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Abstract

Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The

complexity of these biological systems means that experimental design should often be treated as a multiparametric

optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the

number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available,

user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize

experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the

lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and

exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely

available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary

algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace

containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity

of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in

which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is

available through: (https://doi.org/10.17863/CAM.10257).

INTRODUCTION

Advances in synthetic biology facilitate the rapid and
efficient engineering of microbial cell factories for the produc-
tion of novel chemical compounds and recombinant proteins
[1]. Synthetic biology approaches allow multi-level modifica-
tion of the host organisms through the development of syn-
thetic promoters, codon-optimized synthetic reading-frames,
artificial transcription factors, and insertion of expression cas-
settes, to improve the quality and yield of the target product
[2]. The success of such modifications needs to be evaluated
under environmental conditions that are suitable for the
desired application, since the performance of the constructed
strain is usually highly condition-dependent [3]. Thus, the

optimization of the environmental conditions is important,
not only for large-scale production in biotechnology, but also
for laboratory-scale screening and testing of potential high-
performing strains.

While Design of Experiments (DOE) is a commonly used
method for the optimization of such systems, and is suitable
for addressing low-dimensional design problems, it is
impractical for optimization problems that require the
investigation of a large number of factors at many different
levels and modelling their output response. This is due to
the so-called explosion problem in Factorial Design that is
caused by an exponential increase in the number of experi-
ments required as the number of conditions or levels to be
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tested increases. This usually leads to the artificial limitation
of the number of factors, and their levels, to be examined.
While this reduction introduces the risk of overlooking
some critical components of design, only this can permit
simple regression techniques, available in most DOE tools,
to be used to model the data. However, Yang et al. [4] report
that these regression techniques frequently fail in their esti-
mations of high-dimensional datasets. In spite of this, the
availability of user-friendly computational tools encourages
the utilization of DOE even for highly multifactorial
problems, by prioritizing the factors and reducing the
dimensionality of the problem. Apart from the obvious limi-
tations of the DOE approach, many potential users may be
constrained by the fact that there do not appear to be any
user-friendly DOE tools that are publicly accessible.

These issues concerning the DOE have led to the exploration
of the utility of non-statistical approaches, such as Artificial
Intelligence (AI), as tools for solving such multiparameter
optimization problems [5]. Among these approaches, Genetic
Algorithms (GAs) were shown to be well suited for the opti-
mization of a wide range of practical problems in science,
engineering and industry [6]. The GA methodology borrows
concepts such as population, generation, gene, chromosome,
mutation, cross-over, and mating from Evolutionary Genetics,
and redefines them in a computational framework that
mimics Natural Selection. The search starts with a set of
experimental conditions to be tested, which is comprised of
the factors of interest at their randomly assigned levels from
within a predetermined allowable range. A new set of experi-
mental conditions to be tested is generated based on the suc-
cess of the previous set and, over time, the search is guided
towards a more confined space, where the global optimum
resides, depending on how different sets of conditions perform
in achieving the desired objective.

GA has the advantage of exploring a large variable space with-
out exponentially increasing the number of experiments that
need to be conducted, and it only requires the maximum and
minimum values for any number of factors to be known in
order to define the boundaries of the possible solution space
[6]. In contrast to fractional factorial design, with GA, the
number of factors and the number of levels at which each of
these factors is investigated does not result in an explosion
problem. Genetic algorithms have been applied in different
areas of biological research ranging from synthetic biology
and metabolic engineering applications [7–9], to the optimiza-
tion of the design of an in situ bioremediation system [10], or
to the prediction of RNA secondary structure [11], or to mul-
tiple sequence alignment [12, 13]. Despite their advantages
over DOE when multiple parameters at a large number of lev-
els need to be optimized, GAs have been neglected by the
research community. This is a consequence of the lack of
availability of simple-to-use computational tools for conduct-
ing the optimization, and the dearth of accompanying
approaches to model and investigate the response.

Here, we describe a hybrid methodology that employs genetic
programming as its working principle, to address the multi-

parameter experimental design problem. We present a plat-
form, CamOptimus (https://doi.org/10.17863/CAM.10257),
to overcome the concerns and limitations associated with
the various platforms available (discussed above). We demon-
strate the applicability of our approach and its success on a
biotechnology application – recombinant protein production
by the industrial yeast, Komagataella phaffii (formerly Pichia
pastoris). The environmental conditions used to cultivate the
Human Lysozyme (HuLy)-producing cells under inducible
AOX (alcohol oxidase) promoter were optimized to increase
the protein titres, and up to 80% improvement was achieved
in comparison to the previously reported conditions. The soft-
ware allows the user to: (i) collect extensive data over the com-
plete experimental space of interest and identify the optimal
design within that search space by employing a GA, and (ii)
describe this space by constructing an evolutionary model
using Symbolic Regression (SR) and identify the critical fac-
tors for the system under investigation. A detailed user man-
ual, the source codes, and the CamOptimus platform (for
both Windows OS and Mac OSX) are available under free
licensing (GNU General Public License v3.0) at https://doi.
org/10.17863/CAM.10257.

METHODS

Strain and growth conditions

Haploid K. phaffii strain GS115, expressing Human Lyso-
zyme protein under the control of the methanol-inducible
AOX1 promoter [14, 15], was employed in the study. Pre-
cultures were prepared in YPG [composed of 1% (w/v)
yeast extract, 2% (w/v) peptone and 2% (w/v) glycerol],
with a single colony selected from YPAG plates, which con-
tain 2% (w/v) agar in addition to YPG composition. The
cultures (3ml) were inoculated from the pre-culture grown
overnight (OD600ffi5.00). Experiments were carried out in
14ml round-bottom, dual snap-cap polypropylene tubes
(BD Falcon). Media formulations were prepared using the
same stock solutions of each medium component through-
out the experiment to eliminate variability over ‘genera-
tions’. The initial pH of each individual medium
composition was measured in dummy cultures and the tun-
ing of the pH to set it at its assigned level was determined
using undiluted HCl (37%) or NaOH solution (1M). The
pH was maintained constant using citrate-phosphate buffer,
which has an allowable working range of pH 2.6–7.0. Cells
were cultivated at 30

�
C at an agitation rate of 200 r.p.m.

The optical density at 600 nm was monitored as a proxy for
biomass concentration and was measured prior to induction
and during harvest. A 1ml sample of the culture was har-
vested by centrifugation at 3000 g for 10min at 4

�
C, and

stored at �20
�
C until further analysis.

Analytical methods

The activity of the secreted enzyme was determined using Enz-
Chek Lysozyme Assay Kit (Molecular Probes) as described by
the manufacturer [16]. The glycerol content was determined
enzymatically using UV-based methods as described by the
manufacturer (Glycerol Kit; r-biopharm) [17].
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Determination of culture induction and harvest
times

The optimal induction and harvest periods were determined
prior to the optimization experiments. For this purpose,
cells were grown in unbaffled shake flasks using previously
reported values for the medium compositions and initial pH
of the culture [18]. The glycerol remaining in the cultures
was determined during the 8 h period of 24–32 h post-inoc-
ulation. The induction time was selected as 30 h post-inocu-
lation in order to ensure at least 6 h of glycerol starvation
for the culture. The activity of the secreted HuLy was deter-
mined during the period of 30–60 h post-induction. The
harvest time was selected as 42 h to ensure no further
increase in enzyme activity but to allow sufficient time for
maximal utilization of resources.

Experimental set-up for the optimization study

A total of nine cultivation parameters: (NH4)2HPO4, KCl,
MgSO4 . 7H2O, FeSO4 . 7H2O, CaCl2 . 2H2O, glycerol, metha-
nol, sorbitol and pH, were selected to be optimized and the
range within which the levels of each parameter could lie was
determined from the literature [15, 19–22]. Four objectives
were selected for the optimization study: maximization of bio-
mass production during the growth-induced pre-induction
phase, minimization of biomass production throughout the
induction phase, maximization of the total secreted HuLy
activity, and maximization of the specific productivity
[defined as the total lysozyme activity per unit biomass
(OD600)]. Experiments were carried out in triplicate to allow
for the variability within each experimental condition.

GA methodology and parameter selection

The GA methodology was implemented as described
by Sarma et al. [8]. The terminology employed in the meth-
odology is adopted from Evolutionary Genetics; throughout
the text, the terminology provided in quotation marks fol-
lows the definitions provided in Table 1.

The nine factors were selected to be of 5 ‘bit’ length each
and 25=32 levels were assigned to each of these factors
within their allowable range. Each ‘chromosome’ comprised
of 9 ‘5-bit’ long ‘genes’, yielding a total length of 45 ‘bits’.
The ‘population’ size was set to 16 individuals ð2�N�2Þ.
The normalized objective function used to evaluate the ‘fit-
ness score’ was:

Obj ¼maximize fw1�
ODbi � ODbið Þmini

ODbið Þmaxi
� ODbið Þmini

þw2�ð1�
ODai �ODbið Þ� ODai �ODbið Þmini

h i

ODai �ODbið Þmaxi
� ODai �ODbið Þmini

h iÞ

þw3�
Ea� Eað Þmini

Eað Þmaxi
� Eað Þmini

þw4�
P� Pð Þmini

Pð Þmaxi
� Pð Þmini

g

ð1Þ

where ODbi = cell culture OD before induction

ODai = cell culture OD at harvest

Ea = HuLy activity

P = specific productivity

(ODbi)mini = Minimum of the OD before induction over
generation i

(ODai�ODbi)mini = Minimum of the OD difference between
after induction and before induction over generation i

(Ea)mini = Minimum of the HuLy activity over generation i

(P)mini = Minimum of the specific productivity over gener-
ation i

(ODbi)maxi = Maximum of the OD before induction over
generation i

(ODai�ODbi)maxi = Maximum of the OD difference between
after induction and before induction over generation i

(Ea)maxi = Maximum of the HuLy activity over generation i

Table 1. GA – experimental protocol conversion table for commonly employed terminology

GA term Equivalent in the current experimental setup

Gene Individual experimental factor

Number of bits (b) Number of binary digits (0 or 1) assigned to describe the value (i.e. the ‘length’) of each ‘gene’

2b Number of levels to which each ‘gene’ can be assigned

Chromosome Individual set of conditions to be tested experimentally

Generation Each round of experiments

Population Number of ‘chromosomes’ to be experimentally tested in each ‘generation’

Evolution Narrowing down the range of experimental conditions to reach the required objective through a course of consecutive

rounds of experiments (‘generations’)

Score Evaluation of how well suited the condition is to achieving the required objective (how ‘fit’ the ‘chromosome’ is)

Parent One of the two ‘chromosomes’ to undergo genetic hybridization

Child/Offspring One of the two new ‘chromosomes’ generated

Mating Process by which two ‘parent chromosomes’ recombine to yield the two ‘children’

Cross-over Point where the recombination event occurs

Mutation A random change in the bit value (0 to 1 or 1 to 0) introduced with an assigned probability
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(P)maxi = Maximum of the specific productivity over gener-
ation i

w1=w2=w3=w4=0.25

The median of the replicate values was used to determine
the fitness of each ‘chromosome’. Single missing values in
the experiments were replaced by the arithmetic average of
the remaining two replicates. The Roulette-wheel selection
method, which allows ‘fitter’ individuals to have more
chance to be selected as parents [23], was used with a selec-
tion probability of 0.5 for the identification of the ‘fitter’
individuals within the ‘population’ to ‘mate’. Both ‘cross-
overs’ and ‘mutations’ were introduced at single locations
on the ‘chromosome’ in order to introduce ‘genetic’ variabil-
ity in the next ‘generation’. The ‘mutation’ rate and the
‘cross-over’ rate were selected as 0.1 and 0.9 per ‘generation’,
respectively. New ‘generations’ of experiments were carried
out until the average ‘fitness’ of the ‘population’, as indi-
cated by the enzyme activity and specific productivity, dis-
played convergence.

Evaluation of the convergence behaviour and fine-
tuning of the optimum

The convergence of the levels of individual factors over the
course of ‘generations’ was investigated employing ‘popula-
tion’ profiling analysis [8] with slight modifications. The
absolute frequency of each individual level of every factor
was determined for the three ‘generations’ to monitor the
levels around which convergence was observed throughout
‘evolution’. A % occupancy was defined as the relative repre-
sentation of each level employed in the better-performing
fraction (i.e. the half of the ‘population’ with the highest
overall score in the Test Case) of the last ‘generation’ pro-
vided as a percent fraction. This information was used to cre-
ate a footprint for each factor and was used in combination
with population profiling to determine the optimal level of
each factor.

Regression analysis

Microsoft Excel Analysis ToolPak Add-in was used to con-
duct multiple linear regression (MLR). GPTIPS2, a symbolic
regression platform, was employed for creating evolutionary
models [24, 25]. The default settings of the software were
adopted, except for the ‘population’ size and the number of
‘generations’, both of which were set to 500. The allowable
mathematical operations were selected as addition, subtrac-
tion, multiplication and division. The platform was man-
aged in the MATLAB (v8.2.0.701) environment.

Executable stand-alone with the Graphical User
Interface (GUI)

The executable compilation and the stand-alone version of the
software were developed using MATLAB release 9.0.0.341360
and the MATLAB Runtime environment release 9.0.1. The
stand-alone user interface is available for both Microsoft Win-
dows OS and MAC OS X operating systems. The default
parameters in the user interface were taken as described ear-
lier, except for the ‘mutation’ rate in GA analysis, whose

default value was set to 0.01. The files for the user manual, the
executable and the standalone versions can be accessed from
(https://doi.org/10.17863/CAM.10257).

RESULTS AND DISCUSSION

We adopted a two-stage strategy that employs evolutionary
algorithms for handling multi-parametric optimization
problems in biological systems. The optimization pipeline
starts by using the GA to investigate the possible space
within which the solution lies. This then leads to the defini-
tion of a more restricted space that contains an optimal
solution. Finally, in the second stage, SR is employed to
obtain a model that will allow the response of the system
to incremental changes in the levels of the different factors
to be calculated. We adopted this pipeline to investigate how
the levels of the environmental cultivation parameters could
be optimized to achieve improved yields of HuLy produced
by a genetically engineered strain of the industrial yeast,
K. phaffii. Finally, we developed a simple Graphical User
Interface (GUI) for this tool and have made it available to
the wider research community.

GA as a design and optimization tool

The application of GA to biological systems operates as a
multi-stage decision-making process, which requires: (i) the
determination of the biological objective(s); (ii) the identifi-
cation of the factors affecting this set of objective(s); (iii) the
designation of the allowable range of values/levels for each
factor; and (iv) the construction of the objective (‘fitness’)
function. Once the structure of the methodology is estab-
lished, the approach is then used to initially perform experi-
ments for a randomly generated ‘population’, and then to
evaluate the ‘fitness’ of each individual within that ‘popula-
tion’ based on the defined objective function. This evalua-
tion leads to the identification of a new ‘population’ by
applying ‘selection’, ‘cross-over’ and ‘mutation’ operators in
a similar manner to our understanding of biological evolu-
tion, based on the fitness of individuals in the previous gen-
eration. The search comprises the creation, testing and
selection of new ‘generations’ of ‘populations’ within the
search space and is pursued until a satisfactory outcome,
described as the termination criterion, is achieved.

We employed the GA methodology to optimize a set of
environmental parameters, which we identified to be
important for the cultivation of K. phaffii expressing HuLy
under the inducible AOX promoter. K. phaffii is widely
employed for recombinant protein production due to the
high product titres obtained with this host organism, which
can be grown at very high cell densities [26]. A number of
studies have focused on improving the productivity of this
host organism by either designing new expression vectors,
optimizing the copy number of the gene encoding the
recombinant protein, or by engineering the glycosylation
and secretory pathways. The reported cultivation conditions
and medium compositions used in these studies display a
huge variation depending on the recombinant protein that
was produced, the promoter from which the transgene was
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expressed, or the fermentation mode employed (batch, fed-
batch, or continuous) [15, 18, 21, 27]. This model system
allowed us to test the effect of many interdependent param-
eters on a multitude of biological objectives that required
optimization (including those that compete with one
another). It thus served as a suitable system to demonstrate
the flexibility of our approach and evaluate its performance.
Moreover, understanding the effects of different parameters
and their interactions on the productivity of this expression
system would provide its users with valuable knowledge
with which to control the processes associated with its culti-
vation and production.

The first stage of the decision-making process is the deter-
mination of the biological objective. For this system, the
main goal was to improve the yield of biologically active
recombinant protein. For this purpose, four main biological
objectives were selected for our system (Supplementary
Material): (i) maximizing cell density prior to induction of
recombinant protein synthesis; (ii) maximizing the biologi-
cal activity of the recombinant enzyme at the end of the
fermentation; (iii) maximizing the culture’s specific produc-
tivity; and (iv) minimizing any further increase in cell den-
sity during the induction phase.

An objective function was then constructed to incorporate
these different biological objectives so that it could serve as a
proxy for ‘fitness’, which was to be calculated from experimen-
tal measurements. The objective function was assembled as
the weighted sum of the normalized output responses repre-
senting the biological objectives of the study. In this test case,
we assigned equal weights to each of these biological objectives
since there was no evidence to suggest that one or more of
these objectives would make a more substantial contribution
to the ‘fitness’ score than any of the others.

Factors that may affect biomass and recombinant protein
production were identified as the parameters, and the rela-
tionships between these selected parameters were taken into
consideration. In the present study, we employed a priori
knowledge of the system by mining the available literature
and conducting some preliminary experiments in order to
identify the factors to be investigated. Eight medium param-
eters (ammonium, potassium, magnesium, calcium, iron,
glycerol, methanol and sorbitol) and one environmental
parameter (pH) were identified as being important to opti-
mize (Supplementary Material). It would be imperative to
avoid limiting the number of factors to be investigated in
the absence of such a priori knowledge. Once the factors
were determined, the range of values each parameter would
be allowed to assume was set, thus defining the boundaries
of the search space. The range was kept as broad as possible,
taking into consideration aspects such as toxicity, feasibility
or background knowledge, in order to reduce the risk of
missing the optimum.

GA requires the determination of certain parameters intrin-
sic to the concept of evolution implemented within the pro-
gramming scheme. These parameters needed to be specified

initially and kept constant throughout the procedure. One
of these parameters is the size of the ‘population’, which
would be investigated in each ‘generation’ of experiments.
We established a linear relationship between the population
size and the number of factors under investigation.
Although there is no theoretical limit to the number of indi-
viduals allowed, earlier reports suggested that the optimal
‘population’ size should be confined to the range between n
and 2n, where n is the number of ‘genes’, i.e. the factors
under investigation [28]. We fixed the size of the ‘popula-
tion’ to the following relationship, 2�n�2, to remain within
the upper quantile of this recommended limit. Conse-
quently, the size of the ‘population’ was 16 for our case
study, where we investigated nine factors.

An overcrowded ‘population’ would delay the convergence
of the parameters towards an optimum, whereas the search
would risk rapidly hitting a local optimum in a small and
confined ‘population’ [29]. While with GA, in contrast to
DOE, the number of experiments required does not show
an exponential increase with the number of parameters
investigated, it should be remembered that the population
size still increases linearly with the number of factors and
consideration needs to be given to the resource implications,
in terms of money, personnel and equipment, that a given
population size implies.

The final decision to be made regarding the ‘populations’ is
the number of levels at which each factor would be tested.
In the present study, we allowed each factor to be investi-
gated at 32 different levels within their assigned ranges.
There is no theoretical limit to the number of levels that
could be investigated, and introducing more levels would
naturally improve the precision of the optimum achieved.
However, consideration should be given to the degree of
precision that is necessary, useful or, indeed, achievable
using the techniques employed in the experiments. Adopt-
ing the population characteristics discussed above allowed
us to investigate the interactive effect of nine environmental
parameters, each at 32 different possible levels. A similar
experimental regime employing the full factorial DOE
would have been equivalent to conducting 329 experiments,
that number being equivalent to nearly as many cells as
there are in the human body. This comparison demon-
strates that GA is a much more rapid and less costly alterna-
tive to the solution of multi-parameter optimization
problems suffering from high dimensionality.

GA employs ‘survival of the fittest’ as its core working prin-
ciple to find the optimal solution to a problem [30]. The
search was initiated with a randomly created ‘population’.
For our test case, the initial randomly created ‘population’
comprised 16 different conditions. The cells were cultivated
in these 16 different medium compositions with changing
levels of six medium components and pH values, and were
induced with addition of different levels of methanol and
sorbitol following a 30 h pre-induction phase. The final
samples were collected 42 h later than the induction to
determine cell density and protein levels. The ‘fitness’ of
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each individual was then evaluated by calculating the score
output of the objective function as defined earlier, and a
new ‘population’ was generated as described in Methods.
The operations employed in the generation of a new ‘popu-
lation’ require some parameters to be set. The default values
for the selection probability, ‘cross-over rate’ and ‘mutation’
probability were set as 0.5, 0.9 and 0.01, respectively, based
on the recommendations in previous reports [30] in order
to make the algorithm applicable for a wide range of optimi-
zation problems. However, the suitability of these values
depends on the problem under investigation and specific
applications may require adjustments to these default val-
ues. A ‘mutation’ probability of 0.01 was much lower than
that employed in earlier studies on the application of GA
for medium optimization for biological systems. A ‘muta-
tion’ rate of 0.15 was previously shown to be suitable for the
optimization of the medium conditions for microbial cells
[8]. Therefore, we adjusted the mutation rate and set it to
0.1 in the case study, in line with earlier reports, although
much lower mutation rates were recommended for GA
applications in general.

The GA search was conducted for three generations to opti-
mize cultivation conditions for improving HuLy production
yield (Supplementary Material). Different criteria could be
selected to terminate the execution of the GA. We moni-
tored the average individual objectives scores in each ‘gener-
ation’ and terminated the study when there was no further
improvement between the average enzyme activity scores,
between successive ‘generations’ (these proved to be the sec-
ond and the third ‘generations’). There was a significant
(P<0.05) improvement in scores for the better-performing
fraction of the ‘population’ between the first and the second
‘generations’, but no significant improvement in scores
(P>0.1) between the second and the third ‘generations’
(Fig. 1a). The relative standard deviation (RSD), calculated
as the standard deviation of the enzyme activity scores nor-
malized by the average enzyme activity score, was used to
investigate how the search space was occupied in consecu-
tive ‘generations’. A relative decrease in the RSD value was
observed in the better-performing fraction of the third ‘gen-
eration’, indicating a substantial contraction of the search
space down to an optimal sub-space (Fig. 1b).

Monitoring the convergence of parameter levels by
population profiling

‘Population’ profiling is the investigation of how frequently
each level is occupied by each factor through the course of
‘generations’. This approach allows the monitoring of the
convergence of each factor towards a specific level, which
guides the system to reach the optimum. Selection of a ter-
mination criterion to monitor the convergence in the output
of the optimization study did not necessarily ensure the
convergence of every factor towards an optimal value
(Fig. 2). However, it suggested a refined multidimensional
sub-space within which an optimum of the initial design
space could lie. Exploiting this potential through a fine-
tuning step improved the outcome of the optimization study

even further. In our test case, the levels for methanol, sorbi-
tol and pH showed a clear convergence towards unique val-
ues at 6.75, 7.60 and 6.74 g l�1, respectively (Fig. 2). In the
case of ammonium, potassium and glycerol, the footprints
in the third ‘generation’ indicated a pronounced conver-
gence towards unique levels at 6.55, 3.21 and 9.87 g l�1,
respectively. The optimal concentrations of FeSO4 . 7H2O
and CaCl2 . 2H2O were determined based on the levels
employed more frequently in the ‘population’ as the search
approached the third generation. The optimal concentration
of MgSO4 . 7H2O was determined by testing the two distinct
levels that were more frequently adopted as the system
evolved towards an optimum, and 2.37 g l�1 was identified
to perform better (Supplementary Material). This strategy
could also be adopted if one wished to terminate the labour-
intensive GA prematurely, when an initial sign of conver-
gence in the output was observed, and proceed to fine-tune
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the set-up through a curation stage, the latter would require
decision-making on the levels to which the factors need to
be assigned. It should also be noted that the GA approach
does not ensure a global optimum. The search can lead us
to a local optimum in the solution space and the identified
optimum might change depending on the initial starting
random ‘population’. From this perspective, the results
should be evaluated in terms of the improvement achieved
in the final objective.

We then challenged our optimized set of conditions against
previously employed conditions. We compared our set’s per-
formance with respect to minimal medium buffered at pH 6
or defined medium buffered at pH 5, both of which are com-
monly used by researchers in the field. The enzyme activity
was shown to improve by up to 80% when the optimized set
of conditions was used instead (Supplementary Material).

Exploration of an optimal sub-space via
evolutionary algorithms

The data generated during the course of the conducted heu-
ristic search employing the genetic algorithm were used to
obtain a model to explain the relationship between the

factors and the output response described by the scores of
individual objectives. Linear regression models failed to
describe the search space acceptably since a large number of
factors and their interactions contributed to the construc-
tion of the search space under investigation. Although non-
linear models provide a useful alternative in such instances,
our lack of knowledge of the model structures opens up an
unfeasibly large number of possibilities to be tested. Instead,
we propose Symbolic Regression (SR) as an alternative
approach to handle high-dimensional modelling problems
with an unknown model structure. Symbolic Regression
[24, 25] is a genetic programming approach, which starts
with a random ‘population’ of individual models con-
structed from pre-defined allowable functions in a ‘plug-
and-play’ fashion, and ‘evolves’ both the structure of the
models and the coefficients of the model through the course
of ‘generations’ until an acceptable fit is achieved.

In a standard DOE approach, since the number of the fac-
tors that are under investigation is kept relatively low in
order to be practicable, multiple linear regression (MLR)
can be employed to construct models that explain the varia-
tion in the response with a high goodness-of-fit. However,
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Fig. 2. Population profiling for monitoring the absolute frequency of the levels of each factor tested in the population over generations.

Absolute frequency denotes the number of times that level has been assigned to the ‘individuals’ in each ‘generation’. The factors

represented here are: methanol (a), sorbitol (b), pH (c), (NH4)2PO4 (d), KCl (e), glycerol (f), FeSO4 . 7H2O (g), CaCl2 . 2H2O (h) and MgSO4

. 7H2O (i). The levels that appeared at least once in the search are displayed along the abscissa, and the absolute frequency is dis-

played along the ordinate. In each plot, the tone of the blue bars becomes darker for further ‘generations’ with the lightest shade rep-

resenting the first ‘generation’ and the darkest tone representing the third, and last, ‘generation’ of the evolution experiments.
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as the number of factors under investigation increases, more
complex models are required to represent the possible inter-
actions among those factors and to explain the variability in
the output. For such applications, SR is a powerful tool since
it does not require any a priori knowledge of the model
structure or the provision of such information to the algo-
rithm ab initio.

The size of the ‘population’, the number of ‘generations’, the
number of factors that are allowed to have an interactive
effect on the score in any individual model, and the ‘selec-
tion pressure’ for identifying better-fitting models to ‘mate’
and produce ‘offspring’ in the following ‘generation’ were
previously reported as parameters that need case-specific
adjustment in SR problems [24]. The size of the ‘population’
and the number of ‘generations’ are two parameters that
need to be adjusted depending on the size of the dataset
under investigation. For the current dataset of environmen-
tal conditions and the corresponding protein production
yields, we tested different values for these parameters and
observed that increasing both parameters up to 500
improved the search by identifying models that explained
the variation in the data to a greater degree. Further
increases in the size of the ‘population’ and/or the number
of ‘generations’ did not yield further improvements in the
performance of the models (Supplementary Material).
Indeed, the selected parameter values were previously
shown to be sufficient to analyse much larger biological
datasets [25]. Only basic mathematical operations (addition,
subtraction, multiplication and division) were allowed in
the models to ensure the development of relatively simple
model structures.

Next, we constructed four batches of 10 models using the
same dataset, each model representing a unique course of
‘evolution’ and each batch representing how the system was
used to describe our different objectives: high final cell den-
sity during the growth-promoting phase; little further
growth during the protein production phase; high enzyme
activity; and high specific productivity. These models
allowed us to explain the variation in each individual objec-
tive caused by the nine factors under investigation (Supple-
mentary Material). The residual sum of squares (R2) was
selected as the metric to represent the proportion of vari-
ance in the models. The performance of these models in
representing the variance in the dataset was compared to
that of the MLR models, which are commonly employed in
the standard DOE strategy (Table 2). SR outperformed
MLR in explaining the variance of the dependent variables,
i.e. the individual objectives in all four batches of 10 models.
The highest goodness-of-fit (R2-value) for each batch is
given in Table 2.

We conducted sensitivity analyses employing these batches of
10 models to determine the sensitivity of each individual
objective to a small variation in each factor. We shifted the
value of each factor from its determined optimum by 10%
and investigated whether a similar response of 10% or higher
was observed in individual objectives in their respective model

pools (Supplementary Material). If such a response was
observed in the batch of models for each individual objective,
we denoted this factor/predictor as a major contributor
(Table 3). The sensitivity analysis revealed the distinction
between what we call ‘operation-related’ factors and ‘cell cul-
ture-related’ factors in the experimental design, although the
process of model construction was blind to the nature of the
factors under investigation. We identified all dependent varia-
bles in the objective function to be highly sensitive to varia-
tions in the pH of the working culture. In this way, it was
found to be imperative to have strict control over the pH of
the cultivation during HuLy production by K. phaffii under
the control of the alcohol oxidase promoter. The experiments
showing total loss of protein activity under conditions where
the pH was not controlled throughout the course of the fer-
mentation (Supplementary Material) also confirm this model
prediction.

CamOptimus: compiled version of the tool and the
standalone GUI

We have proposed here an AI-based approach to tackle the

complex multi-parameter experimental design problems

encountered by biologists on a day-to-day basis. Ease-of-

Table 2. Evaluation of the SR models for each individual objective

R2 Adjusted R2*

ODbi SR 0.645 0.583

MLR 0.131 �0.021

OD(ai�bi) SR 0.745 0.685

MLR 0.332 0.173

Enzyme activity (Ea) SR 0.804 0.758

MLR 0.595 0.499

Specific productivity (P) SR 0.881 0.853

MLR 0.610 0.518

*R2 that has been adjusted for the number of predictors in the model.

Table 3. Summary of major contributor factors for each individual

objective

ODbi OD(ai�bi) Ea P

pH H H H H

Glycerol H H H

Ammonium H H

Methanol N/A* H H

Sorbitol N/A* H

Calcium H

Potassium

Iron

Magnesium

*N/A, not applicable since cultivation medium did not contain methanol

and sorbitol during the pre-induction phase.
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use, accessibility and flexibility are features that help any

tool to be adopted by a broad community of researchers.

Therefore, we have developed a compiled version of this

tool and made it available as a stand-alone GUI, which only

requires the freely available MATLAB Runtime Environ-

ment to be installed. The GUI has a modular structure,

which guides the user through the stages of designing a

problem and optimizing the accompanying experimental

set-up. The interface allows the user to proceed to the next

steps in the process only after the prerequisite information

has been provided, and this helps to define the structure of

the experiments that need to be carried out.

Define
objectives and

factors of
interest

(a)

(b)

Configure GA
parameters

Generate first
generation of
experiments

Load data
and model

type

Go to laboratory to do experiments

Select the
objective to
be modelled

Select the
factors

Evaluate the model

Configure SR
settings

Evaluate the
experimental results

Generate new
experiments if desired

outcome
is not achieved

Fig. 3. Example input/output entries for the CamOptimus GUI and the process algorithm. A test system investigating nine parameters

for optimizing four objectives is provided above. The optimization search is conducted for three generations using the GA (a) and the

data generated are modelled by SR (b). The algorithms for conducting the optimization search and analyzing the data are shown as

annotations to the GUI screenshots.
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The user first provides the biological objectives and the factors
relevant to the experimental design, along with their allowable
ranges. The default parameters of the GA are modified, if nec-
essary, at this initial stage. Once this configuration is estab-
lished, the user is no longer allowed to alter any one of these
items throughout the course of the optimization procedure, in
order to prevent any possible errors. The user is then
prompted to create a set of experiments, carry out these
experiments in the laboratory and measure the outcomes, pro-
vide these results back to the tool to allow it to calculate the
‘fitness’ and evaluate the comparative information on the con-
vergence of the scores in a repeated manner until a satisfactory
outcome, as decided by the user, is achieved. The user may
also proceed to investigate the level-profiles of each parameter
following its course in all ‘generations’, in case fine-tuning of
the results may be needed in the population-profiling compo-
nent. This procedure marks the end of the GA component of
the tool (Fig. 3a). The second, and last, component of the tool,
which employs SR, allows the user to investigate the possible-
solution space to conduct a sensitivity analysis on their indi-
vidual objectives to determine which of the factors had the
greatest influence on the optimization exercise (Fig. 3b). The
video S1 (available in the online Supplementary Material;
CamOptimus_demo.mov), shows how the tool is used.

In summary, we have proposed a hybrid approach, which
employs evolutionary algorithms, to address the multi-
parametric experimental design problem. We have pre-
sented CamOptimus, a simple-to-use and freely available
tool, which adopts the ‘best of both worlds’ from the DOE
and GA methodologies. The possible solution space is inves-
tigated through GA, which will most likely ensure that the
search leads to the discovery of the optimum sub-space
within the confines of the initial search-space, without
imposing artificial restrictions on either the number of fac-
tors that need to be investigated or their levels. The algo-
rithm guides the search towards a more confined space,
where an optimum solution resides, depending on how dif-
ferent sets of conditions perform in achieving the desired
objective and thus allows the identification of optimal space
without testing all possible combinations. A regression-
based analysis is then employed to construct models using
the wealth of experimental data generated within the
search-space in order to analyse the sensitivity of the system
to individual factors. We tested this platform on a case study
of biotechnological significance, within the domain of
recombinant protein production by microbial hosts, and the
levels of nine interdependent environmental cultivation
parameters were optimized in three generations by testing
only 16 different conditions in each generation. The opti-
mum levels of factors were determined by monitoring dis-
tribution of the frequency of the level occupation over
successive generations. Comparison of the optimized condi-
tion with ones previously reported in the literature revealed
that up to 80% improvement in protein production was
achieved under optimized conditions. The outstanding suc-
cess of the new experimental set-up in comparison to those
available in the literature demonstrates the possible scope

for such an optimization exercise in improving the effi-
ciency of many other commonly employed methods that
might potentially be operating under sub-optimal condi-
tions. In fact, the tool has been successfully employed in a
completely different domain; in optimizing environmental
conditions for enhancing macropinocytosis by Dictyoste-
lium amoebae by the Kay lab (MRC Laboratory of Molecu-
lar Biology, UK), thus demonstrating its flexibility and
adaptability for different experimental problems (unpub-
lished work). We believe CamOptimus to be an attractive
(and free) alternative to commercially available DOE soft-
ware for use in both academic and industrial applications.
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