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Abstract: A ferromagnetic insulator Cr2Ge2Te6 as a saturable absorber in an Er-doped fiber laser
(EDFL) was demonstrated. In this work, a CGT-PVA composite film was successfully fabricated using
the liquid-phase exfoliation method and employed in an EDFL. The modulation depth and saturation
intensity of the SA are 4.26% and 89.40 MW/cm2, respectively. Stable pulses with a minimum pulse
width of 978.5 fs when the repetition rate was 3.25 MHz were recorded experimentally. Furthermore,
stable solitons still need to be obtained when the pulse energy in the cavity is as high as 11.6 nJ. The
results fully suggest that CGT has outstanding nonlinear absorption properties, which may have
broad potential applications in ultrafast photons.

Keywords: Cr2Ge2Te6; saturable absorber; mode locked; Er-doped fiber laser

1. Introduction

Two-dimensional (2D) materials have exhibited a lot of interesting optical properties
when their thickness is close to a few atomic layers. Their excellent optical performances
mean that they are widely applied in photo-detection [1,2], biological sensing [3,4], and
optical modulation [5,6]. Diverse SAs based on 2D materials were applied to modulate
ultra-fast lasers. The history of two-dimensional materials as SA can be traced back to appli-
cations of graphene. In 2009, graphene was applied as a saturable absorber (SA) in an EDFL,
and a 756 fs ultrashort pulse was obtained [7]. Since then, the studies of SA based on 2D
materials have prevailed. However, the absorption of monolayer graphene is 2.3%, limiting
its application and development in the field of optoelectronics [8]. Afterwards, transition
metal disulfides (TMDs) [9–14], topological insulators [15–20], black phosphorus [21–24]
and other 2D layered materials [25–30] with excellent saturable absorption have also been
adopted in ultrafast photonics. These two-dimensional materials have a similar layered
structure, in that the layers are connected through van der Waals forces, which provides
the possibility to obtain single or multiple layers from the bulk materials. Benefiting from
their smaller energy band gap, they can be operated at different wavelengths. The chemical
formula of TMDs is MX2 (in which M: Mo, W, Nb, etc; X: S, Se, Te, etc.), and they may
behave as insulating, semiconducting, or metallic substances [31,32]. Sue to the existence
of weak van der Waals forces between layers, it is possible to exfoliate few layers from the
bulk [33]. Many studies examining ultrafast fiber lasers based on 2D TMDs as SAs have
been reported [34–37]. However, TMDs devices are not suited for the mid-infrared region,
since the intrinsic energy bandgap of TMDs is limited from 1 to 2 eV [38]. BP has attracted
great interest in both potential applications and academic research recently, benefiting from
its remarkable characteristics. Differing from graphene and TMDs, the puckered structure
of BP leads to a high degree of anisotropy of light absorption and photoluminescence [39],
and the band gap of BP bridges the gap between graphene and TMDs. However, the weak
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thermal stability of the BP has limited its further development and so on. Therefore, the
investigation of SA materials with large saturable absorption and a high damage threshold
continues to be required [40–44].

Ferromagnets such as Cr2Ge2Te6 (CGT) belong to the R3 space group. The quasi-
hexagonal crystal structure of CGT consists of a three-layer-stacked structure of ABC
sequence [45]. The microstructure determines its special energy band. The theoretical band
gap value (Eg) of CGT is about 0.74 eV [46,47]. CGT has been widely investigated due to its
interesting lattice and band structures. For example, Ji et al. used CGT as a model system
for the growth of Bi2Se3 and obtained large continuous thin films of Bi2Se3 [48]. In 2018,
Xie et al. reported that 2D CGT has excellent ultra-sensitive photoresponses, which can
detect weak light at incident power as low as 0.04 pW [49]. In addition, the magneto-optical
effects [50] and magneto-elastic coupling phenomenon [51] have been widely researched.
Compared with the mentioned 2D materials, the CGT exhibited a similar layered hexagonal
structure and a suitable bandgap value. The modulator based on CGT is expected to be
applied to ultrafast photonics. However, the research of nonlinear absorption properties of
CGT is relatively deficient.

In our work, CGT-SA was successfully prepared and used in a mode-locked EDFL. The
saturation intensity and modulation depth of CGT-PVA SA are 89.40 MW/cm2 and 4.26%,
respectively. A stable mode-locked EDF laser operating at 1558.9 nm is demonstrated using
CGT-SA. The narrowest pulse width is 978.5 fs. The maximum output power was 4.207 mW
and the corresponding single pulse energy was 1.29 nJ when the fundamental repetition
frequency was 3.25 MHz. In addition, the CGT-based EDFL can still work stably when the
intracavity single pulse energy is as high as 11.6 nJ. The excellent performance of our EDFL
indicates that CGT is a desirable candidate in ultrafast modulation.

2. Preparation and Characterization of the CGT SA
2.1. Preparation of CGT-Based SA

Various structures of SA, including the D-shaped fiber, the sandwich structure and so
on, have been employed in mode-locked EDFL. The D-shaped fiber and the tapered fiber
adopted indirect evanescent field coupling, which provides an interaction between material
and laser. The evanescent field decreases exponentially with distance. Compared with
the evanescent field, the direct interaction between the light and SA by inserting the SA
between two optical fiber connectors is more effective for achieving mode-locked operation.

Due to the van der Waals force between different layers, the liquid-phase exfoliation
is a more effective method to obtain CGT nanosheets. Firstly, 0.15 g of CGT powder was
mixed with 15 mL of alcohol (30%) in a clear bottle, and the mixture was put in an ultrasonic
cleaner for 10 h. In this step, the CGT was sufficiently dispersed via ultrasonic waves.
Secondly, the 5 mL CGT dispersion and 5 mL 5 wτ.% PVA solution were mixed through a
4 h ultrasonic process. Finally, the 50 µL CGT-PVA dispersion solution was drop-coated on
a glass substrate and placed into an oven for 12 h at 30 ◦C. According to the above steps,
the CGT-PVA film was obtained. Finally, we cut off a 1 × 1 mm2 film and put it on the end
of an optical fiber jumper, and the SA based on CGT nanosheet was fabricated successfully.

2.2. Characterization of CGT SA

The Raman spectrum of CGT powder was recorded, and is presented in Figure 1a.
Obviously, it includes two main peaks in 120 and 139 cm−1, corresponding to the typical
Eg3 and Ag1 mode of CGT [46]. This indicates that the CGT has a high purity. The X-
ray diffraction (XRD) (D8 Advance, Bruker, Billerica, MA, USA) analysis is presented
in Figure 1b, and high diffraction peaks at (006) and (113) mean that CGT has a well-
layered structure and high crystallinity. The surface morphology and layered structure
were recorded with a scanning electron microscope (SEM) (Sigma 500, ZEISS, Oberkochen,
Germany). Figure 1c shows the obvious layered structure and distinct boundaries between
different layers. The interaction between layers is the van der Waals force, and the intensity
is weak; therefore, the CGT nanosheets with few layers could be extracted from the bulk
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though ultrasonic operation. Furthermore, the bandgap was related with the thickness of
the material, and the different bandgap values could be acquired for different thicknesses.
In order to analyze the composition of our sample, Figure 1d shows the energy dispersive
spectrum (EDS) (QUANTAX EDS, Bruker, Germany), and the atomic ratio is nearly 1:1:3
(Cr:Ge:Te), which corresponds with the chemical formula of CGT. Combined with the
above tests, it is obvious that the purity of CGT is relatively high.

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 9 
 

 

2.2. Characterization of CGT SA 
The Raman spectrum of CGT powder was recorded, and is presented in Figure 1a. 

Obviously, it includes two main peaks in 120 and 139 cm−1, corresponding to the typical 
Eg3 and Ag1 mode of CGT [46]. This indicates that the CGT has a high purity. The X-ray 
diffraction (XRD) (D8 Advance, Bruker, Billerica, MA, USA) analysis is presented in Fig-
ure 1b, and high diffraction peaks at (006) and (113) mean that CGT has a well-layered 
structure and high crystallinity. The surface morphology and layered structure were rec-
orded with a scanning electron microscope (SEM) (Sigma 500, ZEISS, Oberkochen, Ger-
many). Figure 1c shows the obvious layered structure and distinct boundaries between 
different layers. The interaction between layers is the van der Waals force, and the inten-
sity is weak; therefore, the CGT nanosheets with few layers could be extracted from the 
bulk though ultrasonic operation. Furthermore, the bandgap was related with the thick-
ness of the material, and the different bandgap values could be acquired for different 
thicknesses. In order to analyze the composition of our sample, Figure 1d shows the en-
ergy dispersive spectrum (EDS) (QUANTAX EDS, Bruker, Germany), and the atomic ratio 
is nearly 1:1:3 (Cr:Ge:Te), which corresponds with the chemical formula of CGT. Com-
bined with the above tests, it is obvious that the purity of CGT is relatively high. 

 
Figure 1. (a) Raman spectrum of CGT nanosheets, (b) XRD analysis for CGT nanosheets, (c) SEM 
image of CGT nanosheets, and (d) corresponding EDS spectrum of CGT nanosheets. 

In Figure 2a, the transmittance of the film is recorded by a UV/Vis/NIR spectropho-
tometer (U-4100, Hitachi, Tokyo, Japan). It shows a large absorption range from 400 to 
2000 nm. The transmission is about 89.45% at 1560 nm. In addition, the double-balanced 
detection system was used to record the saturable absorption of SA. The system includes 
an ultra-short pulsed laser source (central wavelength: 1580 nm, repetition rate: 33.6 MHz, 
pulse duration: 560 fs), an adjustable attenuator, a 1:1 fiber coupler and a power meter. By 
adjusting the attenuator, the transmitted power increased and tended to be constant when 

Figure 1. (a) Raman spectrum of CGT nanosheets, (b) XRD analysis for CGT nanosheets, (c) SEM
image of CGT nanosheets, and (d) corresponding EDS spectrum of CGT nanosheets.

In Figure 2a, the transmittance of the film is recorded by a UV/Vis/NIR spectropho-
tometer (U-4100, Hitachi, Tokyo, Japan). It shows a large absorption range from 400 to
2000 nm. The transmission is about 89.45% at 1560 nm. In addition, the double-balanced
detection system was used to record the saturable absorption of SA. The system includes
an ultra-short pulsed laser source (central wavelength: 1580 nm, repetition rate: 33.6 MHz,
pulse duration: 560 fs), an adjustable attenuator, a 1:1 fiber coupler and a power meter. By
adjusting the attenuator, the transmitted power increased and tended to be constant when
incident optical power was further increased. Obviously, the optical transmittance became
saturated. In Figure 2b, the experimental data were fitted by the following equation [52,53]:

T(I) = 1 − Tns − ∆·exp
(
− I

Isat

)
where T(I) and Tns represent the transmission rate and the nonsaturable loss, respectively. I
and Isat are the input pulse energy and the saturation intensity, respectively, and ∆ is the
modulation depth.

It can be calculated that the modulation depth and the saturation intensity are 4.26%
and 89.40 MW/cm2, respectively.
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Figure 2. (a) Linear transmission versus wavelength of the CGT-PVA film, (b) the nonlinear absorp-
tion property of the CGT-PVA film.

3. Experimental Results and Discussion

The experimental construction of the EDFL is presented in Figure 3. The pump
source is a 980 nm laser diode (LD, Shandong Ruixing Single Mode Laser Technology
Co. LTD, Zibo, China) and the maximum output power is 1.3 W. A 980/1550 wave
division multiplexer (WDM, Jinan Jingjiang photoelectric technology co. LTD, Jinan, China)
transmits the pump power into the cavity. About 10% of the laser energies were output from
a 10:90 optical coupler. The polarization state was adjusted by two polarization controllers
(PCs, Jinan Jingjiang photoelectric technology co. LTD, Jinan, China). A polarization-
independent isolator (PI-ISO, Jinan Jingjiang photoelectric technology co. LTD, Jinan,
China) provides a unidirectional transmission of the light in the ring cavity. A length of
39.7 cm Er-110 (dispersion value: −46 ps/(km·nm)) was employed as a gain medium in
the laser cavity. In addition, experimental data were recorded by other devices, including
a digital oscilloscope (Wavesurfer 3054, Teledyne LeCroy, Thousand Oaks, CA, USA), a
power meter (PM100D-S122C, Thorlabs, New Jersey, USA), an optical spectrum analyzer
(AQ6317B, Yokogawa, Yokogawa, Tokyo, Japan), a photo-detector (PD-03, Shandong
Ruixing Single Mode Laser Technology Co. LTD, Zibo, China) and a spectrum analyzer
(R&S FPC1000, Jena, Germany).
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Figure 3. The experimental setup of the mode-locked laser.

Initially, no pulse generated through adjusting the PCs before the CGT-SA was inserted
into the ring fiber cavity. Then, the SA was inserted into the cavity, and a mode-locked
pulse was obtained by rotating the PCs and changing pump power. These results indicate
that the CGT-SA was a necessary component in the EDFL.
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The optical spectrum is presented in Figure 4a under the pump power of 252 mW. The
central wavelength and 3 dB bandwidth are 1558.9 nm and 2.757 nm, respectively. The
photon energies were calculated to be 0.796 eV, which is higher than the 0.74 eV bandgap
value of CGT. Therefore, the CGT can be used as a wideband SA. An autocorrelator was
used to record the real width of pulses. Figure 4b shows the auto-correlation of the output
mode-locked pulse, and the width was about 978.5 fs.

In this work, the τpulse, λc, and ∆λ were 978.5 fs, 1558.9 nm, and 2.757 nm, respectively.
Therefore, the time-bandwidth product (TBP) was calculated to be 0.333. Compared with
the theoretical limited values (0.315), higher TBP values mean that the mode-locked pulses
were weakly chirped. Figure 4c shows the radio frequency (RF) spectrum of the single
pulse, for which the signal-to-noise ratio was 59 dB under the fundamental repetition rate
of 3.25 MHz. Meanwhile, the optical spectrum of the laser under the pump power of
252 mW was recorded at intervals of 2 h. Figure 4d shows that the central wavelengths of
the optical spectrum are 1558.9 ± 0.3 nm, and the change in the 3 dB bandwidth was less
than 0.4 nm. Thus, the long-term stability of the laser is considerably good [54,55].
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Figure 4. (a) Typical optical spectrum, (b) autocorrelation trace and sech2 fitting of the output pulse,
(c) the RF optical spectrum at the fundamental frequency of 3.25 MHz. Insert: the broadband RF
output spectrum. (d) The spectral states versus time.

Considering the limitations of the soliton area theorem, the bright solitons can reach
a near zero negative dispersion area when the balance between the total gain and loss is
reached. The total length of the laser cavity is 63 m, including 62.8 m SMF (dispersion
value: 17 ps/km·nm) and 0.397 m EDF (dispersion value: −46 ps/km·nm) in the cavity.
The net dispersion of cavity was estimated to be −1.35 ps2. In addition, the output power
is 120 µW at minimum pump power and the corresponding pulse energy is 0.037 nJ, which
is lower than the limited values (0.1 nJ) of conventional solitons.

The optical spectrum at different pump powers is presented in Figure 5a. With the rise
in pump power, the shape of the spectrum is a smooth curve, and the central wavelength
does not shift, which indicates that the mode-locked operation operates stably under
pump power from 50 to 301 mW. As depicted in Figure 5b, the 3 dB bandwidth has a
slight broadening, which is mainly caused by the increase in the pump power. Figure 5c
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shows the shape of a single pulse at different pump powers. The intensity of the pulse
rises slightly as the pump power increases. This suggests that the mode-locked laser has
outstanding stability. In Figure 5d, it is obvious that the output power and single pulse
energy rise with the increase in the pump power, and the maximum output power is
4.207 mW, corresponding to the single pulse energy of 1.29 nJ. Because the 10% energy
is output through the coupler, the power in the cavity was calculated to be 37.86 mW
(corresponding to 11.6 nJ single pulse energy). When the pump power further increased,
we were not able to achieve stable mode-locked operation. However, the pulse could be
obtained when the pump power decreased under 301 mW. Clearly, the CGT-PVA SA has a
high thermal damage threshold.
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Figure 5. (a) Spectral evolution versus pump power, (b) 3 dB bandwidth value of the optical spectrum
at different pump powers, (c) the pulse evolution versus pump power, and (d) the output power and
pulse energy versus pump power.

4. Conclusions

In conclusion, FI-CGT SA as a modulator was applied in an EDF mode-locked laser. A
stable 978.5 fs pulse at a central wavelength of 1558.9 nm was obtained. The saturable inten-
sity and the modulation depth of the SA based on CGT are 89.40 MW/cm2 and 4.26%. The
single pulse energy is 1.29 nJ under a repetition rate of 3.25 MHz. Our experiment demon-
strated that CGT has good nonlinear absorption characteristics and will have promising
applications for ultra-photonics.
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