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ABSTRACT

Motivation: Microarray results accumulated in public repositories are

widely reused in meta-analytical studies and secondary databases.

The quality of the data obtained with this technology varies from ex-

periment to experiment, and an efficient method for quality assess-

ment is necessary to ensure their reliability.

Results: The lack of a good benchmark has hampered evaluation of

existing methods for quality control. In this study, we propose a new

independent quality metric that is based on evolutionary conservation

of expression profiles. We show, using 11 large organ-specific data-

sets, that IQRray, a new quality metrics developed by us, exhibits the

highest correlation with this reference metric, among 14 metrics

tested. IQRray outperforms other methods in identification of poor

quality arrays in datasets composed of arrays from many independent

experiments. In contrast, the performance of methods designed for

detecting outliers in a single experiment like Normalized Unscaled

Standard Error and Relative Log Expression was low because of the

inability of these methods to detect datasets containing only low-

quality arrays and because the scores cannot be directly compared

between experiments.

Availability and implementation: The R implementation of IQRray

is available at: ftp://lausanne.isb-sib.ch/pub/databases/Bgee/general/

IQRray.R.
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1 INTRODUCTION

Thousands of microarray results are available in public reposi-

tories such as the Gene Expression Omnibus (Edgar et al., 2002)

and ArrayExpress (Brazma et al., 2003). This wealth of expres-

sion data covering many organisms, tissues, developmental

stages, diseases and treatments is now available for meta-ana-

lyses, system biology studies and use in secondary databases.

Combining results from several independent studies allows im-

proved detection of differentially expressed genes and analysis of

biological pathways and co-expression networks (Tseng et al.,

2012). These vast transcriptomic resources have been also

extensively used for functional gene annotation and reanalysis

of lists of candidate genes obtained with high-throughput experi-

ments. These tasks are facilitated by large secondary databases

such as Genevestigator (Hruz et al., 2008), BioGPS (Wu et al.,

2013), the Gene Expression Atlas (Kapushesky et al., 2010) or

Bgee (Bastian et al., 2008) that allow mining of many microarray

experiments at the same time. Additionally, there are many more

specialized databases, which, for example, collect data only from

a selected species (Dash et al., 2012; Le Crom et al., 2002) or for

diseases (Hebestreit et al., 2012; Rhodes et al., 2007), or provide

resources for more specific analyses, such as COXPRESdb for

studying co-expressed genes (Obayashi et al., 2013) or TiSGeD

for the analysis of tissue-specific gene expression (Xiao et al.,

2010).
The quality of results that can be derived from meta-analysis

and database searches of microarray data depends directly on the

quality of the arrays themselves. Despite this, there are still no

objective criteria that allow discrimination between low- and

high-quality arrays (Brettschneider et al., 2008; Wilkes et al.,

2007). By quality in this context, we understand the agreement

between microarray gene expression-level estimations and true

gene expression profile. A proper quality control procedure

should report whether the amount of biological information cap-

tured by the microarray experiment is sufficient to answer a par-

ticular biological question.
The most common approach to quality assessment of micro-

array results makes the assumption that the majority of arrays in

each dataset is of good quality, and various parameters serve to

identify outlier arrays (Beisvag et al., 2011; Bolstad et al., 2005).

This task is relatively easy when the dataset is large, but the

analysis often lacks power when only a few arrays are analyzed

together. Moreover, in the case of a dataset with a high propor-

tion of low-quality arrays (e.g. microarray results derived from

degraded RNA samples), the good-quality arrays might actually

be removed to decrease variability of the dataset. This approach

is also powerless to detect datasets composed only of low-quality

samples.
Most of the existing methods of quality control of Affymetrix

microarrays use specific features of these chips, such as control

probes, pairs of mismatch (MM) and perfect match (PM) probes,

or the fact that there are many probes gathered in probe sets

targeting the same transcript. The degradation of transcripts

starts from the 30 end; thus, the ratio of abundance of 50–30

ends serves in molecular biology practice as an indicator of*To whom correspondence should be addressed.
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RNA quality. Affymetrix chips contain special probe sets de-
signed to bind 50 or 30 ends of actin and GAPDH transcripts,
and the ratio of their signal level is used as a quality parameter

(Affymetrix, 2001). Another method that measures RNA deg-
radation takes advantage of the fact that the expression level of
each gene is estimated using multiple probes. When probes in

every probe set are ordered according to the localization of their
binding site in target transcript, the average signal of probes with
binding sites closer to the 50 end of transcripts is shifted toward

lower values. The slope of the line from the graph illustrating this
trend can be used as a quality measure (Gautier et al., 2004). The
most widely used Affymetrix arrays have, for each probe that

perfectly matches the target transcript, also a ‘MM probe’ that
has a single nucleotide mismatch in the middle of the sequence.
The MM probes were intended to measure the level of unspecific

background signal for corresponding PM probes. The difference
in signal level between pairs of PM and MM probes from the
same probe sets is used to generate present/absent calls with the
MAS5 algorithm, and the percentage of present calls is one

of the quality metrics proposed by the Affymetrix company
(Affymetrix, 2001; Wilson and Miller 2005). Kauffmann et al.
(2009) suggested the inspection of the difference between distri-

butions of signal levels of PM and MM probes as part of the
quality assessment of microarray experiments. In the current
study, we quantify this tendency by computing the value of

the paired t-test statistic from the signal levels of all PM/
MM probe pairs. The Average Background, one of the measures
of quality that can be obtained from the original Affymetrix

GCOS software, is simply the average of the 2% lowest cell
intensities on the chip, and higher values of this parameter sug-
gest high levels of nonspecific binding. The scaling factor is a

value that should be used to multiply all values of intensities on
the chip to scale the 2% trimmed mean signal to a selected con-
stant (Affymetrix, 2001). Finally, the most popular multi-array

quality metrics are Relative Log Expression (RLE) and
Normalized Unscaled Standard Error (NUSE), which are
based on comparisons of the outcome of Robust Multichip

Analysis/Probe Level Model fitting procedures between arrays
from the same experiment (Bolstad et al., 2004; Gautier et al.,
2004; Irizarry et al., 2003). In the RLE method, medians of probe

set expression values are subtracted from expression values of all
arrays in the experimental series. If the quality of a given array
does not differ greatly from the average quality in the dataset,

then such subtracted expression values center around 0 and dis-
play interquantile ranges similar to other arrays. The NUSE
values measure precision of estimation of expression values.

Shifted or wider distribution of NUSE values indicates problems
with the quality of a particular array. The more general version
of this parameter, Global Normalized Uncalled Standard Error

(GNUSE), compares the standard error of expression estimation
with the values stored in precomputed frozen parameter vectors
obtained on the basis of analysis of many arrays of the same type

together (McCall et al., 2011).
The beneficial influence of removing outlier arrays for micro-

array data analysis has been demonstrated in several studies

(Asare et al., 2009; Kauffmann and Huber, 2010; McCall
et al., 2011). Development and testing of methods for evaluating
the quality of microarray data between experiments suffer from

the lack of a good benchmark. In the current study, we propose

to use the degree of conservation of expression profile between
species as an independent indicator of quality and to assess per-

formance of the most popular quality control methods along

with a new method developed by us. We show that our new

IQRray method is consistently the best in predicting the quality

of microarrays.

2 MATERIALS AND METHODS

2.1 Distribution of probe set average ranks

The IQRray statistic is obtained by ranking all the probe intensities from

a given array and by computing the average rank for each probe set. The

interquartile range (IQR) of the probe sets average ranks serves then as

quality score. The simulated distribution of average ranks from probe sets

composed from random probes was obtained by random assignment of

ranks to probes from arrays. The simulated distribution of average ranks

from probe sets with consistent ranks within probe sets was obtained by

assigning succeeding ranks to probes from the same probe sets. In both

cases, the number of probe sets and the number of probes were identical

to arrays of the HG-U133_Plus_2 type. Real examples of low-

(GSM50702) and high (GSM371402) quality arrays of HG-

U133_Plus_2 type were selected from the Bgee database.

2.2 Expression data

We selected from the Bgee database (Bastian et al., 2008) seven homolo-

gous human and mouse organs represented by high numbers of micro-

array results, obtained using Affymetrix platforms HG-U133_Plus_2 and

Mouse430_2, respectively. The number of samples and experiments for

each organ are presented in Table 1. All results from prenatal develop-

ment stages were excluded from the analysis. In the case of the testis

dataset, only data from adult developmental stage were included. Five

human and six mouse datasets composed of arrays from at least five

independent experiments were used as a training set for benchmarking

quality control metrics. The datasets that have not passed this criterion

were used as reference only (see Table 1). The complete list of arrays and

experiments used in the study is included in Supplementary Table S1. The

initial source of all experiments whose names start with ‘GSE’ is the GEO

database (Edgar et al., 2002); all the other experiments were originally

downloaded from ArrayExpress (Brazma et al., 2003).

2.3 Computing quality control parameters

The raw data from CEL files were read into the R environment using the

package affy (Gautier et al., 2004) from Bioconductor (Gentleman et al.,

2004). The parameters of average background, percent present, scaling

factor and ratios between probe sets for 30 and 50 end of actin and

Table 1. Number of samples and experiments in organ-specific datasets

Organ name Mouse

sample

Mouse

exp

Human

sample

Human

exp

Blood 28* 4* 429 19

Liver 389 60 51 9

Kidney 95 15 41 5

Colon 47 6 103 7

Testis 47 11 12* 2*

Placenta 50 10 50 9

Cerebral cortex 95 11 19* 2*

*Used as reference only.
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GAPDH transcripts were calculated using the R package simpleaffy

(Wilson and Miller, 2005). The slope for RNA degradation was obtained

using the package affy (Gautier et al., 2004). RLE and NUSE metrics

were computed with the package affyPLM (Bolstad et al., 2005) using all

arrays that belong to certain experiment. The GNUSE values for every

array were computed with the package fRMA (McCall et al., 2010) and

relevant packages with fRMA vectors available in Bioconductor. Quality

parameters for all arrays used as a training set are included in

Supplementary Table S1.

2.4 Preprocessing of raw data

The raw data from CEL files were read into R. The signal values for PM

probes were averaged for every probe set. The mapping between probe set

IDs and gene IDs were taken from Ensembl version 69 (Flicek et al., 2013).

Probe sets that match more than one gene were excluded. The expression

values of independent probe sets that match the same gene were averaged.

Only results for genes with one to one orthology between mouse and

human with matching probe sets on both microarray types (according to

Ensembl version 69) were used in further analysis (13136 genes in total).

2.5 Correlation of the expression profiles between

homologous organs

The pairwise Spearman correlation coefficients between expression pro-

files of all arrays from organ-specific datasets and homologous organ

reference datasets were computed. For every array from an organ-specific

dataset, the highest correlation coefficient [the homology organ correl-

ation (HOC)] obtained was selected and used in further analysis. We used

the highest correlation to decrease the probability that the array would be

classified as low quality because of natural biological variability related,

for example, to age or sex. The HOC score for all arrays used as a

training set are included in Supplementary Table S1.

2.6 Performance of quality metrics

The correlations between quality parameters and HOC scores were calcu-

lated using the Spearman correlation coefficient. For some parameters,

larger values are better (e.g. percent present), whereas for others, smaller

values are better (e.g. GNUSE); these are noted as ‘ascending’ or ‘des-

cending’, respectively, in Supplementary Table S2a and b. Quality scores

from all ‘descending’ methods were multiplied by �1 before computing

correlations. Correlation for all organs together was obtained after trans-

forming values of HOC score into quartiles for every organ separately. To

evaluate the performance of quality metrics in detecting the lowest quality

arrays, we selected the worst 5% samples according to each quality control

method from all organ-specific datasets and analyzed the distribution of

their quartile of HOC scores. The 5% cutoff value that was used for each

quality control method can be found in Supplementary Table S2a and b.

2.7 Quality control of Bgee database

The distributions of IQRray and percent present quality score values were

computed using large numbers of independent arrays from the Bgee

(array type Mouse430_2 and HG-U133_Plus_2) and GEO (15 other

types of arrays) databases. The arrays from GEO were selected using

the GEOmetadb and GEOquery R packages (Zhu et al., 2008). The

number of arrays taken from each experiment was limited to 10 to

ensure that the arrays from large experiments do not bias the computa-

tion of the cutoff value. Quantiles for the percent present and IQRray

scores, as well as the number of arrays used for computation, are reported

in Supplementary Table S3A and S3B. In Bgee, we decided to use cutoff

values that allow removing the worst 5% arrays according to either per-

cent present or IQRray score. All arrays that did not satisfy one or both

of the quality thresholds were removed from the database.

3 RESULTS

3.1 IQRray

Because of the limitations of available methods, we propose a

new method for multi-experiment quality control. In Affymetrix

technology, the final expression level is computed on the basis of

intensity levels of several independent probes matching the same

target messenger RNA. In our new IQRray method, we trans-

form all probe signal values into ranks and subsequently com-

pute the average rank of probes that belong to the same probe

set. We expect that the higher the quality of a given array, the

more consistent the levels of probe signal from the same probe

set. The average rank of probes from a probe sets that match

highly expressed genes should be high, whereas the average rank

of probes sets that match lowly or not expressed genes should be

low. All factors that increase signal noise, such as unspecific hy-

bridization or spatial artifacts, are expected to lead to a more

random distribution of probe signals among probe sets. Mixing

of low and high ranks in the same probe set should shift the value

of the average rank of a probe set toward the average rank of all

probes on the array. Consequently, lower quality microarrays

will have more narrow spreads of distribution of rank averages.

As a measure of this tendency, we propose to use IQR of probe

set average rank: the IQRray score. Figure 1 shows distributions

of probe set average ranks from two idealized arrays: one where

intensities of probes in probe sets had consistent values and a

second where signal values were assigned randomly to the probe

sets. We also selected from microarrays in the Bgee database

examples of arrays with extreme IQRray scores. It can be seen

that the IQR of probe set average ranks is much smaller when

the signal values were distributed randomly among probe sets

than when they have consistent signal values. The distribution of

probe sets’ average ranks of a presumptive low-quality array

resembles the distribution of probes with randomly assigned

values. The distribution of a presumptive high-quality array

shows, in contrast, a bimodal shape due to probe sets targeting

lowly or not expressed genes and highly expressed genes.

3.2 Benchmarking of QC metrics

To compare the performance of the newly proposed method and

existing ones for quality control, we set up a test study using 11

large organ-specific datasets—5 for human and 6 for mice. We

use the similarity of its expression profile to a reference profile of

the homologous organ from the other species as an external in-

dependent quality indicator for each microarray. We determined

for every array the Homologous Organ Correlation score (HOC

score, see Section 2). We expect that the lower quality arrays will

display less biological signal and consequently a lower correl-

ation with the reference. All arrays analyzed displayed a positive

correlation with the profile of the homologous organ (Fig. 2),

which is consistent with the previously reported conservation of

orthologous gene expression in homologous tissues (Brawand

et al., 2011; Piasecka et al., 2012; Zheng-Bradley et al., 2010).

However, in each dataset, outlier samples of suspicious quality

with unusually low HOC scores can be found. These arrays

should be preferentially removed through quality control

procedure.
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3.3 Correlation with external quality control method

Each array was evaluated separately by a set of microarray qual-

ity control methods. Then we checked how well the quality met-

rics of each method agreed with the HOC score. There was large

variation in the correlation with this external quality indicator

(Figs 3 and 4). For example, in the case of the human blood

dataset, the largest dataset in the study (Table 1), the IQRray

method displayed nearly perfect correlation with the HOC score
(Spearman correlation of 0.97) (Figs 3a and 4a). In contrast,
NUSE and RLE (McCall et al., 2011), which are frequently
used quality control methods, showed only a weak positive cor-

relation (Figs 3b and 4b). For this human blood dataset, only a
low fraction of samples came from experiments with fewer than
six samples (Supplementary Table S1); thus, the low correlation

with HOC cannot be explained simply by a lack of power, owing
to an insufficient number of arrays in experiments. In general,
across all analyzed datasets, NUSE and RLE performed poorly,

which suggests that the scores returned by these methods are not
directly comparable between independent experiments. All trad-
itional single-array quality metrics, such as RNA degradation

slope, average background (avbg), scaling factor and ratios be-
tween signal for the 30 and 50 ends of actin and GAPDH tran-
scripts, show low performance, and the correlation was even
negative for some of the methods for some datasets (Fig. 4a

and b). The score from the GNUSE method, the only published
method dedicated to absolute quantification of microarray qual-
ity (McCall et al., 2011), correlates well with the external quality

metric only for mouse datasets, whereas for humans, GNUSE
obtained poor results for nearly all datasets (Fig. 4b). The
IQRray performed the best in 8 of 11 datasets. The other meth-

ods that displayed high agreement with the HOC score for
both mouse and human data were percent present and the
PM/MM t-test.

3.4 Simulation of quality control assessment

of large set of samples

The ultimate goal of quality assessment is to remove the worst
quality samples from datasets. A good quality control method

should both correctly identify the worst samples and avoid

(b) (a)

Fig. 2. Boxplots of Spearman � values from correlation test between organ-specific microarray results and reference results from another species (a)

correlation between human samples and mouse reference or (b) correlation between mouse samples and human reference

(a) (b)

(c) (d)

Fig. 1. Distribution of probe set average ranks of (a) simulated array

with intensity values assigned randomly to probe sets, (b) simulated

array with consistent intensity values in probe sets, (c) real array with a

low IQRray score (GSM50702) and (d) real array with a high IQRray

score (GSM371402)

1395

IQRray

I
for example 
less 
6
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu027/-/DC1
,
due
single 
,
'
'
while
out 
.
,


assigning falsely low scores to good-quality arrays. We simulated
a quality control check for a collection of microarrays. We se-
lected the 5 and 10% of samples with the lowest quality accord-
ing to each quality control method from all samples used in the

study (Supplementary Table S2). We show the distribution of
HOC scores for arrays selected with a 5% cutoff (Fig. 5). We
also measured the efficiency of methods in selecting the arrays

with the lowest quality by computing the proportion of results
below a chosen cutoff value (Supplementary Table S2) displaying
a quantile of HOC values also below the same cutoff (e.g. quan-

tiles55% for 5% cutoff) (Supplementary Table S2). The method
that consistently was the most efficient in identifying the worst
quality arrays was IQRray.

For both mouse and human data, all samples selected by
this method had quantiles 50.2, which means that they were
of considerably lower quality than other samples derived

from the same tissue. This method also identified the highest
proportion (�60% in all cases) of low-quality arrays using

both 5 and 10% cutoffs. Again, the other methods that
performed relatively well were percent present and PM/MM

t-test. Consistent with previous results, the GNUSE metric
showed high performance for mouse data and confusing

results for human data. Among the traditional methods
used for quality assessment of microarrays, the scaling
factor gave relatively good results for both human and

mouse datasets.

(a) (b)

Fig. 4. Spearman � values from correlation test between quality metrics and HOC score for (a) human and (b) mouse organ-specific datasets

(a) (b)

Fig. 3. Correlation between (a) NUSE and (b) IQRray scores and Spearman � values from correlation test between mouse blood reference and human

blood samples (black circles) and other samples from other organs (gray triangles). Each point on the plot corresponds to a single array
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The Bgee database was created to facilitate comparative and
evolutionary analyses of gene expression profiles. Ensuring that

the microarrays used contain sufficient biological signal is of
primary importance. Based on this benchmarking, in the Bgee
processing pipeline, we decided to use two independent quality

control methods: IQRray and percent present. The 5% quantiles
used as quality thresholds were computed for each array type

separately using a high number of representative arrays. The
quantiles of distributions for both metrics for selected array

types are available as supplementary material and can be used
to evaluate the quality level of any new microarray experiment.

Among 12173 microarrays with raw CEL files from Bgee sub-
jected to quality assessment, 887 (7.2%) did not pass at least one

quality threshold, 441 (3.6%) did not pass either of them, 194
(1.6%) were eliminated because of a low IQRray score and 252
(2%) were eliminated because of a low percent present score.

These 887 arrays come from 172 experiments (16.6% of 1033
experiments available in Bgee). Arrays from 22 experiments

were excluded entirely, and at least 50% of samples were elimi-
nated from another 37 experiments.

4 DISCUSSION

In this study, we introduce a new methodology for benchmark-
ing the quality of results of high-throughput transcriptomic ex-

periments. We decided to use evolutionary conservation of
expression profile as an indicator of quality because it provides

an independent assessment of biological relevance. Because of
the use of correlation between species rather than of correlation

between arrays obtained with the same platform, like in previous
studies (Gagnon-Bartsch and Speed, 2012; McCall et al., 2011),

we can avoid giving high scores to low-quality results that cluster
together. Such spurious results can easily be obtained with
microarray technology because the GC content of probes and

probe set design, which highly influence the background

unspecific level of the measure, remain the same among samples.
The HOC can be used not only for the assessment of perform-

ance of quality control methods, but also more generally for
the benchmarking performance of any preprocessing step.

Moreover, the method can be directly applied to results from
different technologies such as RNA-seq and may be easily

adapted for other types of experiments where an evolutionary
conservation of the results is expected, such as ChIP-seq experi-

ments analyzing transcription binding factors or chromatin

methylation marks. A good quality control method should be
sensitive to all factors that impede the specificity of binding of

labeled targets, such as RNA degradation, insufficient labeling of
target transcripts, suboptimal hybridization conditions or surface

defects like bubbles or scratches (Novak et al., 2002). The
IQRray algorithm outperformed all the other tested methods

in identifying low-quality arrays. The method owed its success
to two features: (i) the fact that all factors decreasing the strength

of specific signal or adding noise to the estimation of the final
expression values of a substantial proportion of probe sets will

change the distribution of average ranks computed for each
probe set; and (ii) the possibility of direct comparison of

IQRray score between arrays because of the transformation of

original values to ranks, which can be considered as a between-
arrays normalization step.
Our study showed that among the known methods for quality

assessment of microarrays, the best results can be obtained using
methodologies based on PM and MM probe pairs. Use of MM

probes for estimation of unspecific background signal for PM

probes has been highly criticized, and gives inferior results in
comparison with other methods of background signal measure-

ment, mostly because the MM probes also bind, to some extent,
the specific target transcript (Irizarry, et al., 2003; Lockhart,

et al., 1996; Shedden, et al., 2005). However, when all PM/
MM probe pairs on the array are analyzed simultaneously, the

shift in signal distribution between PM andMM probes is clearly

(a) (b)

Fig. 5. Boxplot of quantiles of HOC scores of the worst 5% samples selected by different QC methods from (a) human and (b) mouse datasets
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visible, and its strength measured by either PM/MM paired t-test

or by proportion of probe sets called present seems to be a good

indicator of quality. This result might be explained by the fact

that the occurrence of differences in hybridization strength be-

tween PM andMM probes is strictly dependent on the specificity

of target binding, and all factors that negatively influence it also

diminish this difference. These methods might be less suitable to

detect loss of quality caused by spatial artifacts, although be-

cause of the fact that the pairs of MM/PM probes are located

next to each other on the surface of the microarray, the large

intensive surface artifacts also probably have an impact of the

final quality score.
The performances of GNUSE scores, the only quality par-

ameter intended for direct comparison of quality between dif-

ferent experiments, differ significantly between mouse and

human datasets. Such a discrepancy may indicate that al-

though the assumptions of the methodology are correct, the

differences in experimental protocol strongly influence the final

results, as was suggested by the GNUSE authors (McCall,

et al., 2011). The other possible explanation of this phenom-

enon is simply lower quality of the fRMA vector specific for

the human HG-U133_Plus_2 array. If a higher proportion of

human microarray experiments is of lower quality, then the

frozen parameter vector prepared on the basis of these data

may underestimate the natural variance in probe signal from

the same probe set.

Despite the fact that methods for the analysis of microarray

results are already in their maturity, and a lot of effort and at-

tention has been made toward improving methods of quality

assessment of microarrays, including calling two international

consortia EMERALD and MAQC (Beisvag et al., 2011;

Canales et al., 2006), there are still no objective rules for defining

absolute quality of microarrays. Our new IQRray algorithm for

quality control of microarrays appears to be powerful in detect-

ing of low-quality arrays, as are the PM/MM t-test and the

percentage called present, as measured by our independent evo-

lutionary conservation-based quality metric. We strongly recom-

mend using one or several of these metrics before performing

meta-analyses or integrating microarrays into databases, as we

do in Bgee.

ACKNOWLEDGEMENT

The authors thank Frédéric Bastian, Aurélie Comte, Nadezda
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