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Abstract: Contamination of the biosphere by heavy metals has been rising, due to accelerated anthro-
pogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic
pollutants from aquatic environments via biological processes has earned great popularity, for its
cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among
candidate organisms, microalgae offer several competitive advantages; phycoremediation has even
been claimed as the next generation of wastewater treatment technologies. Furthermore, integra-
tion of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the
economic feasibility of the former process—with energy security coming along with environmental
sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the
large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome
editing, together with the advent of multiomics technologies and computational approaches, have
permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial
traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals.
Previous studies unfolded several routes through which genetic engineering-mediated improvements
appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they
can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal-
and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This
review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and
discusses putative and tested metabolic engineering approaches, aimed at further improvement of
those biological processes. Finally, current research gaps and future prospects arising from use of
transgenic microalgae for heavy metal phycoremediation are reviewed.
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1. Introduction

Heavy metals (HMs) are an integral constituent of the biosphere; they are naturally
recycled in the environment through various biotic and abiotic processes, as part of bio-
geochemical cycles [1,2]. However, the dramatic rise in urbanization and industrialization
has led to the release of alarmingly toxic levels of HMs, along with many other organic
and inorganic pollutants in the environment. Aside from geochemical processes beyond
one’s control, as is the case of erosion, atmospheric deposition, infiltration, thermal spring
activity, and volcanic eruptions, HMs are increasingly penetrating aquatic systems, as
a consequence of a wide range of anthropogenic activities, e.g., discharges of untreated
effluents from mining, spontaneous leaching from intensive agriculture, petroleum refining,
improved performance of petroleum-based fuels, refuse burning, electroplating, printing,
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power generation, and other such activities carried out by (fine) chemical and metallur-
gical industries in the manufacture of microelectronic devices, paints, plastics, batteries,
cosmetics, and medical equipment [3,4].

Generally speaking, 67 out of 118 chemical elements with atomic numbers above
20 and density greater than 5 g.cm−3 are considered as HMs [5]; arsenic (As), cadmium
(Cd), chromium (Cr), lead (Pb), mercury (Hg), copper (Cu), zinc (Zn), and nickel (Ni) rank
among those most repeatedly found at toxic concentrations in water, soil, sediments, and
even living organisms in the latest decades [6]. A few HMs are stable as such, and all of
them are obviously non-biodegradable, so they will persist as environmental contaminants,
with their toxicity posing major health concerns. Most of the harmful effects of HMs upon
various vital organs in humans, and inhibition of such basic physiological processes as
photosynthesis, mineral nutrition, and water relation, have been well-documented in plants
and other organisms [7,8]. Because of interspecies differences in metal stoichiometry, the
intracellular concentration of HMs may range from nano- to femtomolar levels [5,9]. Al-
though trace quantities of some HMs are essential for many metabolic processes—especially
as cofactors of enzymes. HMs tend to bind to functional groups of biomolecules and destroy
their functionality when at high concentration, thus, adversely affecting basic metabolic
processes. Examples include disruption of cell membrane permeability, formation of non-
functional protein–metal adducts, alterations of redox state of cells, generation of toxic free
radicals and reactive oxygen species, and direct damage to DNA [10–12]—see Figure 1.
Therefore, remediation of HM-contaminated terrestrial and aquatic ecosystems is of the
utmost importance, in attempts to restore the altered ecological balance of our planet [4,13].

Figure 1. Main sources of heavy metal pollution and biological toxicity thereof.

Conventional methods to remove HMs from effluents are chemical precipitation,
solvent extraction, ion exchange, evaporation, adsorption, nanofiltration, ultrafiltration,
reverse osmosis, and electrochemical treatments; unfortunately, they often prove inefficient
in terms of energy input, environmental footprint, capital investment, and operational
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costs. As a consequence, huge amounts of non-treated domestic and industrial waste
end up in the natural environment [2,4,14]. Bioremediation comes as a tool to avoid such
dumping (bearing several well-documented advantages [15–18]); it is defined at large
as the application of biological organisms and their components to degrade, transform,
sequester, mobilize, or contain environmental contaminants present in soil, water, or
air [19]. Various species of plants, bacteria, fungi, yeasts, and microalgae, as well as
dead biomass derived therefrom, have shown a great potential for bioremediation of HM-
derived pollution in aqueous media—through metal binding and uptake [20–22]. Among
these, phycoremediation (i.e., use of microalgae for mitigation of organic and inorganic
contamination) offers several advantages; hence, it has accordingly undergone intensive
investigation for the large-scale remediation of industrial and domestic effluents, as well as
HM-contaminated sites and water bodies [12,23].

Microalgae are photoautotrophic eukaryotic microorganisms, which account for over
40% of the global primary production, for lying at the bottom of the aquatic food chain;
this is also true for most of the biologically sequestered trace metals in aquatic environ-
ments [24]. They are ubiquitously found in nature, as they are well-adapted to live/survive
in a wide range of aquatic habitats, from sea and fresh water, through domestic and in-
dustrial effluents, to salt marshes and constructed wetlands [25]. Their unique metabolic
plasticity, inherent capacity to grow on nonarable lands and in wastewater, using just solar
light as the source of energy and atmospheric CO2 as the carbon source, and relatively high
rate of cell division and growth account for such widespread occurrence; the exceptional
retention capacity of HMs also contributes to make them the ideal platform to develop the
next-generation technologies for wastewater treatment. Microalgae cells can accumulate
HMs up to 10% of their biomass, owing to their large surface-to-volume ratio, coupled with
their efficient metal binding, uptake, metabolization, and storage mechanisms [12,22]. The
toxicity dosage of HMs is quite variable though, even among members of the same taxo-
nomic group; for instance, some diatoms can tolerate 1.5–10 µM of dissolved Cu, whereas
certain species of Chlorophyta still survive in 15 µM [26,27]. Utilization of microalgae for
bioremediation of wastewater brings about, in addition, the opportunity to produce a wide
range of bioactive products, including proteins, pigments, and vitamins, for eventual use
as feed and food additives, and as cosmetic ingredients; lipids and carbohydrates, for even-
tual production of biofuels and nutritional supplements; a long list of other value-added
byproducts, such as biofertilizers and biochar.

Despite their outstanding potential, current technical and economic constraints—
associated to the underlying upstream and downstream processes—have hampered large-
scale use of microalgae in HM bioremediation [28]. Even though integration of microalgae-
mediated wastewater treatment with energy production appears logical and inevitable, the
strains most commonly employed, essentially retrieved from nature in their native state,
lack the robustness required by sustainable, large-scale scenarios bearing a commercial in-
terest. Recent advances in genetic and protein engineering, complemented by an essentially
unanimous orientation toward a holistic approach to the engineering of biological systems,
at the expense of bioinformatic and omics tools, may soon allow for the tailor-made design
of microbial cell factories for a number of end- or start-products, while lowering the risks
and concerns over the putative adverse effects associated to use of genetically modified
organisms (GMOs). Further to knowledge on the most obvious routes to enhance energy
load (stemming from hydrocarbons) and improving growth rate and photosynthetic ability
in microalgae cells, effective engineering of (sustainable) cell factories, for efficient HM
bioremediation, will call for work on specific genes and traits identified as relevant.

The present review accordingly summarizes recent advances in the genetic engineering
of microalgae, aimed at improving their HM removal capacity and specificity. Further-
more, candidate genes and potential routes susceptible of manipulation are discussed, in
attempts to create robust strains of microalgae, able to convey sustainable removal of HMs
from wastewater.
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2. Cellular Mechanisms of HM Bioremediation in Microalgae

Heavy metals adversely affect the physiological health of, and may even cause severe
toxicity to microalgae cells, owing to attenuation of the bioactivity of proteins, lipids,
nucleic acids, pigments, and other molecules, or the generation of excessive reactive oxygen
species (ROS); more specifically, they act by impairing photosynthetic machinery, inhibiting
enzyme activities, and/or ceasing cell division [29], or else by inhibiting the normal function
of thylakoid membrane and chlorophyll biosynthesis, acidifying cytoplasm, or damaging
the cell membrane [30–32].

Similar to other life forms, microalgae have developed, through evolution, several
intracellular and extracellular adaptive mechanisms for the mitigation of HM toxicity—see
Figure 2. For instance, the physicochemical properties of the microalgal cell wall and
extracellular polymeric substances (EPS) allow the binding of HM ions to functional groups
on their surface, in a process generally known as biosorption [33]. As the interface between
intracellular compartment and external environment, the constitutive macromolecules of
the cell wall possess various negatively charged functional groups, e.g., amino, hydroxyl,
carboxyl, sulfhydryl, sulfate, phosphate, carbonyl, amide, imidazole, thioether, and phenol;
said moieties can bind to ions from the surrounding medium, in the absence of steric or
conformational barriers [34–37]. The molecular mechanisms behind the biosorption of HMs
onto the cell wall and EPS include ion exchange, chelation and complexation, hydroxide
condensation, covalent binding, redox interaction, biomineralization, and precipitation
of insoluble metal complexes, through electrostatic, van der Waals, or hydrophobic inter-
actions of positively charged HM cations with negatively charged groups present on the
cell surface [1,20,38]. The adsorption capacity of the microalgal cell wall is a metabolism-
independent process; hence, it is primarily affected by such environmental factors as pH,
temperature, contact time, and concentration of HM and competing ions [4,39]. Given the
numerous reports on fluidity and evolution of cell wall components (e.g., fatty acids) in
response to external stimuli, a yet unknown metabolic background to this phenomenon
seems to exist. On the other hand, biosorption of HMs onto EPS is regulated by the cell itself
via changes in the properties of such biopolymers, as required by the nature of metabolic
stress, i.e., metal toxicity in the situation under scrutiny [40,41]. Both the cell wall and EPS
provide, indeed, an extracellular protective layer to the cell that prevents the harmful effects
of HMs, if transported into the intracellular compartment; in this fashion, cellular integrity
is maintained. The distinct physiology of existing species of microalgae then accounts
for the differences found in composition and structure of such outer structures, which,
in turn, drive their species- and even strain-dependent HM-biosorption capacities [1,20].
Secretion of metal-chelating proteins and specific organic acids, and subsequent endo-
cytosis of the organometallic complexes formed, is another mechanism for extracellular
HM-bioremediation, reported in microalgae cells [42].

Since HMs are hydrophilic in nature, a requirement exists for certain carrier molecules
that facilitate their transport into the cells. Once in the cytoplasm, HM toxicity is overcome
by resorting to unique metabolic mechanisms—some of which have been well-documented.
Several metal efflux pumps do regulate the algal membrane permeability, by actively
transporting HMs into and out of the cell [43–45]; the net metal flux is accordingly reduced,
and may even affect the chemical speciation of the HMs, due to expulsion of trace metal
complexes [46].
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Figure 2. Heavy metal bioremediation mechanisms adapted by microalgae.

Another strategy followed by microalgae is increased expression of metal-binding
amino acids, peptides, and proteins, such as metallothioneins (MTs), phytochelatins (PCs),
glutathione (GSH), proline, histidine, and glutamate [47]. These organometallic complexes
are typically transported in, but partitioned into vacuoles—so as to neutralize the otherwise
toxic effects of HMs in the cytoplasm [5]. In the acidic environment of vacuoles, HMs
are released from their organic carrier; while the latter may be transported back to the
cytosol, HMs are most likely stabilized and chelated by sulfides or organic acids in said
vacuoles [10,48,49]. Depending on the prevailing environmental conditions, microalgae
may attain a high polyphosphate content, suitable for binding divalent HM cations, and
drive them into vacuoles for further sequestration. In addition to vacuoles, excess intra-
cellular HM loads can be transported for eventual sequestration in such other organelles
as mitochondria and chloroplasts [45], meaning that the expression level of metal trans-
porters in the membrane of those organelles will play an important role in determining
HM-removal specificity, capacity, and rate by microalgae strains.

As happens with other cell types, microalgae respond to HM-generated oxidative
stress by controlling the cell redox state and overexpressing heat shock proteins (HSPs) [50,51].
MicroRNAs (miRNAs) also serve as key components of the gene regulatory network
involved in cellular HM mitigation. They contribute to post-transcriptional cleavage and
translational inhibition of target mRNAs, or methylation of target DNAs to regulate a
particular response, aimed at maintaining cellular homeostasis, by triggering complexation
of excess HMs, defense against oxidative stress, and signal transduction for biological
control purposes [52]. Despite the scarce information available on the subject, metal-
responsive transcription factors (TFs) appear to activate multiple genes responsible for HM
uptake, transport, and detoxification, thus, establishing a global resistance network against
HM toxicity in the cell. Therefore, identification and characterization of the set of TFs able
to regulate HM stress will be of the utmost importance, in attempts to develop transgenic
microalgae with improved bioremediation potential [29,53].

Sexual reproduction, expression of metal-modifying enzymes, and phenotypic plas-
ticity are alternative mechanisms entertained by microalgae as survival tools against HM
toxicity [49]. For instance, transcriptomic analysis of Chlorella vulgaris, following exposure
to Cu cations, unfolded a marked increase in intracellular carotenoids and proline contents,
and in activity of such antioxidative enzymes as catalase, peroxidase, polyphenol oxidase,
and superoxide dismutase. Photosystem II (PSII) and CO2 assimilation are apparently
inhibited in microalgae, as a response to metal stress; a relative reduction in growth rate
and cell density has been reported for various species of microalgae upon exposure to high
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concentrations of Cu. A severe drop in protein levels, in parallel to an enhanced rate of
carbohydrate biosynthesis have been demonstrated in microalgae cells in the presence
of HMs [54,55]. The aforementioned coordinated response of microalgae cells to metal
toxicity is a result of crosstalk among different molecular networks, urged by the need
for keeping cellular hemostasis. Similar to other cellular functions, the key role played by
such signaling molecules as phytohormones, Ca itself, and kinases is worthy of further
research [29,56].

3. Genetic and Metabolic Engineering Tools for Microalgal Strain Improvement

Most microalgal molecular tools available so far have been developed for Chlamy-
domonas reinhardtii, as model microalga. However, the genomic DNA of several other
species of microalgae has meanwhile been sequenced; hence, there is an unprecedented
opportunity to manipulate microalgae cells in attempts to improve the efficiency of photo-
synthesis, carbon assimilation, and production of specific bioproducts—as well as biore-
mediation of HMs [57]. In fact, recent advances in genome sequencing and reconstruction,
gene targeting and transformation, bioinformatics, and multiomics technologies have sig-
nificantly facilitated the design and manipulation of metabolic pathways in microalgae [57].
Under a holistic systems approach, current gene technology permits relatively rapid and
straightforward reconstruction of microalgae genomes, by resorting to state-of-the-art
synthetic biology tools, meant to overcome putative biophysicochemical inadequacies of
the cell, when responding to a certain environmental condition, or in expressing a desired
phenotype [58].

The molecular toolkits developed for microalgal bioengineering include various gene
editing technologies of zinc-finger nucleases (ZFNs), transcription activator-like endonucle-
ases (TALENs), clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas
systems, Cre/loxP recombination systems, RNA interference (RNAi), and modular cloning
systems, as well as a long list of promoters, vectors, reporter genes, and regulatory el-
ements [59]. High-capacity gene stacking toolkits, e.g., Golden Gate Modular Cloning
(MoClo), have also been established for Nannochloropsis and Chlamydomonas strains, thus,
providing a library of molecular building blocks for the genetic engineering of microal-
gae cells [60,61]. The Characterization and design of microalgae-specific constitutive,
inducible, and synthetic promoters have also improved the flexibility and efficiency of
the bioengineering process [62,63]. These molecular tools can be employed to target any
desired DNA sequence for the generation of knockout, knockdown, or insertion mutants.
Modulation of the simultaneous expression of multiple genes, and creation of marker-
less and transgene-free knockout mutants are other novel capabilities endowed by recent
technological advancements in microalgal molecular cloning [64,65].

Through rational design, directed evolution, de novo design, and computational ap-
proaches, protein engineering will allow optimization of the protein function, or incorpora-
tion of novel functional treats; for instance, two or more domains from distinct proteins can
be combined in a fusion protein, expected to bear multiple functions, improved catalytic
properties, and higher stability [66]. Furthermore, machine learning is accelerating this
process through the mathematical prediction of sequence-to-function correlations, in a data-
driven manner—via learning from the properties of variants already characterized [67].

On the other hand, the information necessary to find the right genes for manipula-
tion in biological systems is now widely provided by multiomics approaches. Genomics,
transcriptomics, proteomics, metabolomics, and interactomics data, mined from many
microalgae strains and grown under various environmental conditions, convey a reli-
able overview of the patterns of genetic adaptation, molecular evolution, and dynamic
changes in microalgal metabolism [68–72]. Several online platforms, including ChlamyCys,
Greenhouse, Diatom EST database, Alga-PrAs, Cyan-Omics, Phytozome, Algal Functional
Annotation Tool, and Kyoto Encyclopedia of Genes and Genomes (KEGG), already offer
freely available omics data, produced from thousands of chromatography, mass spectrome-
try, nuclear magnetic resonance, and other omics-based experiments [73–75].
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Genome-scale reconstruction, based on flux balance analysis (FBA), and the mathe-
matical modeling of microalgal metabolic networks is a novel holistic approach for the
tailor-made design of cell factories aimed at maximum efficiency; it is already available
for some species of microalgae and has met with success in efforts to maximize hydrogen
productivity and light usage by C. reinhardtii [76,77]. Novel sequencing techniques based
on microarray technology and Illumina-based, de novo RNA sequencing—which require no
prior knowledge of gene sequences in the organism under scrutiny—offer a potent means to
the profile gene expression of microbial communities upon exposure to HMs [78–81]. Meta-
omics resorts, in turn, to novel sequencing and bioinformatic technologies to analyze the
whole biochemical information conveyed by a given environmental sample; for instance,
microbial communities in water samples from an abandoned mining site were analyzed
using this powerful approach, revealing several metal transporters, TFs, and enzymes
associated with the HM stress response by endogenous HM-tolerant cyanobacteria [82]. In
another example, a metagenomics analysis of the microbiota of a swine lagoon wastewater
by high-throughput sequencing unfolded successful removal of nitrogen and phosphorous
by Chlorella sp., as well as interesting pieces of information on the interaction of microbial
communities within that ecosystem, which have led to improvements in the phycoremedia-
tion efficiency of microalgae [83]. Therefore, meta-omics analysis provides a snapshot of
the response of a whole ecosystem to environmental changes and may ultimately provide a
collection of target genes, useful for the design of novel microalgae strains with desired
bioremediation capacities [84].

Despite the progress undergone by genetic tools to manipulate microalgae (see Table 1),
a gap still exists between our understanding of the cellular mechanisms adopted by mi-
croalgae to survive under toxic concentrations of HMs, and application of the existing
molecular tools to accordingly modify the cellular characteristics of given microalgal strains.
In fact, detailed and comprehensive knowledge on growth, structure, metabolism, and
functions in microalgae cells, upon exposure to metal stress, is a sine qua non to enable the
effective engineering of those cells toward applicability in bioremediation. Furthermore,
genome sequencing of newly discovered microalgal strains, as well as the establishment of
strain-specific molecular tools, is crucial for effective genetic manipulation of such strains.
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Table 1. Genetic and metabolic engineering tools available for microalgal strain improvement.

Genetic and Metabolic
Engineering Tools Type Specifics Advantages and Disadvantages

CRISPR/Cas systems Gene editing

A single guide RNA (sgRNA) drives the Cas protein to a
matching DNA sequence on the host cell genome—which is
degraded by Cas protein to create knockout and deletion
mutants; and replaced by a new gene to generate insertion
and knockdown mutants, with the aid of non-homologous,
end-joining machinery

Allows manipulation of any DNA sequences;
multiple mutations are possible; comparably more whole
genome data are required;
possibility of off-target events;
large size of Cas makes cell delivery challenging

ZFNs Gene editing

An array of site-specific DNA-binding domains that
recognizes two sequences flanking a specific site, attached to
the endonuclease domain of bacterial FokI restriction
enzyme; upon binding, FokI domains dimerize and cleave
DNA at the site, which will be repaired by the DNA repair
machinery of the cell

Comparably high probability of off-target events;
complicated programming is required;
limited possible genomic target sites;
only single mutations are possible

TALENs Gene editing

Tandem arrays with 10 to 30 repeats that bind and recognize
extended DNA sequences, attached to the endonuclease
domain of bacterial FokI restriction enzyme; upon binding,
FokI domains dimerize and cleave DNA at the site, which
will be repaired by the DNA repair machinery of the cell

Comparably high probability of off-target events;
complicated programming is required;
limited possible genomic target sites.
large TALENs hard to express or transfect into the cell;
only single mutations are possible

Cre/loxP recombination systems Gene editing
Two loxP sequences flanking the target gene interact with Cre
recombinase for insertion of a new gene fragment or deletion
of the one targeted

Simple and efficient;
allows multiple genome integration;
occasional off-target events are possible;
toxicity of Cre for Cre-expressing cells

Modular cloning systems Synthetic biology

Design and construction of expression vectors by providing a
library of genetic building blocks (e.g., promoters, UTRs,
terminators, tags, reporters, antibiotic resistance genes,
introns)

Simple and efficient;
high flexibility;
expression of multiple transgenes possible;
developed for limited range of species

RNAi technology Gene silencing

Small RNA molecules bind to target mRNAs to form
double-stranded RNAs, which are degraded by
RNA-induced silencing complex (RISC)—and cause
sequence-specific suppression of gene expression, through
translational or transcriptional repression

Simple and efficient;
occasional off-target effects;
produces hypomorphic phenotypes, which do not always
mirror the complete loss-of-function that often occurs with
genetic mutation;
nuclear transcripts—e.g., long non-coding RNAs or
lncRNAs, more difficult to effectively target
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Table 1. Cont.

Genetic and Metabolic
Engineering Tools Type Specifics Advantages and Disadvantages

Multiomics technologies Omics
Analysis of whole-cell biochemical information of cell
through genomics, transcriptomics, proteomics,
metabolomics, interactomics, phenomics, meta-omics, etc.

Provide snapshot of response of cell or whole ecosystem to
environmental changes;
improves data comparability;
time-consuming;
high cost;
sophisticated, expensive equipment required

Online databases Bioinformatics Integrated online platforms e.g., ChlamyCys, Greenhouse,
Diatom EST database, Alga-PrAs, Cyan-Omics, and KEGG

Functional interpretation of genes and elucidation of their
underlying biological themes via integrated annotation and
expression data;
freely available

Flux balance analysis Systems

All relevant metabolic information of an organism (e.g.,
genes, enzymes, reactions) are collected, and analyzed with
the aid of a mathematical model within the perspective of the
entire network, and applied to make predictions and genome
reconstruction

Allows tailor-made design of cell factories aimed at
maximum efficiency;
time-consuming;
still in its infancy

Illumina microarray technology Sequencing

Tiny silica microbeads are housed in carefully etched
microwells, and coated with multiple copies of an
oligonucleotide probe targeting a specific DNA or RNA
sequence; upon excitation by laser, binding of each probe to a
complementary sequence in sample results in signal that
conveys information to the detector

Fast and robust;
no prior knowledge of gene sequences required; potent
means for gene sequence and expression analysis;
high cost
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4. Genetic Engineering Targets to Improve Microalgal HM Bioremediation Capacity
4.1. Metal Transportation

As specialized gates in the cell membrane, metal transporters play an nuclear role in
maintaining intracellular micronutrient homeostasis, by controlling the flux of metals in
and out of the cell and organelles, while retaining the relative osmotic balance between
the two membrane sides [85]. At least eleven unique gene families in the genome of
microalgae have been characterized that encode metal transporters, and which exhibit a
surprising similarity to those of yeasts, while a few transporter families are shared with
plants, animals, or bacteria [24,44,86].

In C. reinhardtii, metal transporters have been classified into two main groups. Group
A transporters, including natural resistance-associated macrophage proteins (NRAMP),
zinc-regulated transporters (ZRT), iron-regulated transporters (IRT), Zrt-Irt-like proteins
(ZIP), and Fe- (FTR) and Cu-transporter (CTR) families, ensure metal trafficking from the
extracellular environment to the cytosol (as HM uptake), and from the cytosol into the
vacuoles (as HM storage) [87]. Conversely, group B transporters, including members of the
families of cation diffusion facilitators (CDF), P1B-type ATPases, FerroPortiN (FPN) and
the Ca2+-sensitive cross-complementer1/Vacuolar iron transporter1 (Ccc1/VIT1), reduce
cytosolic metal concentration via active efflux of metal ions and organometallic complexes
into the extracellular surroundings, should metal concentrations exceed cellular require-
ments [12]. NRAMP transporters utilize the transmembrane proton gradient to mediate
the transport of divalent cations to the cytoplasm [88]. Overexpression of NRAMP1 was re-
ported in Auxenochlorella protothecoides under a high concentration of Cd in the medium [89].
Similarly, the upregulation of gene encoding NRAMP1, ZIP, and CTR transporters in
Dunaliella acidophila was reported to improve Cd uptake [90]. DMT1, a divalent metal
transporter from the NRAMP family, has been characterized as a key transporter of Mn,
Fe, Cd, and Cu, across the cell membrane of C. reinhardtii and several other species [88,91].
The role of ZIP transporter genes in uptaking and sequestering Cd and Hg has also been
demonstrated in C. reinhardtii [89,92]. Furthermore, genes that code for phosphate trans-
porters (PTA) and aquaglycoporin (AQP) have been observed to increase As uptake in
Chlamydomonas eustigma and Microcystis aeruginosa [93,94].

Despite their great potential, very few attempts have been made to improve HM
phycoremediation through metal transporter engineering. Ibuot et al. [95] overexpressed
CrMTP4, a metal-tolerant protein (MTP) from the Mn-CDF clade of cation diffusion facil-
itator family of metal transporters, in C. reinhardtii; marked increases in resistance to Cd
toxicity, and in bioaccumulation efficiency due to increased transfer to and storage of Cd in
acidic vacuoles were found. However, those authors emphasized that said single genetic
modification failed to increase HM bioremediation capacity of the transformants over that
of three wild-type, wastewater-adapted microalgae, viz. Chlorella luteoviridis, Parachlorella
hussii, and Parachlorella kessleri. Further analysis revealed that the unique performance of
the latter is due to higher antioxidant activities, including increased ascorbate peroxidase
and carotenoid accumulation, as well as higher abundance and activity of other metal
transporters [95,96]. Among five MTPs found in the genome of C. reinhardtii, MTP1 is
believed to be localized in the vacuolar membranes—where it plays a crucial role in Zn
homeostasis and Cd detoxification [87].

P1B-type ATPases—also known as heavy metal ATPases (HMAs)—are a class of metal
transporters present across all taxa, including higher plants and macroalgae; HMAs play
a critical role in metal trafficking across cell membranes [97,98]. Ibuot et al. [95] heterolo-
gously overexpressed AtHMA4—a plant Cd and Zn transporter from Arabidopsis thalian—in
C. reinhardtii, and recorded increases in uptake and bioaccumulation of Cd and Zn by the
transformed microalga. By overexpressing AtHMA4, either as a full-length protein or only
as its C-terminal tail, they additionally showed that the reported increase was primarily
the result of enhanced metal binding, rather than metal transport [99]. Similar results
were attained following the heterologous expression of AtHMA4 in yeasts [100,101]. The
cytosolic C-terminus of this protein contains a number of di-cysteine and histidine residues
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that mediate the high-affinity binding of Zn and Cd ions [102,103]. Ramírez-Rodríguez et al.
overexpressed an arsenic hyperaccumulator, Acr3, which was localized in the vacuolar
membrane; it acts as an efflux pump, and leads to a 1.5- to 3-fold increase in As removal
capacity, as compared to wild type [104]. Furthermore, two highly conserved vacuolar
proton pumps—vacuolar proton-ATPase (V-ATPase) and vacuolar proton pyrophosphatase
(V-PPase)—generate the energy necessary to transport most solutes into the vacuoles [10].
Inhibition of V-ATPase activity by bafilomycin A1 (BFA1) in the diatom Phaeodactylum
tricornutum caused upregulation of the genes involved in Ca signaling, sulfur metabolism,
cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism, and
lipid catabolism, as well as downregulation of the genes involved in ion transmembrane
transport, ubiquitin-mediated proteolysis, SNARE interactions in vesicular transport, and
fatty acid biosynthesis [105]. Moreover, expression of a universally expressible plasma
membrane H+-ATPase (PMA) in C. reinhardtii led to a 3.2-fold increase in photoautotrophic
production, under the high CO2 concentrations of (toxic) flue gas; this piece of evidence
further highlighted the great potential of efflux pumps in microalgal bioengineering [106].

Given the requirement for such thiols and thiol-containing compounds as GSH and
PCs, posed by cellular defense against HM toxicity, sulfur metabolism plays an imperative
role in microalgal HM mitigation. The upregulation of biotin biosynthesis genes, which
are involved in sulfur metabolism, and S-transporter genes was reported in C. reinhardtii
when exposed to Hg2+ [92]. Genes involved in S-assimilation pathways, including those
encoding methionine synthase (mete) and sulfite reductase (sir1), were also found to un-
dergo upregulation in C. reinhardtii under HM stress. Additionally, overexpression of
amino acid transporter genes in C. reinhardtii has been linked to an increase in Cd detoxi-
fication [107]. Other known HM transporters, well-characterized in plants but less so in
microalgae, include multidrug resistance-associated proteins (MRP), ABC transporters of
mitochondrion (ATM), pleiotropic drug resistance (PDR) transporters, yellow-stripe-like
(YSL) transporters, and Ca2+ cation antiporters (CAX) [53].

Proteomic analysis of high HM tolerance and accumulation in Euglena gracilis unfolded
a significant increase in expression of the major facilitator superfamily (MFS) transporters,
cadmium/zinc-transporting ATPase, and HM transporting P1B-ATPase, as well as metal-
binding, thiol-rich proteins, following HM exposure. A major MFS transporter involved
in HM compartmentalization in cellular organelles experienced a 5.5-fold increase in
expression level upon presence of HMs in the medium. Two P1B-ATPases, HMA2 and
HMA3, known for their role in HM efflux, in and out of the cell and vacuoles, respectively,
were also upregulated by ca. 3.6-fold, and further claimed to be key mediators of metal
homeostasis in HM-exposed microalgae. In addition, a transmembrane TrkA transporter,
involved in potassium transport and sodium/sulfate symport, showed a 6.5-fold increased
expression once exposed to HM [108].

The feasibility of expressing bacterial metal transporters in plants has been widely
demonstrated [109,110]; this approach also appears to be feasible in attempts to increase
phycoremediation capacity in microalgae. Heterologous overexpression of metal ion/H+

antiporters CAX2 and CAX4, from A. thaliana in Nicotiana tabacum, increased uptake and
sequestration of Cd, Zn, and Mn by 70–80% in transgenic plants, as compared to wild
type [111,112]. Similar results were reported when a vacuolar ZAT Zn transporter from
animal origin was overexpressed in A. thaliana [113]. Such ABC transporters as MRP2 were
shown to be significantly upregulated; they increased HM uptake and sequestration in the
vacuoles of C. reinhardtii and D. acidophila cells [92,114,115]. An ABC-type YCF1 transporter
has been identified in yeasts and plants as a vector for transport of cytosolic GSH-complexed
Cd into vacuoles [116]. Heterologous expression of the YCF1 gene in A. thaliana yielded
transgenic plants with increased Cd and Pb tolerance [117]. In another study, the human
multidrug resistance-associated protein (hMRP1) gene—encoding an ABC-type multidrug
resistance-associated transporter—was overexpressed in N. tabacum; the transformants
exhibited higher tolerance against Cd when compared to wild type. Notably, hMRP1
is a well-known protein involved in the multidrug resistance of cancer cells, where it
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performs an efficient efflux of a wide range of cytotoxic compounds, including HMs [118].
Endogenous ABC transporters from the MRP subclass have also been characterized in
microalgae as key mediators of metal homeostasis. Among seven MRPs identified in the
genome of C. reinhardtii, four are glutathione S-conjugate pumps present in the vacuolar
membrane, and able to transport metal-GSH complexes into the vacuoles [85].

ATM/HMT are half-size ATP-binding cassette transporters, and located either in the
vacuolar membrane or the mitochondrial membrane of microalgae; among them, Cds1 is
known to play an important role in Cd tolerance, by facilitating export of Cd from mito-
chondria [87]. HMT1 was characterized in Saccharomyces pombe to be a vacuolar transporter
capable of internalizing HM-MT complexes in the yeast vacuole [119,120]. Furthermore,
ATM/HMT2 and ATM/HMT3 are localized in the mitochondrial and vacuolar membranes,
respectively, where they mediate sequestration of Cd-phytochelatin complexes [29].

Despite the major efforts presented above, many microalgal and plant HM trans-
porters remain to be identified at molecular level, and characterized in terms of localization,
transport features, and specificity. Studies in this regard are, thus, crucial for a deeper under-
standing of the pathways followed by HM trafficking and accumulation in microalgae [1].

4.2. Metal Chelation

Extensive evidence pertaining to microalgae under metal stress confirms the overex-
pression of a number of metal-binding organic molecules, as a key strategy elected thereby
to reduce the toxic effects of HMs, and handle them in the form of a chelated complex,
toward storage in the organelles or plasma membrane. By sharing their free electrons
and binding in a chelation process, HMs have their extreme reactivity confined, so the
associated cell oxidative stress is minimized [5].

MTs are a group of genetically-encoded (class I and II), or enzymatically-synthesized
(class III), polypeptides, ubiquitously found in living organisms and playing an important
role in metal homeostasis and trafficking [121,122]. They contain a few aromatic residues
(<10%), but a high proportion (15–35%) of cysteine and, to a lesser extent, histidine residues;
such structure accounts for the high metal-binding capacity of MTs [123,124]. The high
variability observed in the amino acid sequence of MTs—even among closely related
organisms—implies a previous active evolutionary change, responsive to environmental
conditions and cellular signals [5].

Class I MTs consist of two smaller Cys-rich domains, and a large spacer region in
between. Class II MTs are low-molecular-weight (6–7 kDa) proteins, possessing three
Cys-rich domains, separated by 10–15 residues; they are located in the cytosol, and mainly
involved in the control of intracellular concentrations of metals at regular levels. Class III
MTs—also known as phytochelatins (PCs)—are enzymatically synthesized thiol-containing
oligopeptides; they are typically composed of three amino acid residues, viz. γ-Glu, Cys,
and Gly [125].

The biosynthesis pathway of PCs starts with the formation of γ-glutamylcysteine
from cysteine and glutamic acid, catalyzed by glutamate–cysteine ligase (also referred
to as glutamylcysteine synthetase). Glutamylcysteine is next ligated with glycine by
GSH synthetase, thus, forming GSH, which acts as the main redox buffer in eukaryotic
cells, meant to protect them against oxidative and metal stresses. While GSH is able to
chelate metallic cations through the thiol group of the side chain of Cys, it can also attach
to other γ-glutamylcysteine units aided by phytochelatin synthases to eventually form
PCs [126,127]. Enhanced activity of the enzymes involved in phytochelatin biosynthesis,
along with a marked increase in the supply of GSH and PCs upon exposure to HMs, have
been well-documented for several microalgae species [128–137]. Two GSH biosynthesis
enzymes, γ-glutamylcysteine synthetase (encoded by gshI) and glutathione synthetase
(encoded by gshII) from E. coli, were overexpressed in Brassica juncea; this manipulation
led to a 25% increase in Cd uptake in transgenic plants versus wild type [138]. Recently,
overexpression of a synthetic gene (gshA) encoding for γ-glutamylcysteine synthetase
was shown to significantly increase Cd tolerance of C. reinhardtii [138,139]. Furthermore,
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the CrGNAT gene, encoding an acetyltransferase involved in histone methylation and
chromatin remodeling, was overexpressed in C. reinhardtii; under toxic concentrations of
Cu, a marked increase in cell population, chlorophyll accumulation, and photosynthesis
efficiency was observed compared to wild type, while CrGNAT knockdown lines with
antisense exhibited sensitivity to Cu stress. Further analyses revealed that acetyltransferase
may play a key role in inducing the accumulation of GSH, MTs, and PCs in microalgae [140].
In one study, phytochelatin synthetase from wheat was overexpressed in tobacco and
the transgenic plants were able to produce 100-fold biomass in HM-contaminated soils,
when compared to hyperaccumulator Thlaspi caerulescens [141]. Increased expression of
phytochelatin synthase was found to improve cellular tolerance to heat, salt, carbofuran,
and UV stresses [142]. Additionally, it was suggested that targeting phytochelatin synthase,
to such a specific organelle as the chloroplast, induces sensitivity, and to the cytosol induces
tolerance against As stress [143].

While the structure and function of plant MTs have been thoroughly
investigated [47,144,145], similar reports on microalgal MTs—with the notable exception
of ciliates [146,147]—are scarce [5,49,125,148]. Cai et al. [149] authored the first report on
the heterologous expression of MTs in microalgae; overexpression of a chicken MT-II in
cell wall-deficient mutants of C. reinhardtii increased tolerance to Cd, and enhanced seques-
tration thereof by about two-fold in the transgenic microalgae. In another study, a fusion
protein composed of low CO2-induced plasma membrane protein and MT-II polymer
was expressed in Chlamydomonas sp., which led to a five-fold increase in Cd uptake by
transformants relative to wild type [24]. These authors also evaluated the metal recovery
capacity of transgenic microalgae, retrieved from contaminated sediments, using in situ
sonication, and found that it was twice that of its wild counterpart [150]. Proteomic analy-
sis of the effect of exposure to HM upon E. gracilis unfolded several proteins possessing
metabolic roles that contribute to the microalgal response to HM stress. These included
glutathione synthetase (with 14-fold increase), γ-glutamylcysteine synthetase (2.5-fold in-
crease), cysteine desulfurase (ca. 2-fold increase), glutathione transferase (2.6-fold increase),
mitogen-activated protein kinases (4.5-fold increase), heat shock proteins and chaperones
(up to 11-fold increase), sulfate transporter ThiS (2.8-fold increase), leucine-rich repeat
extensin-like protein, involved in cell wall biosynthesis (15-fold increase), and various
antioxidant enzymes.

Among 98 different types of metal-binding proteins with increased expression, when
exposed to HM, MTs were surprisingly not detected in E. gracilis cells [108]. The heterolo-
gous expression of phytochelatin synthase (OAS-TL or PCS) from A. thaliana in Mesorhizo-
bium huakuii, increased Cd accumulation in this transgenic bacteria by 25-fold [109]. In an-
other study, the constitutive overexpression of cysteine synthase (encoded by Atcys-3A) in
A. thaliana, increased cellular cysteine and GSH levels, and the transformants accumulated
72% more metal compared to wild type [151]. Phytochelatin synthase from Spinacia oleracea
was likewise overexpressed in N. tabacum; the transgenic plants exhibited a significant
improvement in both Cd and Ni tolerance and accumulated HMs 2.8-fold compared to
wild type [152].

O-acetyl-l-serine is known to be a substrate for OAS-TL, and one of the precursors in
GSH biosynthesis; it is produced by reaction between l-serine and acetyl-CoA, catalyzed by
serine-O-acetyltransferase (SAT). Overexpression of mitochondrial SAT of Thlaspi goesin-
gense induced GSH accumulation in leaves of A. thaliana, and also increased tolerance to
several HMs [153]. Furthermore, adenosine phosphosulfate from A. thaliana was over-
expressed in B. juncea seedlings; the corresponding transformants displayed a two-fold
increase in GSH content, and a substantial increase in tolerance to, and accumulation of,
several HMs [154].

MT genes have also been reported in Synechococcus, as well as in seven other blue-green
microalga strains [30]. It has been suggested that oligopeptide chain length and cysteine
residue distribution determine the capacity of MTs and their host cells for HM binding
and remediation. Some microalgae strains, bearing higher HM tolerance, appear indeed
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to synthesize MTs with longer chain length and more frequent cysteine residues. This
realization may be taken advantage of to engineer microalgae with improved HM removal
capacity, via heterologous expression of enzymes for synthesis of long cysteine-rich MTs,
from hyper-tolerant species, in some transgenic strains [155,156].

Orthophosphate polymers—also known as polyphosphates (polyP)—have been impli-
cated with accumulation of HMs in both prokaryotic and eukaryotic organisms [157,158].
Biosynthesis of polyP in microalgae is regulated by the activity of exopolyphosphatase, or
else through compartmentalization mechanisms, mainly with the contribution of acido-
calcisome membrane transporters [159]. The functions performed by polyP in microalgae
include cycling phosphorus in the ocean, acting as a phosphorus reservoir in the cell, and
providing cellular defense against nutrient, osmotic, thermal, and HM stresses [159,160].
Consequently, polyP formation facilitates HM sequestration and storage and may regulate
chelation and compartmentalization of such toxic ions [44,161]. PolyP synthesis in prokary-
otes is catalyzed chiefly by (reversible) ATP-specific kinases, PPK1 and PPK2, using GTP
as a substrate [162]. Overexpression of PPK1 in cyanobacterium Synechococcus doubled
its polyP content [163]. Most genes and proteins associated with polyP biosynthesis in
eukaryotes remain unknown, while overexpression of prokaryotic PPK1 was found toxic
for yeast and plant cells [164,165]. Instead of PPK, the vacuolar transporter chaperone
(VTC) complex appears to be responsible for polyP synthesis in Chlamydomonas, whereas
exopolyphosphatases (PPX) are the key enzymes responsible for its degradation [166]. The
important role played by polyP in microalgal HM sequestration justifies examining how
genetic engineering will affect the (characterized) genes; identification of other genes and
enzymes associated with polyP metabolism might allow effective manipulation of said key
cellular component for bioremediation purposes. It must be noted, however, that changes
in phosphorous level—as one of the most critical nutrients in microalga cultivation—may
have unpredictable and disturbing effects upon P homeostasis in the cell.

Amino acids are known to function as major players in cellular defense against metal
and oxidative stress. Under toxic levels of Cd and limitation of N, C. vulgaris increased
its ability to accumulate ketogenic and glucogenic amino acids, as well as such metal-
binding amino acids as proline, histidine, and glutamine [167]. Proline behaves as a
signaling molecule; its metabolic roles include regulation of intracellular osmotic pressure,
prevention of protein denaturation, maintenance of membrane integrity, stabilization of
enzymes, and quenching of toxic ROS, under various biotic and abiotic stress conditions,
in both plants and microalgae. Furthermore, Pro accumulated in the cytosol contributes to
alleviate metal stress via chelation of HMs and regulation of water potential [168–170].

A mothbean pyrroline-5-carboxylate synthase (P5CS), and a fusion protein composed
of chicken MT-II and a plasma membrane protein were separately overexpressed in C. rein-
hardtii. The MT-expressing microalgae showed significantly enhanced tolerance to toxic
concentrations of Cd; and its Cd-binding capacity increased by 2- to 5-fold compared to
wild type. Furthermore, the P5CS-expressing microalgae produced 80% more free Pro and
showed a 4-fold increase in its Cd-binding capacity. Proline was accordingly claimed to
contribute to HM tolerance by enhancing GSH and PC biosynthesis, as well as reducing
free radical damage, via physical quenching of oxygen singlets and chemical reaction with
hydroxyl radicals [171].

On the other hand, N. tabacum transformants, expressing a fragment of proline dehy-
drogenase gene (in antisense orientation) from Arabidopsis, exhibited higher Pro content,
and elevated osmotic pressure and salinity resistance, besides higher tolerance to Pb, Ni,
and Cd [172]; similar results have been reported for other amino acids. Overexpression
of the HISN3 gene—encoding phosphoribosylformimino-5-aminoimidazole carboxamide
ribonucleotide isomerase—induced a moderate increase in His accumulation, and sig-
nificantly enhanced Ni tolerance in transgenic C. reinhardtii compared to wild type [173].
Similarly, C. reinhardtii cells were transformed with the HAL2 gene, which regulates syn-
thesis of Cys, leading to a five-fold increase in metal binding capacity of the transgenic
microalgae [24]. Another amino acid osmolyte, glycine-betaine, was also shown to be
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overproduced by upregulation of serine decarboxylase (SDC1) in C. reinhardtii cells, under
Cd stress [107].

As previously mentioned, such organic acids as oxalic, citric, tartaric, malonic, and
malic can also chelate HMs; this complexation tends to occur in vacuoles, where acidic
pH favors cleavage of HM-MT and formation of HM-organic acid complexes [10,174,175].
Aside from the intracellular presence of metal-binding organic compounds, evidence shows
that these molecules may also be released by microalgae into their extracellular environment
in response to stress [22,26,176,177]. Therefore, biotechnological approaches appear feasible
to increase microalgal accumulation or release of such organic metabolites, with the goal of
improving HM phycoremediation thereby.

4.3. Metal Biotransformation

Xenobiotic or endobiotic chemicals in a cell are metabolized to fewer toxic products by
resorting to biotransformation. The detoxification pathways of HMs in microalgae consist
of several enzymatic reactions, developed ab initio by the cell to reduce their toxic nature,
by confining the metal ions to organic structures, where their oxidative potential is severely
constrained [35].

In C. vulgaris, a chromate reductase (ChrR) has been characterized that converts Cr(VI)
to Cr(III), via an enzymatic reaction, involving oxidation of GSH, which confers a high
tolerance against Cr toxicity [178,179]. Two bacterial genes, gsh1 and arsC (arsenate reduc-
tase) were overexpressed in A. thaliana, thus, resulting in transgenes bearing significantly
higher tolerance to As(V) than wild type [180]. Moreover, an arsenate reductase (CrACR2s),
found in C. reinhardtii, was shown to reduce arsenate to (less toxic) arsenite, with the extra
electrons transferred to glutaredoxin [181]. In several microalgal strains, arsenic is bio-
transformed through various mechanisms—the most common being reduction of As(V) to
As(III)—complemented by methylation of As(III) to monomethylarsonate (MMA), brought
about by oxidase and S-adenosylmethionine (SAM), followed by conversion of MMA(V)
to dimethylarsinate (DMA(V)), which is further reduced to DMA(III). Finally, DMA(III) is
converted to a range of organoarsenicals, e.g., arsenolipids, arsenosugars, arsenobetaine,
and arsenoribosides [182–186]. By the same token, the expression of mercuric reductase
permits biotransformation of Hg2+ to elemental Hg and metacinnabar (β-HgS), in strains
of microalgae Selenastrum minutum, Chlorella fusca, and Galdiera sulphuraria [187].

In attempts to improve the ability of Chlorella spp. DT to detoxify mercury, a bacte-
rial mercuric reductase (merA) gene from Bacillus megaterium was overexpressed in this
microalga; the resulting transformants exhibited a two-fold increase in Hg2+ bioremoval
capacity compared to wild type [188]. The applicability of this method had been previously
demonstrated in various plants, when enhancing their tolerance against mercury. Concur-
rent expression of both merA and merB genes, codon optimization, and targeting of MerB
(organomercurial lyase) to the endoplasmic reticulum (ER), also proved effective to increase
Hg2+ and R-Hg+ biotransformation in transgenic plants, by up to 10-fold [189–198]. Addi-
tionally, integration of the aforementioned two genes in the chloroplast genome of tobacco
significantly expanded tolerance to phenylmercuric acetate and extent of mercury bioaccu-
mulation in the transgenic plants [199,200]. Organomercurial lyase mediates the protonol-
ysis of organic mercury to Hg2+, while mercuric reductase reduces Hg2+ to Hg0; hence,
overexpression of cytosolic MerA and ER-located MerB, using (microalgae-specific) codon
optimized genes might prove an effective approach to improve the HM-biotransformation
capacity of microalgae [201]. Remember that the Mer operon also possesses the coding
genes for three inner membrane transporters (MerC, MerT, and MerF), involved in the
transport of mercury into the cytosol; periplasmic MerP is responsible for funneling metal
ions (preferably ionic mercury) to those inner membrane metal transporters [202]. There-
fore, expression of MerP, or a fusion of MerC/T/F to a metal chelator (as membrane-bound
Hg2+ trap) will putatively improve the ability of the microalgae to bioremove mercury [201].
Given the environmental concerns over excessive release of Hg0, as volatile metabolites,
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into the atmosphere by such engineered species, it might be safer to sequester ionic mercury
inside the cell via binding to a chelating molecule.

Another interesting strategy for HM bioremediation would be targeting the afore-
mentioned mercury translocators to the chloroplast inner envelope membrane, allowing
accumulation of HM in the chloroplast; however, toxic effects of such modification upon the
photosynthetic apparatus and other vital structures of the chloroplast are to be evaluated
in advance [203].

Misincorporation of selenocysteine (SeCys) and selenomethionine (SeMet) into pro-
teins accounts for a biologically unfavorable effect of Se when present at toxic levels. Con-
version of said compounds to non-protein amino acid methylselenocysteine (MetSeCys)
by selenocysteine methyltransferase (SMT) has been described in Se-hyperaccumulating
plants [204]. SMT was overexpressed in A. thaliana and B. juncea, and the transformants
showed substantially increased levels of Se tolerance compared to wild type [205,206]; a sim-
ilar strategy may potentially be employed to improve Se phycovolatilization in microalgae.

Cytochromes-P450 (CYPs) are as well recognized for their role in the enzymatic
biotransformation of toxic molecules. A CYP-like protein from rice was heterologously
expressed in A. thaliana and the transgenic plants exhibited significant tolerance against
abiotic stresses, including toxic levels of HMs. This underlying gene was reported to help
plant cells fight environmental stress by modulating auxin metabolism, defense mecha-
nisms, hypocotyls growth, stomatal movement, cell elongation, cytokinesis, apoptosis, and
light response. The improved tolerance and bioaccumulation of As and Cr were more
specifically attributed to phosphate transporters and/or ABCC transporters, following
qRT-PCR analysis of differential gene expression patterns, between transgenic and wild-
type lines [207]. Other HM volatilization mechanisms described in microalgae include a
photoreduction pathway, found in C. vulgaris, for the biotransformation of Cr [208], intra-
cellular and extracellular biosyntheses of metal nanoparticles, and reductive interactions
with functional groups of biomolecules in- and outside the cell [40,209–211]. Despite the
improved efficiency and wide range of applications that HM-volatizing genes and proteins
might offer to the phycoremediation process, the underlying pathways for biotransforma-
tion of HMs in microalgae (and plants) remain mostly unknown and, thus, still require
extensive in-depth research.

4.4. Oxidative Stress Response Regulation

HMs induce the generation of superoxide radical (O2−), hydrogen peroxide (H2O2),
hydroxyl radical (HO−), and singlet oxygen (1O2)—collectively known as ROS [96]. These
free radicals interact with biologically active compounds, and eventually damage molec-
ular and cellular structures, including transporters, enzymes, structural proteins, and
membrane lipids.

The physiological, biochemical, and gene expression characteristics of C. reinhardtii
were evaluated under toxic concentrations of Cu; inhibition of cell growth and photosynthe-
sis, variation of total chlorophyll content, and marked increase in lipid peroxidation were
accordingly observed [212]. Similarly, transcriptional analysis of D. salina and C. reinhardtii,
exposed to Cd and Pb, respectively, revealed that the encoding genes of several antioxidant
enzymes were upregulated in microalga cells subjected to HM stress [114,213]. Along with
upregulation of antioxidant enzymes, the overexpression of thioredoxin (Trx), heat shock
proteins (HSPs), and carotenoids was documented in A. protothecoides, C. vulgaris, and
C. reinhardtii cells, in response to toxic levels of HMs [54,80,107]. A similar analysis on
Amphora coffeaeformis, Navicula salinicola, and D. salina under HM stress unfolded a marked
increase in antioxidant defense-related genes, a response shared by all three species of
microalgae [214].

Further to metal chelation and phycovolatization, microalgae have developed a num-
ber of strategies to reduce the oxidative stress imposed by HMs. Well-known enzymatic
antioxidants, e.g., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), guaiacol
peroxidase (GPX), and glutathione-S-transferase (GST), actively convert superoxide radicals
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to hydrogen peroxide, and subsequently to water and oxygen, while such non-enzymatic
antioxidants as Pro, ascorbic acid, and GSH may directly quench ROS via complexa-
tion [1,50,96]. Gene expression analysis of C. reinhardtii, under toxic concentrations of
HMs, indicated that glutathione peroxidase plays a crucial role in oxidative defense, for
protecting the thylakoid membranes from oxidative stress. This cytosolic enzyme, which
catalyzes formation of a thiol bond between two GSH molecules and reduces peroxide
radicals to their corresponding alcohols and oxygen, emerges as an interesting candidate
for strain improvement purposes [215].

As part of an indirect mechanism, heat shock proteins (HSPs) act as molecular chaper-
ones to protect and repair proteins under HM stress [216–219]. HSPs are highly conserved
among microalgae and other organisms, and involved in transport, folding, unfolding,
assembly, and disassembly of proteins, as well as degradation of misfolded or aggre-
gated proteins. The role of HSPs, including HSP20, HSP70, and HSP100, in mitigating
protein denaturation was illustrated in green microalga Tetraselmis suecica, following HM
stress [220]. Therefore, improvement of the reducing potential, and consequently phycore-
mediation capacity, appears possible by genetically inducing overproduction of enzymatic
and non-enzymatic antioxidants in the microalga cells.

4.5. Metal Stress Response Regulation

Cellular response to HM stress, and consequent detoxification mechanisms, are mainly
regulated by key components in the metal regulatory network held by microalgae. Several
regulatory molecules contribute in the control of the HM-detoxifying factors, via genome-
wide changes in gene expression; this leads the cell, in turn, toward a particular biochemical
state that minimizes the adverse effects of HMs. The role of TFs, phytohormones, and
miRNAs will be discussed below, for being the master regulators of metal stress response
in microalgae.

TFs are DNA-binding proteins, which interact with enhancer or promoter sequences
of a cluster of genes, to regulate their transcript levels in the cell [221]. Metal response
element (MRE)-binding transcription factor-1 (MTF-1) is the main metal-sensing TF found
in eukaryotes. Zn binding to its zinc finger domain reversibly and directly activates the
DNA-binding activity of MTF-1. The activated MTF-1 is then transported to the nucleus,
and assists histone acetyltransferase p300 in binding specific promoters, so as to induce or
repress transcription [222]. Aside from high intracellular concentrations of Zn, MTF-1 can
be indirectly activated by Cd or Cu, as a result of the oxidative stress triggered by HMs.
The genes upregulated by MTF-1, including Znt1 and Znt2 (zinc efflux transporters) [223],
Zip10 (zinc influx transporter), Gclc (glutamate-cysteine ligase catalytic subunit), Ndrg1 (N-
myc downstream regulated 1), Sepw1 (GSH-binding selenoprotein), TXNRD2 (thioredoxin
reductase 2), FPN1 (FerroPortiN 1), and Csrp1 (cysteine- and glycine-rich protein 1), have
all been reported to contain multiple copies of MRE motif 5′-TGCRCNC-3′ in their UTR;
hence, the latter seems to be an MTF-1-binding cis-regulatory element [224]. Furthermore,
it was demonstrated that MTF-1-dependent activation of MT gene promoters requires the
presence of zinc-saturated MTs in a cell-free transcription system, whereas thionein (the
metal-free form of MT) inhibits activation of MTF-1 [225].

In line with previous studies on metal stress-specific TFs in plants and microalgae, it
appears that some of these regulatory proteins, including C2H2, AP2, MYB, bHLH, and
YABBY, are part of the mechanism of tolerance to HM stress; this occurs due to enhancement
in activity of enzymatic antioxidants, increase in production of malondialdehyde (MDA),
and sequestration of HMs. On the other hand, bZIP, SBP, and HB TFs have been found to
play regulatory roles in the uptake and accumulation of HMs [226]. Transgenic tobacco
and petunia plants, expressing RsMYB1 TF, which controls regulation of anthocyanin, were
found as more stress-tolerant than the wild type under toxic levels of Cd. Gene expression
analysis revealed that RsMYB1 overexpression led to increased expression of genes associ-
ated with metal detoxification (GST and phytochelatin synthase) and antioxidant activity
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(SOD, CAT and POX), thus, contributing to significantly boost cellular defense in plants
against abiotic stress [227].

WRKY13 was claimed as another metal stress-related TF in A. thaliana, where it acti-
vates transcription of PDR8, an ABC transporter involved in Cd extrusion. Overexpression
of WRKY13 led to a decrease in Cd accumulation and enhancement in Cd tolerance of
transgenic plants, whereas WRKY13 loss-of-function mutants exhibited increased accu-
mulation of Cd and sensitivity thereto [228]. Hence, such putative TFs as WRKY13, or
such transporters as PDR8, involved in the regulation of HM extrusion, could allow for the
design of transgenic microalga cells with lower metal extrusion ability and enhanced HM
accumulation. Note, however, that the cellular stress conferred by the resulting hyperac-
cumulation of HMs must be balanced, in parallel with overproduction of components of
metal detoxification mechanisms (e.g., metal chelators and vacuolar metal transporters) in
transgenic microalgae.

Recently, a copper response regulator (CRR1) was claimed to be a TF that controls
expression of over 60 genes in Chlamydomonas spp., including those associated with accu-
mulation of plastocyanin and cytochrome c6, as well as Cu homeostasis. CRR1 is activated
in response to Cu deficiency and, thus, induces the expression of several metal transporters
and redox enzymes, which may increase Cu uptake, while protecting microalgae against
subsequent stress [229]. SbMYB15 has also been reported as a MYB TF, with a potential
role toward HM tolerance. While the transcript level of SbMYB15 increased by over 5-fold
in Salicornia brachiata when in the presence of Cd and Ni, the constitutive overexpression of
this TF increased growth and chlorophyll content in transgenic tobacco under toxic levels
of HMs. The SbMYB15-overexpressing plants also exhibited low uptake of heavy metal
ions and increased antioxidative activity compared to wild type [230].

Zhang et al. [231] reported that the basic region/Leu zipper TF, abscisic acid-insensitive5
(ABI5) is involved in ABA-repressed Cd accumulation in A. thaliana. Through physical
interaction, ABI5 activates (the previously uncharacterized) MYB49 TF, which, in turn, up-
regulates bHLH38 and bHLH101 TFs; this leads to activation of iron-regulated transporter1
(IRT1) and two heavy metal-associated isoprenylated proteins, thus, increasing Cd uptake
and accumulation. It was also reported that overexpression of MYB49 TF enhanced Cd
tolerance in plant cells, while its disruption reduced the Cd bioremediation capacity of
mutant cells. In a microarray analysis of 85 bHLH coding genes in Cicer arietinum, subjected
to Cd and Cr stress, Yadav et al. [232] reported 10 hub genes from the bHLH family of TFs
able to play potentially significant roles in regulating HM stress response. Heterologous
overexpression of the OBP3-responsive gene GmORG3—a bHLH TF (ORG)—increased Cd
tolerance and stabilized Fe homeostasis in transgenic soybean and tobacco, by specifically
reducing phytotoxic effects induced by Cd stress and Fe deficiency [233].

In another study, the main downstream responses of C. reinhardtii to Pb toxicity were
analyzed, and 20 putative TF genes associated to Pb tolerance, including C2H2 (C2H2-type
zinc finger TF), AP2 (activator protein 2), MYB (myeloblastosis), bHLH (basic-helix-loop-
helix), bZIP (basic region leucine zipper), SBP (SQUAMOSA promoter binding proteins),
YABBY, GATA, and HB (homeobox), were comprehensively characterized. Differential
expression of 67 genes, putatively related to hormones, unfolded the important role of
hormone signaling upon the regulation of microalgal response to HM stress, while the
overproduction of chelators and transporters was among the most pronounced metabolic
changes, following metal toxicity [114].

Phytohormones are signaling molecules, bearing a wide array of cellular functions in
higher plants and microalgae, and aimed at retaining growth plasticity during development.
The role of phytohormones in harmonizing the cellular response to HM toxicity (and other
abiotic and biotic stresses) has been well-documented [56,234–236]. Cytokinins (CKs),
gibberellic acid (GA), auxins, abscisic acid (ABA), brassinosteroids (BRs), jasmonic acid
(JA), ethylene (ET), and salicylic acid (SA) are the main classes of phytohormones. Although
their exact mechanisms of action are mostly unknown, they have been claimed to prevent
degradation of photosynthetic pigments, monosaccharides, and proteins and activate
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antioxidant defense responses required to sustain the growth of microalgae under stress
conditions [56,234,237].

Interestingly, the exogenous application of phytohormones has proven effective to
improve HM tolerance in microalgae. For instance, CK treatment was reported to improve
survival rate of C. vulgaris and A. obliquus cells against Cd and Pb toxicity, by stimulating the
activity of enzymatic antioxidants, as well as GSH, ascorbate, and PC biosynthesis [235,238].
Stimulating microalgae with exogenous GA and auxin was shown to mitigate HM stress
by regulating photosynthesis, besides fatty acid and antioxidant metabolism [56,237,239].
Similarly, ABA and Br alleviated Pb, Cd, and Cu stress in A. obliquus and C. vulgaris cells, via
induction of PC biosynthesis [238,240,241]. Furthermore, ET and SA effectively scavenged
and detoxified ROS in C. vulgaris and Haematococcus pluvialis under HM stress, by inducing
Pro/astaxanthin and SOD/CAT encoding genes [242–244]. When exogenously applied,
auxin, CK, GA, and polyamine-spermidine (Spd) enhanced HM tolerance in C. vulgaris
subjected to HM stress, by inhibiting heavy metal biosorption, restoring microalgal growth
and primary metabolite level, and inducing the accumulation of antioxidant enzymes,
ascorbate, and GSH. However, microalgae treated with JA underwent enhanced HM
toxicity, increased metal biosorption and ROS generation, and exhibited a marked decrease
in cell number, chlorophylls, carotenoids, monosaccharides, soluble proteins, ascorbate,
antioxidant activity, and GSH content [237].

In view of the above facts, attempts to improve the bioremediation capacity of mi-
croalgae should rationally resort to optimization of their phytohormone profiles via genetic
engineering approaches. For example, overexpression of a CK biosynthetic gene (IPT)
in tobacco increased the transcript level of an MT-like gene [245]. On the other hand,
mutations in ipt1, ipt3, ipt5, and ipt7 genes, associated with CK biosynthesis in A. thaliana,
led to enhanced Se tolerance, via a significant increase in the activities of CAT, ascorbate
peroxidase, and glutathione peroxidase [246]. Similarly, a CK degradation enzyme, CKX1,
was overexpressed to generate CK-deficient Arabidopsis and tobacco plants, and the result-
ing mutants exhibited higher accumulation of thiol compounds, thus, leading to improved
tolerance against As stress [247]. Aside from photorespiration in C. reinhardtii [248], carbon
metabolism in C. vulgaris [249], and photosynthesis in Gracilaria caudata [250], CKs were
shown to regulate the cell oxidoreduction state [237].

GAs seem to be involved in HM stress tolerance in microalgae, via their effect upon
photosynthesis pathways and ROS networks. GA-treated C. vulgaris showed higher HM
biosorption capacity, along with increased fatty acid and lipid accumulation, which further
boosted tolerance of said microalga to HM [251–253]. Auxin has been reported as mainly
involved in inducing enzymatic and non-enzymatic ROS detoxification systems, when
subjected to HM stress [56]. ABA mitigates the toxic effects of HMs, and functions as a
central cross-talking agent among other phytohormones. While Pb exposure increased the
intracellular level of ABA by 111% in A. obliquus, exogenous application of other phytohor-
mones (i.e., CKs, auxins, and BR) improved HM tolerance, but decreased endogenous ABA
level [56]. In Scenedesmus quadricauda, ABA improved cell growth by 2.1-fold, and induced
the accumulation of saturated fatty acids by 12% under nitrogen starvation [254]. Similar
results were reported for Chlorella saccharophila, E. gracilis, and C. saccharophila, following
ABA treatment under HM stress [255,256].

BRs have been shown to increase growth rate, as well as contents of metabolites (viz.
proteins, chlorophylls, and monosaccharides) and antioxidants in microalgae, thus, improv-
ing HM tolerance [257]. Furthermore, the role played by ET, JA, and SA upon HM tolerance
in microalgae apparently includes upregulation of antioxidant enzymes, astaxanthin, and
Pro, so as to minimize the oxidative stress caused by HMs [56]. Based on these data, phy-
tohormones are claimed to be among the main regulators of HM tolerance in microalgae
and, accordingly, consubstantiate an interesting target for phycoremediation-related strain
improvement trials. With few exceptions, the coding genes for phytohormone biosynthesis
remain essentially uncharacterized in microalgae [258]; hence, further omics analyses are
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warranted to characterize algal genes associated with phytohormone biosynthesis, and
map endogenous hormone signaling networks in microalgae.

Several decades of extensive research on molecular configuration of biological systems
has indicated that a large network of microRNAs (miRNAs) regulate the expression pattern
of genes in the cell, in parallel to TFs and hormones. These small, noncoding RNAs form
specific secondary structures that enable them to bind target mRNAs and this may lead to
cleavage or repression of the translation of said mRNAs [259]. As in many other cellular
processes, miRNAs play a key role in controlling HM stress response, mostly by regulating
expression of the corresponding TFs [260]. Nonetheless, miRNAs involved in metal uptake
and transport, sulfate allocation and assimilation, protein folding and assembly, metal
chelation, antioxidant system, phytohormone signaling, growth/reproduction regulation,
and miRNA biogenesis and action themselves, are also of importance for affecting HM
stress response in microalgae [261–263].

Recent studies corroborate the interplay of hormones and miRNAs upon regulation of
HM stress [264]. In plants, several stress-responsive miRNAs (e.g., miR395 and miR398)
were found to be upregulated under toxic levels of Cd and Zn [265,266]; furthermore,
miR397 and miR408 were characterized as extracellular metal chelators [267,268]. It was
also demonstrated that several miRNAs exhibit time-dependent change in their expression
pattern, suitable to regulate cellular response against HM stress [52,264]. Recently, tran-
scriptomic analysis of H. pluvialis, under both excessive light and sodium acetate, revealed
involvement of 434 miRNAs in the adaptive response of microalgae to abiotic stress [263].
Crucial regulatory roles of miR398, miR319, miR390, miR393, and miR171 have been pin-
pointed in the regulation of metal stress response in plants. Under high Cu levels, miR398
regulates induction of CSD1 and CSD2 mRNAs, which encode copper–zinc superoxide
dismutase as vital scavenger of superoxide radicals [269]. Moreover, miR395, miR397,
miR408, and miR857 were reported to control transcript abundance of laccase and PC genes
under Cu stress, while miR390, miR319, miR528, and miR393 have been implicated in the
auxin regulatory network [270–273]. After 24 h of treatment with Cd, microarray analysis
of rice seedlings revealed that 19 miRNAs were differentially regulated, among which only
miR528 (involved in miRNA biogenesis) was upregulated [274]. Transgenic Brassica napus,
overexpressing miR395, showed a lower degree of Cd-induced oxidative stress upon Cd
exposure, while chlorophyll, GSH, and non-protein thiol contents, as well as accumulated
biomass and sulfur were higher in transformants compared to wild type [275]. In addition,
miR808, miR396, miR390, miR319, miR160, and miR159 have been claimed to be involved
in plant cell response against Al stress [276,277]. Given their relatively recent discovery, a
huge research gap exists regarding discovery of metal-regulated miRNAs; hence, our un-
derstanding of the interplay between components of gene expression regulatory networks
upon HM stress in microalgae remains quite limited.

4.6. Cell-Surface Bioengineering

As mentioned previously, adsorption of metal ions by the cell wall and other extra-
cellular components in microalgae plays an important role in lowering the toxic effects of
HMs. The microalgal cell wall alone is estimated to have a metal binding capacity of ca.
0.10 gmetal/gCDW [12,278]. This figure has been confirmed when cell wall-deficient mutants
of C. reinhardtii were compared to wild type cells, in terms of Cd tolerance; survival rate of
wall-less mutants was indeed 25–35% lower [149].

It was recently suggested that the metallosorption properties of the cell surface can
be effectively modified to improve HM phycoremediation capacity and specificity of
microalgae, in what has been termed cell surface engineering, or cell surface display [1,279].
This is possible by expressing metal-binding proteins (e.g., MTs and PCs) fused with
an anchoring motif on the cell surface [280,281]. He et al. [150] expressed a membrane-
anchored MT polymer in C. reinhardtii, using said approach, and reported a marked increase
in Hg removal capacity of the transgenic microalga versus its wild type.
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Given their relatively easy manipulation and rapid growth, yeasts and bacteria offer a
rich source of experimental data on cell-surface engineering applications, which may then
be used as a road map to conduct similar experiments in microalgae. Kuroda et al. [282]
expressed a fusion protein of a His hexapeptide with the C-terminus of the sexual adhesion
glycoprotein α-agglutinin (AGα1Cp), and an anchor attachment signal sequence on the
cell surface of S. cerevisiae. Such surface-engineered yeast adsorbed 3–8-fold Cu2+ ions and
was more resistant to copper than its parent strain. Moreover, about half of the adsorbed
Cu was easily recovered upon EDTA treatment, without disintegrating the cells. They
further engineered the hexa-His-displaying yeast cells, so as to self-aggregate in response
to binding and accumulation of Cu2+, by transforming them with GTS1, a putative zinc-
finger TF, able to induce cell-aggregation, under control of the copper ion-inducible CUP1
promoter from a yeast MT gene [283]. In another study [284], those authors compared the
Cd-chelating ability that MT and hexa-His displayed on the surface of the yeast cell, and
concluded that the former is more effective for adsorption of Cd2+, while fusion of both
further increased Cd adsorption and recovery. The same research team still examined the
potential of expressing tandem repeats of yeast MT on the cell surface; adsorption and
recovery of Cd on the cell surface, and survival rate under Cd stress, were increasingly
enhanced by increasing the number of MT tandem repeats [285].

A 5-fold increase in the Pb2+ biosorption capacity of S. cerevisiae was observed upon
anchoring short metal-binding NP peptides (harboring the CXXEE metal fixation motif
of bacterial Pb2+-transporting P1-type ATPases) to AGα1Cp on the yeast cell wall [286].
Moreover, a surface exposed MerR (a metalloregulatory protein bearing high affinity and
selectivity toward Hg) enhanced the Hg2+ adsorption capacity of E. coli by 6-fold versus
wild type [287]. The Hg removal capacity of transgenic C. reinhardtii was also expanded
by expressing a membrane-anchored MT polymer [150]. Similarly, recombinant E. coli
overexpressing MT fused to the outer membrane domain of a maltose transporter (LamB),
and exhibited a 15–20-fold increase in Cd binding capacity compared to wild type [288].
Furthermore, overexpression of a fusion protein, composed of glutathione S-transferase
and MT, increased Ni2+ accumulation in a transgenic bacterium by 3-fold [289].

Cell surface engineering technology has also been suggested for the recovery of pre-
cious metals from wastewater, for bearing lower costs, and improved selectivity for the
target metal compared to conventional methods [290]. For instance, a mutant protein of
E. coli Ni2+-dependent transcriptional repressor (NikRm) was shown to selectively bind
uranyl ions (UO2

2+) and, thus, significantly increase the recovery of uranium from aqueous
solutions when on the cell surface of S. cerevisiae [291]. In addition, metal-responsive TFs,
able to bind and dissociate metal ions, can be repurposed as metal-binding proteins on the
cell surface. Based on this concept, molybdenum was successfully recovered from an aque-
ous solution to a 50% yield, by locating the C-terminal domain of E. coli molybdate-binding
TF (ModE) on S. cerevisiae via the α-agglutinin-based display system [292]. Moreover, a
single amino acid mutation significantly and selectively increased the binding of ModE
to tungstate, and engineered yeasts displaying this mutant ModE exhibited preferential
uptake of tungstate ions [293]. Given the wide range of ligands susceptible of display
on the cell surface—including metal-binding moieties for bioremediation of HMs—cell
surface engineering will likely play an important role as a biotechnological tool in the near
future [294].

5. Discussion

Heavy metals pose a serious danger to ecosystems and, ultimately, to human health;
however, the physicochemical methods currently in use for their removal from aquatic
environments suffer from a number of shortcomings. Biological methods appear quite
promising and microalgae, in particular, offer unique features, so that they may be consid-
ered as the next generation of biosorbents for the treatment of HM-contaminated wastewa-
ters. These microorganisms use sunlight for energy and atmospheric carbon dioxide as a
carbon source, besides a few minerals present in most wastewaters, and have proven useful
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in producing such valuable chemicals as biodiesel, biomethane, bioethanol, biochar, and
antioxidants. Furthermore—unlike conventional methods of HM remediation—microalgae
do not generate toxic sludge, are easy to culture and maintain, exhibit good binding affini-
ties, and have the potential to significantly reduce processing costs. At the same time,
microalgae reduce the organic and inorganic loads of wastewater, sequester carbon from
CO2 (thus, reducing greenhouse effects), and release oxygen from water.

Despite the above advantages, microalga-mediated HM remediation is yet to be
feasible at a large scale. One of the main obstacles is the low concentration attainable of
microalgae, which, by itself, reduces process productivity. Hence, the first challenge is to
develop microalgae strains bearing higher resistance against biotic and abiotic stresses,
and concomitantly increased biomass yield in wastewater; several genetic engineering
approaches have been discussed in this regard, in terms of success, or potential to improve
HM phycoremediation capacity and specificity.

Despite the current gap in availability of genome sequences and/or editing tools for
most microalgae species found so far, huge opportunities are anticipated from existing
knowledge, pertaining to genetic and metabolic engineering of such model microalgae
as C. reinhardtii, C. vulgaris, D. salina, N. oceanica, or P. tricornutum. Previous experience
indicates that single gene mutations will not necessarily succeed in effectively improving
HM bioremediation features. Therefore, a holistic approach appears necessary when
designing genetically engineered microalgae for better performance.

Toward this goal, hundreds of previous studies, pertaining to characterization of metal
transporters, metal chelators, metal volatilization enzymes, oxidative and metal stress
response regulators, and cell surface engineering were hereby reviewed, in a comparative
and critical fashion, with the ultimate goal of finding appropriate target genes, see Table 2.
In parallel, computational and mathematical modeling approaches (e.g., FBA) might help,
in order to avoid putative incompatibilities between multiple genetic modifications, conse-
quently leading to microbial cell factories with optimized metabolic efficiency.

Table 2. Genetic engineering targets anticipated to improve microalgal HM bioremediation capacity.

Approach Targets

Metal transportation
NRAMP, ZRT, IRT, ZIP, FTR, CTR, CDF, HMA, FPN,
Ccc1/VIT1, PTA, AQP, MTP, PMA, V-ATPase, V-PPase,
MRP, ATM/HMT, PDR, YSL, CAX, MFS

Metal chelation
MTs, PCs, GSH, PPK, VTC, PPX, Pro (P5CS), His
(HISN3), Cys (HAL2), Ser (SDC1), glycine-betaine,
and organic acids

Metal biotransformation ChrR, arsC, CrACR2s, MerA/B/P/C/T/F, SMT, CYPs

Oxidative stress response regulation Trx, HSPs, carotenoids, SOD, POD, CAT, GPX, GST

Metal stress response regulation

MTF-1, C2H2, AP2, MYB, bHLH, YABBY, bZIP, SBP, HB,
WRKY13, CRR1, ABI5, GATA, CKs (IPT and CKX1), GA,
ABA, BRs, JA, ET, SA, miRNAs (miR398, miR319,
miR390, miR393, miR171, miR395, miR397, miR408,
and miR857)

Cell-surface bioengineering MTs, PCs, 6x-His, CXXEE, MerR, GST, NikRm, ModE

Based on the literature data, overexpression of the group A family of transporters (i.e.,
NRAMP, ZRT, IRT, ZIP, FTR, and CTR) may boost metal uptake by microalgae, and storage
thereof in vacuoles. Although enrichment of the cell in MTs, PCs, Pro, GSH, and antioxi-
dants by overexpressing their biosynthesis genes appears a logical step toward improved
HM phycoremediation, such a minor change may not suffice to ensure the achievement
of a robust microalgal strain. However, overproduction of specific antioxidants may offer
the dual advantage of enhancing HM tolerance and reducing microalgal production costs,
through a biorefinery scheme, entailing separation and commercialization of the antiox-
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idant itself. It should be emphasized that overproduction of MT biosynthesis enzymes
may prove ineffective if the intracellular GSH pool is exhausted, as a consequence of said
overproduction. Expression of TFs, phytohormones, and miRNAs as master regulators of
cellular response to metal toxicity, and subsequent oxidative stress, should instead have a
deeper and broader impact upon a sound biophysicochemical state of the cell—able to let
it thrive under such harsh environmental conditions. Expression of these transcriptional
and translational regulators may result in whole-cell adjustment of its redox state, by
affecting a number of metabolic pathways, including intracellular pools of antioxidants
and metal-binding polypeptides.

Given the eventual limit for the number of chelated metals that can be stored within
cytosol and membrane-bound organelles, transgenic microalgae with enhanced metal
uptake and chelation abilities must also be armed with the enzymes needed to transform
the stored metals into benign organometallic compounds. While a single enzyme capable
of transforming all HMs has not yet been identified, overexpression of an enzyme for
each metal will overcomplicate the genetic engineering process and may pose an excessive
metabolic burden on the cell. Therefore, when designing tailor-made strains of microalgae
for municipal wastewater treatment applications—where they will face a mixture of HMs at
various concentrations—volatilization enzymes may be deemed redundant or inadequate.
Conversely, such engineered microalga strains could be effectively used for bioremediation
of industrial effluents containing high concentrations of specific HMs, as well as the
deliberate recovery of precious metals, including seabed mining.

The cell surface remains in direct contact with the outer environment and acts as the
first line of cellular defense against HM-mediated stress. Cell surface engineering will
allow microalgae to adsorb and, thus, detoxify, higher amounts of HMs in a metabolism-
independent manner; this simple step is expected to play an important role in the future
of genetically enhanced phycoremediation. Overexpression of metal-binding proteins
on the cell surface allows easy recovery of adsorbed species, increases cell flocculation
ability, and greatly reduces the contact time required for effective phycoremediation of
HMs. This is prone to lower the cost/energy associated with the harvesting of microalgal
biomass—still one of the main challenges of wastewater phycoremediation—and would
greatly improve process productivity. Selective removal of a particular metal is also possible
by expressing the corresponding ligand on the microalgal surface. Furthermore, displaying
tandem repeats of MTs anchored to cell wall- or membrane-bound proteins may appear as
a possible approach to boost the HM adsorption capacity of microalgae.

Despite the above technical difficulties, environmental concerns over the release of
engineered strains, and associated stringent regulations for their use, represent probably
the major obstacle to develop genetically improved microalgae for bioremediation. A
refreshed look at recent advancements of molecular tools, in their ability to minimize the
probability of lateral gene transfer and at processing measures, to prevent release and/or
survival of transgenic microalgae in the wild, seem necessary to deploy the full potential of
such beneficial technology, as long as this is complemented by having regulatory guidelines
and public feelings reshaped toward the inevitable use of transgenic microalgae. The use of
dead biomass, or immobilization of live microalgae, in/on biopolymers, constitute possible
solutions to address these issues; however, the former narrows genetic improvements down
to mere cell surface engineering, while the latter is less compatible with the integration of
phycoremediation with bioenergy production, as it constrains contact between microalgae
and the surrounding aqueous solution. An alternative strategy is establishing sufficient
physical containment, combined with post-treatment of bioremediated wastewater, so as
to assure full elimination of transgenic microalgae. In any case, application of transgenic
microalgae to HM bioremediation seems inevitable, given the legalization history of GMOs.

Needless to say, the sequencing of more genomes and performance of high-throughput
algomics and metagenomics analyses will be crucial to establish an accurate map of the
interplay between molecular mechanisms linking HM toxicity to constituted adaptive re-
sponses in microalgae, which will eventually lead to the identification and characterization
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of novel genetic engineering targets. Furthermore, the integration of wastewater treatment
with bioenergy production, using hydrothermal liquefaction in a closed-loop system, may
address several issues associated with the use of transgenic microalgae, while allowing
successful scale-up of this promising technology. Finally, reliable utilization of transgenic
microalgae-mediated bioremediation of HM-contaminated wastewater will require accu-
rate life cycle assessment and associated technoeconomic cost analysis. Otherwise, the
socioenvironmental feasibility of the process will likely be compromised.

6. Conclusions

This review highlighted current knowledge on the cellular and molecular mechanisms
associated to microalgae-mediated adsorption, intake, accumulation, and transformation
of heavy metals from the medium, and specifically focused on the most promising genetic
and metabolic engineering targets, aimed at improving their bioremediation capacity
via state-of-the-art molecular and bioinformatic tools. Despite being one of the most
sophisticated biological systems regarding resistance to and transformation of heavy metals,
the evidence reviewed and discussed shows, beyond doubt, that further improvements are
possible in such phycoremediation ability—namely through specifically designed genetic
modifications. Acceleration, yet under tight control, of the underlying forces of natural
evolution will likely play an important role in our quest toward restoration of the lost
ecological balance, while furthering knowledge of the processes supporting life. Genetic
engineering holds an immense potential, yet careful experimentation and implementation
are vital. Harnessing this potential and converting it into a useful technology for a better
future demands, indeed, rational approaches, rather than prohibitive regulations tout court
and strict banning; carefully designed bench- and industrial-scale efforts, complemented
by open and transparent communication between science and technology stakeholders,
and to the society at large, constitute the only reasonable and effective path thereto.
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