <0.0001 <0.0001

Statistical parameters R2 and p-values are also shown.

volume of each daughter is approximately one-fourth of the
mother volume, i.e., υd = (1/4)υm. This hypothesis contradicts
the principle of binary fission and had to be rejected because,
if a mother gives two cells of this size, total volume would
be destroyed and not conserved during division. This would
imply that the specific growth rate of the population µp differs
from the growth rate of the single-cell volumes µ, contradicting
common observations in rod-shaped bacteria (Taheri-Araghi
et al., 2015; Harris and Theriot, 2016). We could devise that
this hypothesis, however, may be plausible in coccoid cells since
cell volume, membrane area, and diameter scale differently.
In fact, assuming that cells are spheres, simple calculations
indicate that membrane area, instead of volume, is conserved if
υd = (1/4)υm. However, it is well-known that coccoid bacteria
create membrane (septal growth) before division (Pinho et al.,
2013; Monteiro et al., 2015), suggesting again, that volume is
conserved.

It resulted that the data pointed out to another mechanism
to explain the daughter volumes: P. acidilactici, like Pediococcus
pentosaceus and other coccoid cells (Zhou et al., 2010; Pinho et al.,
2013; Monteiro et al., 2015), have two planes of division (Turner
et al., 2010). That means that cells undergo two consecutive
divisions and, at the time-scales of interest, one mother
divides into four daughters with fourth of the mother volume.
Hence we derive the individual-based and population-based
modeling approaches considering two planes of division (see
Appendix).

Figure 3A compares experimental data with both models at
the population and single-cell levels considering two planes of
division. Table 2 shows the single-cell parameters used in the
simulations. The three elements exhibit the same steady-state
volume distribution. The black line represents the experimental
data (see also Figure 2F) and the red line and histogram are
the solutions of the modified Fokker-Planck distribution and
individual-based modeling, respectively.

All the estimated parameters are within the selected bounds
(see Table 2) except for the standard deviation of the distribution
of mother volumes (σ ). Probably, this parameter tries to

FIGURE 3 | The modified Fokker-Planck equation allows us to estimate single-cell behavior of Pediococcus acidilactici from acquisition based on cytometry data at

one sampling time within the exponential phase. (A) The stationary distribution of Pediococcus acidilactici (black line) coincides with the modified Fokker-Planck

equation (red line) and the individual-based modeling (blue histogram). The single-cell parameters to simulate both models were obtained by minimizing the differences

between data and the stationary Fokker-Plank equation. (B) Single-cell dynamics of Pediococcus acidilactici with the estimated parameters. During the cycle of a

single-cell, the volume growths four times and it divides in four daughters.
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TABLE 2 | Bounds and estimations of the best set of parameters of the modified

Fokker-Planck equation to reproduce the experimental volume stationary

distribution of P. acidilactici.

θ θmin θmax

υm = 4.5574 1 9

µ = 1.1619 0.7 1.5

ξ = 0.13439 0.075 0.2

σ = 0.3 0 0.3

We assume that bacteria have 2 division planes and therefore one mother produces four
daughters of 1/4 of the mother’s volume. Upper bound on the standard deviation of the
statistics of division σ was considered 0.3 to avoid overlapping between distribution of
mother sizes and daughter sizes.

accommodate the errors for assuming that the mother divides
into four perfectly round daughters. For coccoid cells with
two planes of division, there is a short transition where cells
are not completely round (Pinho et al., 2013; Monteiro et al.,
2015). For the time-scales here considered this is a simplification
that seems appropriate. Moreover, we have tried to reduce
this bound resulting in similar estimations but with worse fit.
For all these reasons we have considered an upper bound for
the standard deviation of the mother distribution sufficiently
small to avoid relevant overlapping between the mother and the
daughter distributions. In this way, we force a scenario where
the probability of having daughter volumes greater than mother
volumes is low. Note that a standard deviation of 0.3 is reasonable
attending to other mother distributions in the literature (Amir,
2014).

We also validate the results confirming that the specific
growth rate of the population, µp in (3), coincides with the
growth rate of the cell volume, µ in (A1a) and (A2a). Both
population and volume should increase by one-fourth in one cell
cycle. The specific growth rate of the population was estimated
using the growth curves of P. acidilactici in Figure 2D. The
calculated specific growth rate (1.1619 h−1) is similar to the
rate using cell counting with cytometry (1.163± 0.394 h−1) and
larger than the rate estimated from the biomass growth curve
(0.904± 0.021 h−1).

Individual-based modeling of P. acidilactici can now be
implemented using the estimated single-cell parameters in
Table 2. Figure 3B depicts the simulations starting with one cell
at the mean of the daughter volumes (υd = υm/4 = 1.14).
We observe how the fluctuations, dependent on ξ , resembles
experimental single-cell dynamics in the literature (Deforet et al.,
2015). In order to obtain such simulations, it is critical to consider
that during division one mother gives four daughters, volume is
conserved and that volumes grow four-fold during a cell-cycle.

4. CONCLUDING REMARKS

In this work, we have developed a modified Fokker-Planck
equation describing the statistics of a population from

their single-cell parameters. The model is based on the
assumptions that cell volumes grow exponentially and cells
divide following the sizer principle. We have tested and
numerically compared the modified Fokker-Planck with its
equivalent individual-based modeling approach. Simulations
resulted critical to understand several observed phenomena
during the exponential phase of growth of bacteria, including
the necessity of considering stochasticity to obtain a distribution
of volumes that is time-invariant and similar to experimental
observations.

The modified Fokker-Planck equation is also a powerful
tool to estimate the behavior of single-cells inside populations.
Instead of requiring single-cell measurements, we make use
of flow cytometry to find the volume distribution of a
population of P. acidilactici within the exponential phase. The
combination of the modified Fokker-Planck equation with data
provides information about the growth rate and stochasticity
of the single-cell volume, as well as the statistics of the
mother and daughter volumes. For a good correspondence
between model and data, it is fundamental to assume that
the P. acidilactici have two planes of division and its volume
and population numbers grow by a fourth during a cell
cycle.

The proposed methods allow efficient analysis of flow
cytometry data to find single-cell behavior. In fact, they pave the
way for studying cell heterogeneity in numerous applications in
food microbiology, such as in quantitative risk assessment and
prediction of shelf life.
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APPENDIX

The individual-based modeling equations assuming 2 planes of
division lead to:

δXi = µδt + ξδW with Xi = ln (V i) (A1a)

If Xi ≥ Xm ∼ fXm (x), Xn+1 → Xi − ln (4) (A1b)

Xn+2 → Xi − ln (4) (A1c)

Xn+3 → Xi − ln (4) (A1d)

Xi → Xi − ln (4) (A1e)

and the equivalent modified Fokker-Planck equation now reads:

∂p(t, x)

∂t
=

ξ 2

2

∂2p(t, x)

∂x2
− µ

∂p(t, x)

∂x
︸ ︷︷ ︸

cell growth= ∂J(t,x)
∂x

+ 4fXd
(x)Z − fXm (x)Z

︸ ︷︷ ︸

division

− 3 p(t, x)Z
︸ ︷︷ ︸

normalization

being (A2a)

Z =

∫ x

x
Fm(x)

∂J(t, x)

∂x
dx (A2b)

p(t, x) = p(t, x) = 0 ∀t boundary conditions (A2c)

p(0, x) = δ(x− xd) ∀x initial conditions (A2d)
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