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There are three types of adipocytes: white, brown, and beige
Beige/brown adipocytes play a crucial role in regulating the
body’s overall energy balance. The thermogenic function is under
the influence of various tissues, including the brain, muscles, and
liver. However, the breast tissue is not in the list. This issue has
been addressed in a study recently published in Nature, which
identified the paracrine function of breast epithelial cells for
secreting “lipocalin 2” in the inhibition of thermogenesis of beige
adipocytes to reserve mammary gland white adipose tissue
(mgWAT)1. Within the female mammary gland, milk is produced
by epithelial cells that form the glandular ducts and lobules in the
adipose tissue and connective tissue within the breast2. The
gland’s structure is anatomically divided into four compartments:
n (Jianping Ye).
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lobules, primarily bilayered epithelium in the ducts, connective
tissue rich in extracellular matrix, and adipose-rich areas3. While
the exocrine function of epithelial cells is well-known in milk
secretion, their paracrine/endocrine function was largely unex-
plored. The new study revealed that these epithelial cells have
a paracrine function in secreting lipocalin 2, referred to as

adipocytes4. White adipocytes are the major cell type in white
adipose tissue (WAT) with functions in energy storage and
adipokine secretion. WAT is predominantly found in various
regions of the body, including the breast and subcutaneous5. In the
breast, white adipocytes provide lipids supply to epithelial cells in
production of the fatty acid portion of milk at about 3.5% by
weight. In contrast, brown adipocytes are the major cell types in
brown adipose tissue (BAT) with a primary function in thermo-
genesis, providing heat in the maintenance of body temperature6.
This type of cells is characterized by abundant mitochondria and a
high expression of uncoupling protein-1 (UCP-1). UCP-1
uncouples oxidative phosphorylation from ATP synthesis leading
to the heat production for non-shivering thermogenesis7. Beige
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adipocytes distribute in subcutaneous WAT (scWAT) in mice,
share similarities with brown adipocytes in thermogenesis. Beige
function is induced by factors such as exercise, cold exposure,
PPARg activation, and b-adrenergic receptor agonists, which
promote generation of beige cells from preadipocytes or mature
adipocytes, known as WAT browning. Under conditions of warmth
and high-fat diet feeding, beige cells are degenerated into white
adipocytes, known as beige adipocyte whitening, decreasing the
thermogenic activity of scWAT8,9. The WAT browning is consid-
ered a potential therapeutic approach for obesity and diabetes10.
The impact of epithelial cells in beige adipocytes had not been
previously explored in female breast.

The breasts contain a large portion of white adipose tissue to
support milk production in the epithelial cells11,12. The adipocytes
interact with the ductal epithelial cells, particularly during preg-
nancy, lactation, and involution13,14. The adipocytes also play a
role in controlling ductal morphogenesis, cell differentiation,
and function maturation of ductal epithelial cells through the
interaction13,15. In breast cancer, the adipose tissue is reprog-
rammed by epithelial tumor cells to express more inflammatory
cytokines supporting tumor growth as shown in a recent study
using single-nuclear RNA sequencing (snRNA-seq) technology by
our group16. The study indicates a crosstalk between adipocytes
and epithelial cells in breast cancer, but the paracrine function of
epithelial cells remains to be explored in breast.

In another recent study, Kumar et al. reported a comprehensive
Human Breast Cell Atlas (HBCA) using multiple advanced
technologies including single-cell RNA sequencing (scRNA-seq),
snRNA-seq and spatial RNA sequencing technologies17. They
identified 12 primary cell types and 58 cell states, revealing a high
degree of diversity among luminal epithelial cells. There are three
subtypes of epithelial cells, basal, luminal secretory (LumSec),
and luminal hormone-responsive (LumHR), constitute the major-
ity of breast ductal tissue. Additionally, they observed diversity in
cellular states within these subsets. The basal epithelial cells were
notably homogeneous, whereas the LumHR epithelial cells con-
tained three different states, and LumSec epithelial cells displayed
seven different states. They employed four different technologies
to obtain spatial information of the subsets, providing valuable
insights into breast biology and breast cancer. Notably, the sub-
sets, including LumSec-basal, LumSec-HLA ductal basal coloni-
zation, LumSec-KIT, and LumSec-major basal lobular
colonization, exhibited location-specific patterns. Unlike previous
findings, LumHR and LumSec cells were not limited to alveoli
and ducts as they presented in both ducts and lobular alveoli with
varying abundance. The study identified a significant decrease in
epithelial cell types in the breasts of postmenopausal women, with
an increase in fibroblasts and myeloid cells in obese individuals17.
They examined brown/beige adipocytes in the adipose tissue of
breast. The conclusion is that the breast adipocytes were exclu-
sively white adipocytes17. Despite the excellent work in con-
struction of comprehensive and unbiased cellular map of breast
tissue, the functional interactions between epithelial cells and
adipocytes were not investigated in the study.

To this point, Patel et al.1 investigated the interaction of
epithelial cells and adipocytes in mice, and obtained similar pat-
terns of cell subsets to those by Kumar et al.17 They divided
luminal cells into three subclusters, including luminal-hormone
sensing (Luminal-HS), luminal-alveolar (Luminal-AV), luminal-
hormone sensing alveolar (Luminal-HS-AV). Luminal-HS from
Patel et al.‘s studies and LumHR from Kumar et al.‘s studies are
hormone-sensing cells with high expression of hormone receptors,
such as Pgr, Esr1 and Prlr18. The Luminal-AV subsets specifically
express luminal progenitor markers (Cd14) and milk biosynthesis-
related genes (Mfge8). The LuminaleHSeAV subsets co-express
hormone-sensing markers and alveolar progenitor markers, which
is consistent with observations in other studies18,19. While the
LumSec subsets express genes associated with milk production
and secretory molecules with distinct expression of epithelial
keratin20e22.

More importantly, they identified a subtype of glandular luminal
epithelium in female mice that secretes “mammokine” to regulate
beige function of breast adipose tissue1. Using scRNA-seq tech-
nology, they analyzed cell types and cell subsets in the breast tissue.
They demonstrated that mammary ducts could reduce UCP1
expression in breast adipocytes through secretion of mammokine,
lipocalin 2 (LCN2). To confirm the activity, they employed Lcn2
gene knockout mice and found that LCN2 inhibited the beige cell
function in female-specific manner. In the female Lcn2-KO mice,
the inhibition was removed by Lcn gene inactivation leading to
elevation of energy expenditure, which was responsible for a sig-
nificant decrease in body weight and subcutaneous fat under a cold
environment. The effect was not observed in the wild-type controls
and male Lcn2-KO mice. Expression of LCN2 was induced by cold
stimulation and restricted to the luminal epithelium. The impact of
the mammokine may extends beyond breast adipocytes to subcu-
taneous fat in other fat pads. Importantly, this effect was observed
only in the femalemice, suggesting that mammokine activity is sex-
specific in regulation of adipose thermogenesis. The mammary-
derived factor, secreted by ductal epithelial cells, preserves energy
in the female body for breast development and milk production. In
breast cancer, the interaction forces adipocytes to supply essential
nutrients, energy, andgrowth factors to epithelial tumor cells tomeet
the metabolic demands of tumor23.

The LCN2 activity remains controversial in adipocyte thermo-
genesis. There are several studies on LCN2 regulation of adipose
thermogenesis24e30. One group of studies suggested that Lcn2 was
required for BAT thermogenesis and beiging activity of inguinal
white adipose tissue (iWAT). They found that LCN2 deficiency
significantly suppressed thermogenesis of adipose tissue in mice. In
the mechanism of LCN2 activity, LCN2 was found to act via the
COX2-PGs-mTOR pathway in adipocytes as LCN2 deficiency sup-
pressed the mTOR signaling in control of thermogenic gene
expression, lipogenesis, and lipolysis24e26. Furthermore, LCN2 was
reported to regulate metabolic homeostasis of retinoids and retinoid-
mediated thermogenesis in adipose tissue27e30. These studies
demonstrated that LCN2 promotes thermogenesis of brown/beige
adipocytes. However, another group of studies suggest that LCN2
represses the function of brown/beige adipocytes. Ishii et al. showed
that the Lcn2-KO mice had enhanced non-shivering thermogenesis
when exposed to 4 �C as indicated by higher body temperature and
larger size of BATs, indicating that LCN2 inhibits function of
BATs31. Lemecha et al.32 observed that Lcn2 gene deficiency
significantly improved BAT function as indicated by body tempera-
ture in pancreatic ductal adenocarcinoma (PDAC)-bearing mice and
increased expression of Ucp1 and b3-adrenergic receptor in BAT.
Park et al. found that LCN2 inhibited BAT function in dietary obese
mice, and calorie restriction enhanced BAT function in the obese
mice by suppression of LCN2 expression, which led to a reduction in
inflammation, oxidative stress, and mitochondrial fission in BAT33.
The two groups of reports suggest that LCN2 activity in adipocytes
deserves more studies on thermogenesis.
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The controversial may be explained by the sex-specific activity
of LCN2. Previous studies of LCN2 in vivo were mainly con-
ducted in male mice. In a study by Krishman et al.34, LCN2
expression pattern and phenotypes were examined in both males
and females in a panel of 100 inbred strains of mice (HMDP).
They found that LCN2 overexpression in the adipose tissue
induced metabolic disorders via an autocrine/paracrine manner
through induction of inflammation and fibrosis in females, but not
in males. While, LCN2 overexpression in the liver failed to
Figure 1 Cold-induced secretion of LCN2 from the luminal epithelial

cells leads to beige cellwhitening in the female breast. In the new study by

Patel et al., the breast adipose tissues were collected from female mice

treated with the room temperature (RT) or cold (4 �C) environment,

respectively. The cell types and subsets of epithelial cells were investi-

gated using single cell sequencing technology, which led to the finding

that LCN2 expression was induced in the epithelial cells by the cold

stimulation. The expression was restricted to the subset of luminal-

alveolar (Lunimal-AV) of epithelial cells, but not the subset of luminal-

hormone sensing (Luminal-HS) or luminal-hormone sensing alveolar

(LuminaleHSeAV) epithelial cells. LCN2was found to act on the beige

adipocytes to reduce the thermogenesis activities leading to beige

adipocyte whitening in the breast, which likely leads to reservation of

energy for milk production in the breast.
generate the metabolic effect, suggesting a tissue-specific effect of
LCN2. Lcn2 gene transcription is regulated by estrogen through
estrogen receptor Era, which represses Lcn2 gene expression by
binding to the promoter DNA35,36, suggesting a mechanism of
sex-specific regulation of Lcn2 gene. The study suggests that
LCN2 level is lower in the female body as a result of suppressed
transcription by the estrogen receptor. The conclusion by Krish-
man et al. is consistent with that of Patel et al. on the sex-specific
activity of LCN-2 in the inhibition of thermogenic function of
adipose tissue.

There is a sex difference in beige function in fat pad-specific
manner as reported in several studies37e41. It is generally believed
thatWAT browning occurs frequently in subcutaneous fat, instead of
gonadal WAT (gWAT) depots as shown in most studies42. However,
this feature may apply only to male mice, but not to female mice. In
the female mice, WAT browning was more active in gWATof female
mice than that of male mice as reported in a study by Kim et al. in the
model of b3-adrenergic stimulation41. Additionally, WAT browning
was more active in gWAT than iWAT in the female mice41. These
results are consistent with in vitro experiments conducted by Beukel
et al.43 using human perirenal tissues, suggesting thatWAT browning
has a gender difference and fat pad-specificity.

In addition to LCN2, other “mammokine” were identified
in the luminal epithelial cells in the study1. Expression of
those secreted factors was up-regulated in the epithelial cells by
the cold treatments. Activities of those mammokine were
not examined in the study, but their activities are indicated in other
studies. For example, Angiopoietin-like 4 (ANGPTL4) increases
circulating triglyceride levels and regulated lipid distribution
across different tissues by inhibiting lipoprotein lipase activity. As
such, ANGPTL4 has been considered as a potential therapeutic
target44,45. Leucine-rich a-2 glycoprotein 1 (LRG1) is an adipo-
kine secreted by mature adipocytes and LRG1 overexpression
enhanced insulin sensitivity and suppressed inflammation46.
Diacylglycerol acyltransferase 2 (DGAT2) regulates tri-
acylglycerol (TG) synthesis of de novo-synthesized fatty acids and
is the predominant enzyme for TG storage47. Adropin (Enho)
modulates glucose and lipid metabolism48. Patel et al.1 reported
that the adropin and LRG1 secreted by luminal cells may not
make an impact in adipose thermogenesis directly as they may
change other metabolic functions of mgWAT. These data indicate
that liminal epithelial cells regulate the function of breast adipose
tissue by secreting multiple mammokines.

While this new study sheds light on the paracrine function of
mammary epithelial cells for identification of mammokine LCN2
in the regulation of breast energy expenditure, which involves in
beige adipocyte whitening1 (Fig. 1). However, the precise mo-
lecular mechanism of LCN2 action remains to be investigated for
the whitening1.
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