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In the dairy industry, Streptococcus uberis (S. uberis) is one of the most important
pathogenic bacteria associated with mastitis in milk-producing cows, causing vast
economic loss. To date, the only real effective method of treating and preventing
streptococcal mastitis is antimicrobial therapy. In many inflammatory diseases,
mesenchymal stem cells (MSCs) and angiotensin-converting enzyme 2 (ACE2) play an
anti-inflammatory and anti-injurious role. Accordingly, we hypothesized that MSCs
overexpressing ACE2 (MSC-ACE2) would ameliorate the inflammatory injury caused by
S. uberis in mammary epithelial cells more efficiently than MSC alone. By activating the
transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) signaling
pathway, MSC-ACE2 inhibited the NF-kB, MAPKs, apoptosis, and pyroptosis
passways. Moreover, MSC-ACE2 overturned the downregulation of Occludin, Zonula
occludens 1 (ZO-1), and Claudin-3 expression levels caused by S. uberis, suggesting that
MSC-ACE2 promotes the repair of the blood-milk barrier. MSC-ACE2 demonstrated
greater effectiveness than MSC alone, as expected. Based on these results, MSC-ACE2
effectively inhibits EpH4-Ev cell’s inflammatory responses induced by S. uberis, and would
be an effective therapeutic tool for treating streptococcal mastitis.

Keywords: S. uberis, MSC-ACE2, inflammatory injury, pyroptosis, blood-milk barrier, mammary epithelial cells
INTRODUCTION

S. uberis is an important pathogen that induces mastitis in cattle, which severely affects milk
production and also has a negative impact on animal welfare (1–4). S. uberis evade the host immune
system by adhering and internalizing into mammary cells (5, 6), thus posing a great challenge in the
management of streptococcal mastitis. Our previous study found that S. uberis infection of EpH4-Ev
org May 2022 | Volume 13 | Article 8707801
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cells downregulated ACE2 expression and demonstrated that
inflammatory injury in mammary epithelial cells was associated
with an imbalance of ACE2, angiotensin 1-7 [Ang- (1–7)], and
angiotensin II (Ang II). Therefore, the ACE2 gene is expected to
be a target for streptococcal mastitis.

Angiotensin I can be converted to Ang II by the action of the
angiotensin-converting enzyme (ACE), which exerts a pro-
inflammatory effect (7). The ACE2 enzyme converts Ang II
into Ang-(1–7) to inhibit inflammation and damage (7, 8).
Our previous study showed that ACE2 exerts anti-
inflammatory and anti-damaging effects in LPS-induced
inflammation (9). In porcine intestinal epithelial cells, we have
demonstrated that ACE2 inhibits lipopolysaccharide (LPS)-
induced inflammation via the nuclear factor-kB (NF-kB) and
mitogen-activated protein kinases (MAPKs) pathways (10).

Mesenchymal stem cells are pluripotent stem cells with
multiple biological potentials, such as regeneration,
immunomodulation, repair of damaged tissues, home to the
site of injury, and other properties (11–13). Currently,
mesenchymal stem cell (MSC) treatment positively affects
diseases. Acute myocardial infarction, lung injury, stroke, liver
failure, and hematologic disorders are some of these conditions
(14–19). There is no information on whether MSCs also play an
immunomodulatory role in streptococcal mammary gland
injury. This study assumed that MSC-ACE2 would exert more
potent anti-inflammatory effects and lessen injury in S.uberis-
induced inflammation in EpH4-Ev cells. Due to their similar
anti-inflammatory and anti-injury properties, ACE2 and MSC
together have a more significant effect.
MATERIALS AND METHODS

Transmission of Lentiviral Vectors
Into MSCs
This research used MSCs from rats obtained from authenticated
cell cultures of the National Collection (Shanghai, China).
Lentiviral vectors (Genechem Co., Ltd., Shanghai, China)
transduction of MSCs and screening of MSCs carrying the
ACE2 gene (MSC-ACE2) and GFP markers (MSC-GFP) are
described in our previous study (20). Throughout this study,
MSC-ACE2 and MSC-GFP were used for generation 5 ~ 10.

Bacteria and Growth Requirements
S. uberis 0140J was purchased from the American Type Culture
Center (Manassas, VA, USA). S. uberis 0140 J was inoculated
into Todd-Hewitt broth (THB) medium containing 2% fetal
bovine serum (FBS; Manassas, VA, USA) for 4.5 h at 37°C by an
orbital stirrer to the mid-log stage (OD600 = 0.4 ~ 0.6).

An Injury Model for EpH4-Ev cells
Nanjing Agricultural University Professor Jinfeng Miao provided
mouse mammary epithelial cells (EpH4-Ev). The mastitis model
was established by treating EpH4-Ev cells with MOI (multiplicity
of infection) = 10 S. uberis for 3 h.
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MSCs and EpH4-Ev Co-Cultured In Vitro
A schematic diagram of the model with EpH4-Ev cells and MSCs
(MSC, MSC-GFP, or MSC-ACE2) co-cultured is shown in
Additional File 1: Figure 1. In brief, EpH4-Ev cells were
inoculated in the lower chamber of the trans-well (0.4 µm,
Corning Inc., NY), and MSCs (MSC-ACE2, MSC-GFP, or
MSC) were inoculated in the trans-well’s upper chamber.
When EpH4-Ev cells and MSCs were co-cultured for 21 h, S.
uberis with MOI = 10 was added to EpH4-Ev cells, and the
culture was continued for 3 h. Aside from measuring the
concentrations of interleukin (IL)-6, tumor necrosis factor-a
(TNF-a), IL-Ib, Ang-(1–7), and Ang II the supernatant of each
cell culture was also tested for N-acetyl-b-D-glucosaminidase
(NAGase) activity.

Viable Bacterial Count
Cells were washed 5 times with phosphate buffered solution
(PBS) containing 100 mg/mL gentamicin, followed by 5 times
with PBS without gentamicin. Cells were digested by trypsin and
then lysed using sterile triple-distilled water. The lysate was
diluted multiplicatively and spread onto THB medium plates
and incubated at 37°C for 12 h. Colony forming unit (CFU) were
counted by diffusion plate method (21).

Analyzing the Concentration of IL-6,
TNF-a, IL-Ib, Ang-(1–7), Ang II, and
NAGase Activity
In the supernatant after cell culture, IL-6, TNF-a, IL-Ib,
Ang-(1–7), and Ang II concentrations were measured by
ELISA (Hengyuan Biotechnology Co., Shanghai, China). The
manufacturer’s instructions were followed for the ELISA test. As
a unit of measurement, TNF-a, IL-Ib, Ang-(1–7), and Ang II
were demonstrated as ng/L. In this case, IL-6 was demonstrated
as pg/mL. Using the instructions included in the kit purchased
from the Nanjing Jiancheng Bioengineering Institute (Nanjing,
China), the action of NAGase was determined in the supernatant
of the cell culture medium. NAGase activity was measured in
units of U/L.

Apoptosis Assays
Apoptosis of EpH4-Ev cells was detected by flow cytometry
according to the operating instructions of Annexin V-FITC
Apoptosis Detection Kit (Beyotine Biotechnology, Shanghai,
China). Briefly, cells were treated as in the co-culture model.
At the end of co-culture, EpH4-Ev cells were digested with
trypsin, centrifuged at 1000 g for 5 min, washed once with
cold PBS, then 200 mL of annexin V-FITC stock solution and 10
mL of propidium iodide staining solution were added and
incubated for 20 min at room temperature in the dark.

Quantitative Real-Time PCR (qPCR)
The relative transcript levels of IL-6, IL-10, IL-18, TNF-a, IL-Ib,
Apoptosis-associated speck-like protein containing CARD
(ASC), Suppressor of cytokine signaling 3 (SOCS3), ZO-1,
Claudin-3, and Occludin in EpH4-Ev cells were analyzed by
qRT-PCR assay. The methods of obtaining cDNA and PCR and
May 2022 | Volume 13 | Article 870780
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extracting and obtaining total RNA are based on a previous study
(22, 23). There is a list of primer sequences in Table 1
(Additional File 1). To calculate raw cycle thresholds (Ct), the
relative Ct (2-DDCt) method was used with iQ5 Software that
detects sequences (Bio-Rad, California, USA).

Western Blot Assays
Western blot assays were performed with reference to the
description of previous studies (23). After co-culture for 24 h,
the culture medium was discarded and washed twice with cold
PBS. Cells were lysed by adding RIPA potent lysate to each well
and total cellular protein was obtained by centrifugation. After
the total protein concentration was determined with the BCA kit
(Thermo Scientific, USA), the proteins were separated by 10%
SDS-PAGE and electro-transferred onto PVDF membranes. The
membranes were blocked for 2 h at room temperature via 5%
skimmilk or 5% BSA solution and then incubated overnight at 4°
C with the target protein primary antibodies. The membranes
were washed with TBST (Tris-buffered saline solution consisting
of 0.1% Tween-20 solution) and incubated with HRP-labeled
secondary antibodies for 2 h at room temperature. After the
membranes were washed 5 times with TBST, the expression of
the target proteins was detected by chemiluminescence. Image J
was used to analyze the relative protein expression levels. Source
antibodies: STAT3 (Bioworld, Nanjing, China); Caspase‐3, Bax,
and Bcl2 (ABclonal, Wuhan, China); ASC (HuaBio, Hangzhou,
China); ERK, p-ERK (Thr202/Tyr204), p38, p-p38 (Thr180/
Tyr182) (Cell Signaling Technology, USA); SOCS3 (Beyotime,
Shanghai, China); JNK, p-JNK (phospho Thr183/Y185), p65, p-
p65 (phospho Ser536) (Proteintech Group, Wuhan, China); p-
STAT3 (phospho Ser727), IL-10, NLRP3, IL-Ib, Gasdermin D
(GSDMD), cleaved caspase-1, ZO-1, Claudin-3 (Affinity
Biosciences, USA).
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analysis
Data are presented as the mean ± standard error of the mean
(SEM). The Independent-Samples T-test Compared Through
the Means of SPASS 11.0 for Windows (StatSoft, Inc., Tulsa,
USA) was applied to the S. uberis treatment group and the
control group, respectively. We compared S. uberis’ treatment
group against other groups and determined the effects using
one-way ANOVA. Statistically, significant P values < 0.05
were considered.
RESULTS

Effect of MSC-ACE2 on the Secretion
Level of Inflammatory Mediators in
EpH4-Ev Cells
Figures 1A–C shows that S. uberis infection significantly
increased the transcript levels of IL-6, TNF-a, and IL-Ib in
EpH4-Ev cells. However, MSC-GFP and MSC significantly
downregulated the transcript levels of IL-6, TNF-a, and IL-Ib
compared with the S. uberis infection group. Moreover, MSC-
ACE2 further inhibited the upregulation of IL-6, TNF-a, and IL-
Ib transcript levels in EpH4-Ev cells induced by S. uberis
compared to MSC-GFP and MSC groups. Consistent with
expectations, ELISA results (Figures 1D–F) showed that S.
uberis infection significantly upregulated the secretion levels of
IL-6, TNF-a, and IL-Ib in EpH4-Ev cells. However, the secretion
levels of IL-6, TNF-a, and IL-Ib were significantly lower in the
MSC-GFP and MSC groups compared with the S. uberis
infection group. Furthermore, MSC-ACE2 further inhibited the
upregulation of IL-6, TNF-a, and IL-Ib secretion levels in EpH4-
Ev cells induced by S. uberis compared to MSC-GFP and
MSC groups.

Effect of MSC-ACE2 on NAGase Activity
and Bacterial Load in EpH4-Ev Cells
NAGase activity is used to evaluate mammary epithelial cell
injury (24, 25). As shown in Figure 2A, S. uberis infection
resulted in a significant upregulation of NAGase activity in
EpH4-Ev cells compared with the control group. When MSC-
GFP and MSC were compared with the S. uberis infection group,
EpH4-Ev cells showed a significant decrease in NAGase activity.
MSC-ACE2 further inhibited NAGase activity upregulation
caused by S. uberis in EpH4-Ev cells when contrasted to MSC-
GFP and MSC groups. In addition, we found that MSC, MSC-
GFP, and MSC-ACE2 treatments significantly reduced the S.
uberis load in EpH4-Ev cells and MSC-ACE2 had the best
effect (Figure 2B).

The Effects of MSC-ACE2 on EpH4-Ev
Cells’ Secretion of Ang II, Ang-(1–7)
Figure 3 shows that infection with S. uberis caused an increase in
Ang II in EpH4-Ev cells and a decrease in Ang-(1–7) levels.
MSC-ACE2, MSC-GFP, and MSC groups showed significant
downregulation of Ang II and significant upregulation of Ang-
TABLE 1 | The primer sequences of the genes.

Target genes Primer sequences (5’-3’)

TNF-a F: TCCCAGGTTCTCTTCAAGGGA
R: GGTGAGGAGCACGTAGTCGG

IL-6 F: CAAGAAAGACAAAGCCAGAGTC
R: GAAATTGGGGTAGGAAGGAC

IL-10 F: CCAGGGAGATCCTTTGATGA
R: CATTCCCAGAGGAATTGCAT

IL-Ib F: GCCTCGTGCTGTCGGACCCATA
R: TGCAGGGTGGGTGTGCCGTCTT

ASC F: GAAGTGGACGGAGTGCTGGATG
R: CTTGTCTTGGCTGGTGGTCTCTG

IL-18 F: GGCCGACTTCACTGTACAACCG
R: GGTCACAAGCCAGTCCTCTTACTTC

SOCS3 F: GCTCCAAAAGCGAGTACCAGC
R: AGTAGAATCCGCTCTCCTGCAG

ZO-1 F: GGGAGGGTCAAATGAAGACA
R: GGCATTCCTGCTGGTTACAT

Occludin F: GTGAGCTGTGATGTGTGTTGAGCT
R: GTGGGGAACGTGGCCGATATAATG

Claudin-3 F: TTTCTTTGTCCATTCGGCTTG
R: ACCGTACCGTCACCACTACCA

b-actin F: TCTGGCACCACACCTTCTA
R: AGGCATACAGGGACAGCAC
May 2022 | Volume 13 | Article 870780
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A B

FIGURE 2 | Effect of MSC-ACE2 on NAGase activity and bacterial load in EpH4-Ev cells. (A) Detection of NAGase activity in cell culture supernatant according to kit
instructions. (B)The number of S. uberis colonies in EpH4-Ev cells. Experiments were repeated three times and data were presented as the mean ± SEM (n = 4).
*P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
A B C

D E F

FIGURE 1 | Effect of MSC-ACE2 on the secretion level of inflammatory mediators in EpH4-Ev cells. (A-C) Detection of relative transcript levels of TNF-a, IL-1b, and
IL-6 in EpH4-Ev cells by qPCR. TNF-a, tumor necrosis factor-a; IL-Ib, interleukin-Ib; IL-6, interleukin-6. (D-F) Detection of TNF-a, IL-1b, and IL-6 concentration in
cell culture supernatants by ELISA. Experiments were repeated three times and data were presented as the mean ± SEM (n = 4). *P < 0.05 vs. EpH4-Ev; #P < 0.05
vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 8707804
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(1–7) compared with the S. uberis group. Furthermore, the MSC-
ACE2 group had a more significant effect than MSC-GFP and
MSC groups.

MSC-ACE2 Inhibited EpH4-Ev Cells
Apoptosis Induced by S. uberis
As shown in Figure 4, EpH4-Ev cells infected with S. uberis
exhibited a significantly higher apoptotic rate than the control
group. However, MSC-ACE2, MSC-GFP, and MSC alleviated
apoptosis induced by S. uberis in EpH4-Ev cells. Moreover,
compared with the MSC-GFP and MSC groups, the MSC-
ACE2 group had a more significant effect (Figures 4A, B).
Furthermore, we performed Western blot analyses to
determine the relative expression levels of Caspase-3, Bax, and
Bcl2 in the apoptosis pathway. Consistent with the expected
results, S. uberis infection significantly increased the expression
levels of Bax and caspase-3, while decreased the expression level
of Bcl2. However, MSC-ACE2, MSC-GFP, and MSC inhibited
the S. uberis-induced upregulation of Caspase-3, Bax, and
downregulation of Bcl2. Furthermore, the MSC-ACE2 group
had a more significant effect than MSC-GFP and MSC groups
(Figures 4C, D).

MSC-ACE2 Ameliorated S. uberis-Induced
Eph4-Ev Cells Pyroptosis
As shown in Figure 5, S. uberis infection upregulated the
expression levels of NLRP3, ASC, cleaved Caspase-1, cleaved
GSDMD, and cleaved IL-Ib. However, MSC-ACE2, MSC-GFP,
and MSC substantially inhibited the S. uberis-induced
upregulation of NLRP3, ASC, cleaved Caspase-1, cleaved
GSDMD, and cleaved IL-Ib expression levels. Moreover,
compared to MSC-GFP and MSC, the MSC-ACE2 group had
Frontiers in Immunology | www.frontiersin.org 5
a more significant effect. Consistent with the prediction, qPCR
assay results showed that S. uberis infection significantly
upregulated the transcript levels of ASC, IL-18. Consistent with
the expected results, transcript levels of ASC and IL-18 were
significantly downregulated in the MSC-ACE2, MSC-GFP, and
MSC groups compared to the S. uberis infection group.
Furthermore, the transcript levels of ASC and IL-18 were
further downregulated in the MSC-ACE2 group compared to
the MSC-GFP and MSC groups.

Effect of MSC-ACE2 on IL-10/STAT3
Signaling Pathway
As shown in Figure 6, the relative expression levels of IL-10, p-
STAT3, and SOCS3 were significantly upregulated in the S.
uberis infection group compared with the control group. IL-10,
p-STAT3, and SOCS3 were further enhanced by MSC-ACE2,
MSC-GFP, and MSC. Furthermore, the MSC-ACE2 group had a
more significant effect than MSC-GFP and MSC groups. In
addition, the mRNA results of IL-10 and SOCS3 were
consistent with the Western blot results.

Effect of MSC-ACE2 on NF-kB and
MAPKs Pathways
The expression abundance of p65, p-p65, ERK, p-ERK, p38, p-p38,
JNK, and p-JNK were analyzed by Western blot assay (Figure 7).
The results showed that S. uberis infection significantly upregulated
the expression levels of p-p65, p-ERK, p-p38, and p-JNK.
Nevertheless, MSC-ACE2, MSC-GFP, and MSC inhibited p-p65,
p-ERK, p-p38, and p-JNK expression levels induced by S. uberis.
Furthermore, the MSC-ACE2 group had a more significant effect
compared with the MSC-GFP and MSC groups.
A B

FIGURE 3 | The effects of MSC-ACE2 on EpH4-Ev cells’ secretion of Ang II, Ang-(1–7). (A) Detection of Ang II concentration in cell culture supernatants by ELISA.
(B) Detection of Ang-(1–7) concentration in cell culture supernatants by ELISA. Experiments were repeated three times and data were presented as the mean ± SEM
(n = 4). *P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
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MSC-ACE2 Reversed the S. uberis-
Induced Downregulation of the Expression
Abundance of blood-Milk Barrier-
Associated Proteins
As shown in Figure 8A, S. uberis infection significantly
downregulated Occludin, ZO-1, and Claudin-3 transcript levels
contrasted with the control group. Conversely, MSC-ACE2,
MSC-GFP, and MSC reversed the down-regulation of
transcript levels of Occludin, ZO-1, and Claudin-3 caused by S.
uberis. Moreover, the MSC-ACE2 group had a more significant
effect compared with the MSC-GFP and MSC groups. The
Western blot results were consistent with the qPCR results, S.
uberis infection significantly downregulated the expression levels
of Occludin, ZO-1, and Claudin-3 compared to the control
Frontiers in Immunology | www.frontiersin.org 6
group. However, MSC-ACE2, MSC-GFP, and MSC all
significantly reversed the downregulation of Occludin, ZO-1,
and Claudin-3 expression levels due to S. uberis, with MSC-
ACE2 being the most potent (Figures 8B, C).
DISCUSSION

Mastitis is a common disease in dairy cows that can lead to
inflammatory damage to the mammary gland and cause
substantial economic losses to the dairy industry worldwide (26,
27). S. uberis is one of the important causative agents of mastitis in
dairy cows and is the main cause of subclinical chronic mastitis (5).
A

B

C D

FIGURE 4 | MSC-ACE2 inhibited EpH4-Ev cells apoptosis induced by S. uberis. (A) Apoptosis kit to detect apoptosis rate. (B) Total apoptosis ratio of EpH4-Ev
cells. (C) Detection of relative protein expression levels of Caspase-3, Bax, and Bcl-2 by Western blot. (D) Statistics of the Caspase-3, Bax, and Bcl-2 Western blot
results. Experiments were repeated three times and data were presented as the mean ± SEM (n = 3). *P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs.
MSC; &P < 0.05 vs. MSC-GFP.
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The current treatment of mastitis in dairy cows still relies on
antibiotics (28). However, long-term use of antibiotics can lead to
problems such as antibiotic residues and bacterial resistance (29).
Therefore, there is an urgent need to find new molecular targets
and approaches for mastitis treatment.

In this study, we found that S. uberis infection of EpH4-Ev
cells significantly upregulated the secretion levels of IL-6, TNF-a
and IL-Ib, and significantly activated NAGase activity, indicating
that S. uberis infection led to the inflammatory injury in EpH4-
Ev cells. Conversely, S. uberis infection of EpH4-Ev cells
upregulated Ang II levels, while downregulating Ang-(1–7) levels.
This suggests that inflammatory injury in EpH4-Ev cells due to
S. uberis is associated with an imbalance of ACE2, Ang-(1–7),
and Ang II. However, our results exhibited that MSCs
Frontiers in Immunology | www.frontiersin.org 7
overexpressing ACE2 suggestively upregulated Ang-(1–7) levels
while suppressing S. uberis-induced upregulation of Ang II, IL-6,
TNF-a, IL-Ib, and NAGase activity. Based on these results, MSCs
combined with ACE2 can ameliorate inflammatory injury caused
by S. uberis in mammary epithelial cells. This suggests that MSCs
combined with ACE2 are more effective in alleviating
inflammatory damage in mammary epithelial cells induced by
S. uberis.

Recent studies have shown that MSCs have significant
antimicrobial potency (30–33). Similarly, our study found that
MSC, MSC-GFP, and MSC-ACE2 treatments all significantly
reduced the load of S. uberis in EpH4-Ev cells, indicating that
MSC, MSC-GFP, and MSC-ACE2 have significant antimicrobial
efficacy. Interestingly, MSC combined with ACE2 had greater
A

B C

FIGURE 5 | MSC-ACE2 ameliorated S. uberis-induced Eph4-Ev cells pyroptosis. (A) Detection of relative transcript levels of ASC and IL-18 by qPCR (n = 4).
(B) Detection of relative protein expression levels of NLRP3, cleaved-Caspase-1 (p20), ASC, cleaved GSDMD, and cleaved-IL-Ib by Western blot. (C) Statistics of
NLRP3, cleaved-Caspase-1 (p20), ASC, cleaved GSDMD, and cleaved-IL-Ib Western blot results (n = 3). Experiments were repeated three times and data were
presented as the mean ± SEM. *P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
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antimicrobial efficacy than MSC alone. It is worth mentioning
that some studies have demonstrated that ACE2 can
promote the secretion of antimicrobial peptides and regulate
intestinal flora (34, 35). This may be the reason for the more
significant antimicrobial efficacy of MSC-ACE2 compared to
MSC alone.

An increasing number of studies have shown that MSC has
anti-apoptosis and cell proliferation-promoting effects (36–39).
Apoptosis is divided into extrinsic (death receptor-mediated)
and intrinsic (mitochondria-dependent) apoptotic pathways,
which trigger the activation of downstream effector Caspase-3
through a series of signal transduction and ultimately initiate
apoptosis (40–42). Fas bind to fatty acid synthetase ligand (FasL),
which sequentially activates Caspase-8 and Caspase-3, eventually
triggers apoptosis (43). The mitochondria-dependent apoptotic
pathway is mainly mediated by the Bcl2 protein family and
cytochrome C. Activated Bax (one of the important pro-
apoptotic proteins in the Bal-2 family) and leads to an increase
in cytochrome-C entering the cytoplasm to promote apoptosis
(44–46). However, Bcl-2 inhibits Bax activity and thus exerts
anti-apoptotic effects (44). The results from this study indicate
that MSC-ACE2, MSC-GFP, and MSC effectively alleviate the S.
uberis-induced apoptosis in EpH4-Ev cells by upregulating the
expression of Bcl2 and inhibiting the expression of Bax and
Caspase-3. These results suggest that MSC-ACE2 has a stronger
anti-apoptotic effect.

Pyroptosis is an inflammation-associated programmed
cell death mediated by members of the gasdermin family,
Frontiers in Immunology | www.frontiersin.org 8
which is accompanied by cell membrane perforation and the
release of IL-18 and IL-Ib (47). Recent studies have shown that
streptococcal lipid toxins lead to tissue injury by inducing
pyroptosis (48). In the present study, S. uberis infection
significantly upregulated the expression levels of NLRP3, ASC,
cleaved Caspase-1 (p20), cleaved GSDMD, and promoted the
release of IL-18 and IL-Ib, which indicated that S. uberis
infection caused EpH4-Ev cells to pyroptosis. Interestingly,
MSC-ACE2 significantly inhibited S. uberis-induced
pyroptosis compared to MSC-GFP and MSC, indicating
that the combined effect of MSC and ACE2 was more
effective. This may be one of the ways in which MSC-ACE2
ameliorates S. uberi-induced inflammatory damage in EpH4-
Ev cells.

Proteins of the NLRP3, NF-kB, and MAPKs signaling
pathways are targets for anti-inflammatory drug research
(49–51). This study showed that MSC, combined with
ACE2, significantly inhibited MAPKs (p-ERK, p-JNK, p-
p38), NF-kB (p-p65) and NLRP3 compared with MSC-GFP
and MSC groups. IL-10 is an essential anti-inflammatory
molecule that plays a vital role in limiting excessive host
inflammation (52). IL-10 promotes the transcriptional
expression of the target gene SOCS3 by sequentially
activating JAK2 and STAT3, which is the key to the anti-
inflammatory effect of IL-10 (53–57). Our study found that
MSC-ACE2 promoted the expression of IL-10, p-STAT3, and
SOCS3 more effectively. Therefore, MSC-ACE2 inhibited the
expression of NF-kB, MAPKs, and pyroptosis pathway-related
A B C

D E

FIGURE 6 | Effect of MSC-ACE2 on IL-10/STAT3/SOCS3 signaling pathway. (A) Detection of relative protein expression levels of IL-10, phosphorylation levels of
STAT3, STAT3, and SOCS3 by Western blot. (B-D) Statistics of the IL-10, phosphorylation levels of STAT3, STAT3, and SOCS3 Western blot results (n = 3).
(E) Detection of relative transcript levels of IL-10 and SOCS3 in EpH4-Ev cells by qPCR (n = 4). Experiments were repeated three times and data were presented as
the mean ± SEM. *P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
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A B

C D

E

F

FIGURE 7 | Effect of MSC-ACE2 on NF-kB and MAPKs signaling pathways. (A) Detection of relative protein expression levels of p65 and p-p65 by Western blot.
(B) Statistics of p65 and p-p65 Western blot results. (C) Detection of relative protein expression levels of p38, ERK, JNK, and p-p38, p-ERK, p-JNK by Western
blot. (D-F) Statistics of p38, ERK, JNK, and p-p38, p-ERK, p-JNK Western blot results. Experiments were repeated three times and data were presented as the
mean ± SEM (n = 3). *P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
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proteins, probably mediated through the IL-10/STAT3/SOCS3
signaling pathway.

The blood-milk barrier is critical to the body’s defense
against pathogenic bacteria invasion (58). Mastitis can disrupt
the blood-milk barrier, which can further exacerbate
pathogenic infections and increase inflammatory injury to
the mammary tissue (59). The tight junction-related
proteins Occludin, ZO-1, and Claudin-3 are important
components of the blood-milk barrier (60). Studies have
shown that increasing the expression levels of tight junction
proteins can help fight the invasion of pathogenic bacteria,
Frontiers in Immunology | www.frontiersin.org 10
thus, helping to alleviate mammary gland inflammation
(61, 62). In this study, we found that S. uberis infection
significantly downregulated the expression of the tight
junction proteins Occludin, ZO-1 and Claudin-3 in
mammary epithelial cells, suggesting that S. uberis infection
disrupts the blood-milk barrier in mammary epithelial cells.
Interestingly, MSC-ACE2 more markedly reversed the S.
uberis-induced down-regulation of Occludin, ZO-1 and
Claudin-3 expression levels compared to MSC-GFP and
MSC. This suggests that MSC-ACE2 plays an imperative
regulatory role in blood-milk barrier repair.
A

B C

FIGURE 8 | MSC-ACE2 reversed the S. uberis-induced downregulation of the expression abundance of blood-milk barrier-associated proteins. (A) Detection of
relative transcript levels of ZO-1, Occludin, and Claudin-3 in EpH4-Ev cells by qPCR (n = 4). (B) Detection of relative protein expression levels of ZO-1, Occludin,
Claudin-3 by Western blot; (C) Statistics of the ZO-1, Occludin, Claudin-3 Western blot results (n = 3). Experiments were repeated three times and data were
presented as the mean ± SEM. *P < 0.05 vs. EpH4-Ev; #P < 0.05 vs. S. uberis; $P < 0.05 vs. MSC; &P < 0.05 vs. MSC-GFP.
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CONCLUSIONS

In conclusion, we show that MSC-ACE2 can ameliorate S.
uberis-induced inflammatory injury in EpH4-Ev cells by
upregulating the IL-10/STAT3/SOCS3 signaling pathway and
downregulating NF-kB, MAPKs, pyroptosis, and apoptosis
signaling pathways. Furthermore, MSC-ACE2 was more
effective than MSC alone in reversing the S. uberis-induced
down-regulation of tight junction protein expression levels in
EpH4-Ev cells (Figure 9).
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