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Background: Pneumonia is an infection of the lungs that is characterized by

high morbidity and mortality. The use of machine learning systems to detect

respiratory diseases via non-invasive measures such as physical and laboratory

parameters is gaining momentum and has been proposed to decrease

diagnostic uncertainty associated with bacterial pneumonia. Herein, this study

conducted several experiments using eightmachine learningmodels to predict

pneumonia based on biomarkers, laboratory parameters, and physical features.

Methods: We perform machine-learning analysis on 535 di�erent patients,

each with 45 features. Data normalization to rescale all real-valued features

was performed. Since it is a binary problem, we categorized each patient into

one class at a time. We designed three experiments to evaluate the models:

(1) feature selection techniques to select appropriate features for the models,

(2) experiments on the imbalanced original dataset, and (3) experiments on the

SMOTE data. We then compared eight machine learning models to evaluate

their e�ectiveness in predicting pneumonia

Results: Biomarkers such as C-reactive protein and procalcitonin

demonstrated the most significant discriminating power. Ensemble

machine learning models such as RF (accuracy = 92.0%, precision = 91.3%,

recall = 96.0%, f1-Score = 93.6%) and XGBoost (accuracy = 90.8%, precision

= 92.6%, recall = 92.3%, f1-score = 92.4%) achieved the highest performance

accuracy on the original dataset with AUCs of 0.96 and 0.97, respectively. On

the SMOTE dataset, RF and XGBoost achieved the highest prediction results

with f1-scores of 92.0 and 91.2%, respectively. Also, AUC of 0.97 was achieved

for both RF and XGBoost models.
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Conclusions: Our models showed that in the diagnosis of pneumonia,

individual clinical history, laboratory indicators, and symptoms do not have

adequate discriminatory power. We can also conclude that the ensemble ML

models performed better in this study.

KEYWORDS

pneumonia, machine learning, non-invasive measures, electronic health records

(EHR), decision support system (DSS)

Introduction

Pneumonia has been a major cause of morbidity and

mortality in both developed and developing countries, especially

among patients who are diagnosed and treated at a later

stage (1, 2). Specific symptoms such as cough with sputum

production, fever, chest pain, shortness of breath, and chills

are the main characteristics associated with pneumonia (3).

Because of several reasons such as difficulty in identifying the

etiological agents in individuals, low specificity of symptoms

of lower respiratory tract infections, and lack of widespread

availability of laboratory tests and imaging, the accurate

definition and diagnosis of pneumonia are still debatable

(4). Diagnostic findings such as decreased breathing sounds,

crackles, bronchial breath sounds, egophony, along with a

sharp increase in body temperature, tachypnea, hypoxia,

tachycardia, and dyspnea, should suggest pneumonia (either

broncho- or lobar). Pneumonia benefits from antibiotics. So,

to prevent unnecessary administration of antibiotics that might

ultimately create multi-drug-resistant “superbugs” - as has

already happened - procalcitonin levels are monitored along

with clinical symptoms. Procalcitonin is released from lung

neuroendocrine cells after exposure to bacterial endotoxin and

lipopolysaccharides which typically increases the production of

procalcitonin. The appearance of pneumonia symptomatology

coupled by a rise in procalcitonin levels would trigger

antibiotic administration.

Although chest radiography is the recommended technique

for pneumonia diagnosis, factors such as lack of standardized

interpretation (5), inter-rater variability (6), absence of

abnormalities in the chest radiographs of children (7),

low sensitivity to early-stage pneumonia, and potential

harm due to exposure to x-rays hinder their use. Most

importantly, radiography is usually not available in areas with

the highest disease burden such as those in low-income settings.

Consequently, general practitioners mainly rely on non-invasive

measures such as the use of signs, symptoms, and simple

laboratory tests as tools to diagnose pneumonia. To improve

diagnostic accuracy and enhance various treatment strategies

for pneumonia, prediction models based on non-invasive

measures have been proposed.

Machine learning (ML), a powerful computer-based method

that has the capacity to learn, reason, and self-correct without

explicit programming, has the potential to provide solutions to

the above problems. In recent years, the use of ML has achieved

great advances and major benefits in medicine. Researchers have

used large clinical databases to answer previously unanswerable

questions and create systems that facilitate human decision-

making (8, 9). Over the years, enthusiasm and optimism

have been alternated with skepticism and pessimism in this

fascinating field of research. Although some claims associated

with this kind of research are currently being made with great

grandiose claims (10), ML-based models have already proven to

be useful in some clinical applications (11). ML has been shown

to improve diagnostic accuracy for pneumonia when applied

to hospitalized patients (12). The use of machine learning

techniques to detect pneumonia via non-invasive measures

such as signs and symptoms is gaining much attention. In

several clinical studies, clinical history and physical examination

parameters have been evaluated for their diagnostic value in

predicting pneumonia (13, 14).

Based on the above, this study conducted several

experiments on various ML models to predict pneumonia

based on biomarkers, laboratory, and physical features.

Methods

Data collection and preprocessing

We retrospectively recruited patients aged at least 18 with

confirmed acute lower respiratory illness and treated at the

First Affiliated Hospital of Zhengzhou University in Henan

Province between October 29, 2019, andMay 21, 2021. The First

Affiliated Hospital of Zhengzhou University is one of the largest

hospitals in central China, with an ∼13,000-bed capacity. We

extracted patient demographic information (including age, sex,

and comorbidities), physical parameters (tachycardia, tracheal

secretion, pleural effusion, mean arterial pressure, heart rates,

breathing rates, and systolic blood pressure), and hematological

parameters. Hematological parameters included serum sodium,

serum potassium, serum creatine, hematocrit, WBC count,

platelet, total bilirubin, hemoglobin, C-reactive protein (CRP),
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and procalcitonin (PCT). Unfortunately, some patients had

some missing data. As a result, we later addressed some of these

missing values in the dataset (data preprocessing). Typically,

real-world data contains multiple errors, incompleteness, and

incoherence, requiring data preprocessing. Because of this, we

preprocessed the data following these four steps:

Missing values

Missing data causes problems when aMLmodel is applied to

the dataset. Mostly, ML models don’t process data with missing

values. In this study, some variables had several missing values

of about 15% of that variable data. We used the median and

mode of the corresponding columns to fill in the missing values

of numerical attributes and categorical attributes, respectively.

Median is the centrally located value of the dataset in ascending

order. We filled missing numerical attribute values with the

median value. Mode is the most repeated value in the given

categorical observations. We filled missing entries with the

mode observations.

Imbalance data

The dataset was unbalanced. A classification dataset with

skewed class proportions is called imbalanced. Classes that make

up a large proportion of the dataset are called majority classes.

Those that make up a smaller proportion are minority classes.

The degree of imbalance in the minority class can be mild

(20–40% of the dataset), moderate (1–20% of the dataset), and

extreme (<1% of the dataset). In this study, the minority class

was 22% lesser than the majority class. Therefore, we needed

to resolve the issue before applying machine learning in order

to reduce data bias. One of the over-sampling approaches to

fix imbalanced data is the synthetic minority over-sampling

technique (SMOTE) (15). It manages overfitting induced by

a limited decision interval by controlling the generation and

distribution of manual samples using the minority class sample.

Specifically, SMOTE is based on selecting a random minority

class as the last sample. Then it finds the k nearest neighbors

(normally k = 5) of the selected prior sample. Finally, it selects

a random neighbor and creates a synthetic sample between the

two samples (prior sample and selected neighbor) in the feature

space at a randomly selected point. We can express SMOTE as

SMOTE(xsyn) = xp +
(

xknn − xp
)

× α,

where xp denotes feature vector of a prior sample, xknn
represents the k nearest neighbors, and α is the randomly

selected point.

Data rescaling

Before applyingML algorithms, one important step required

in data preprocessing is data rescaling. This makes the various

ML models more effective. The dataset contained various

scales for various quantities (e.g., age, mean arterial pressure,

heart rate, C-reactive protein, and procalcitonin). Therefore, we

perform data normalization to rescale all real-valued features:

x̃ =
x− avg

std
,

where x denotes the value, avg is the average of the values, and

std is the standard deviation. For models like logistic regression,

which rely on the magnitude of values to determine coefficients,

this step is highly important.

Feature selection

Some features contribute to predicting a variable of interest

than others. Feature selection is, therefore, performed to

automatically select those features. By doing this, the accuracy

is improved, overfitting is reduced, and most importantly, the

time required for training is reduced. Irrelevant features can

reduce the performance of several machine learning models. We

investigated six techniques of feature selection: Lower variance,

L1 regularization-based feature selection, L2 regularization-

based feature selection, Univariate feature selection, Tree-based

feature selection, and Principal Component Analysis (PCA).

• Eliminate lower variance (LV): Variance quantifies how

widely apart a collection of data is. When the variance is

0, all of the data values are the same and vice-versa. The

formula to compute variance is given as

σ 2 =
1

n

n
∑

i=1

(xi − x̄)2

where n is the number of pieces of data, xi is each of the

values in the data, and x is the mean (average) of the data. If

the variance is low or near zero, that feature is relatively

constant and will not increase the model’s performance.

Hence, it should be removed.

• Univariate feature selection: The univariate feature

selection (UFS) selects the best features by applying

univariate statistical tests. Specifically, UFS examines each

feature exclusively to determine the strength of the

feature’s relationship with the response variable using

the Chi-Squared Test. Given the data of two variables,

the Chi-Squared Test observes count O and expected

count E. Chi-Square measures how expected count E and

observed count O deviate from each other. The formula for

chi-square is

xC2 =
∑ (Oi − Ei)

2

Ei
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where c is the degree of freedom, O denotes observed

values(s), and E denotes expected values(s).

• L1/L2 regularization-based feature selection: The solutions

to linear models penalized with the L1 norm are sparse:

many estimated coefficients are 0. L1/L2 regularization-

based feature selection can reduce the dimensionality of the

data by selecting features with non-zero coefficients. The L2

norm adds “squared magnitude” of coefficient as a penalty

term to the loss function as

n
∑

i=1

(yi −

p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

β2
j

Whiles the L1 norm adds an absolute value of the

magnitude of coefficient as a penalty term to the loss

function as

n
∑

i=1

(yi −

p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

|βj|

• Tree-based feature selection: We used tree-based

estimators to calculate the impurity-based feature

importance; this can be used to remove irrelevant features.

We used a Random Forest algorithm. We selected 50

decision trees, each constructed using a random extraction

of observations from the dataset and features. Because

most data characteristics are not seen by some trees,

they (the tress) are de-correlated which makes them less

prone to over-fitting. Each tree is also a series of yes-no

questions based on a single or many characteristics. The

tree splits the dataset into two buckets at each node, each

containing more similar observations and distinct from

those in the other bucket. As a result, the significance

of each attribute is determined by how “pure” each of

the buckets is.

• Principal Component Analysis (PCA): We utilized PCA to

reduce the dimensions of our larger dataset. Essentially,

the reduced dataset still contains much of the information

in the large set. It is accomplished by evaluating the

correlation between features in order to find the most

important principal components. Although it is clear

that there are other better options such as t-SNE and

UMAP for dimension reduction, these reasons were

considered before choosing PCA for this task. t-SNE

involves a lot of calculations and computations because it

computes pairwise conditional probabilities for each data

point and tries to minimize the sum of the difference

of the probabilities in higher and lower dimensions. t-

SNE has a quadratic time and space complexity in the

number of data points. This makes it particularly slow,

computationally quite heavy and resource draining. Also,

the main disadvantage of UMAP is its lack of maturity.

It is a very new technique, so the libraries and best

practices are not yet firmly established or robust. The

short summary is that PCA is far and away from the

fastest option, it is deterministic and linear. However, we

potentially gave up a lot for that speed. We set the principal

components to 26.

Experimental setup

We perform machine-learning analysis on 535 different

patients, each with 45 features. Since it is a binary problem,

we categorized each patient into one class at a time. We

designed three experiments to evaluate the models: (1)

feature selection techniques to select appropriate features

for the models, (2) experiments on the imbalanced

original dataset, and (3) experiments on the balanced data

via SMOTE.

Prediction models

We compared several models to evaluate their

effectiveness in predicting pneumonia: Logistic Regression

(LR), Naïve Bayes (NB), Support Vector Machine

(SVM), Adaboost Decision Tree (ADT), K-Nearest

Neighbor (KNN), Random Forest (RF), Extreme Gradient

Boosting (XGBoost), and Multilayer Perceptron (MLP).

These models have been extensively used for many

classification tasks.

Evaluation metrics

Following previous works (16, 17), and considering that

machine learning models have multiple tuning parameters,

which are essential for model performance, we adopted 5-

fold cross-validation (CV) to evaluate all the classification

models using confusion matrices (Figure 1) and ROCs.

CV is a resampling technique used for evaluating and

validating ML algorithms based on a small dataset sample.

The dataset is randomly divided into k equal portions

(number of folds). In training the model, the residual k-

1 dataset is used, while the remaining dataset (validation

dataset) is used to test the model. The CV procedure is

then replicated k times with different folds as the test set

each time. In order to achieve a specific outcome, all k

outcomes from k-folds are summed and the average is

then calculated (18, 19). In the 5-fold cross-validation, we

randomly partition the dataset into five equal subsamples.

One subsample was used as the validation set and the
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FIGURE 1

Confusion matrix.

TABLE 1 Performance evaluation metrics equations.

Metric Equation

Accuracy TP+TN
TP+FP+FN+TN

Recall TP
TP+FN

Precision TP
TP+FP

F-measure 2× Recall×Precision
Recall+Precision

remaining four subsamples were used as the training

set. We divided all datasets into 80% training and 20%

testing. We used the training data during the feature

selection and training. However, the test data was used for

model selection.

For binary classification, multiple criteria are needed in

evaluating the performance of the models. As such, we evaluate

the performance of the various models based on f-measure,

Area Under the Curve of the Receiver Operator Characteristic

(AUC-ROC), accuracy, recall, and precision. These performance

metrics can be determined using True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives

(FN) as seen in Figure 1. The accuracy is the proportion

of all correctly predicted samples to the total samples. The

recall rate is the proportion of positive samples correctly

identified as positive to the total number of positive samples.

This metric is critical for our work since prediction models

want to identify as many positive samples as possible. The

precision defines the ratio of the number of positive samples

accurately predicted as positive to the number of positive

examples. Naturally, an excellent predictive model seeks a

high recall rate and precision. There is, however, a trade-

off between recall rate and accuracy; the F-measure provides

a thorough assessment by computing the harmonic mean of

recall and precision. Table 1 shows the equations used for

calculating the desired performancemetrics: accuracy, precision,

recall, and f-measure.

TABLE 2 LR prediction result of feature selection methods on original

dataset.

Feature selection Accuracy Precision Recall F1-score

LV 80.4 83.7 84.4 84.0

UFS 82.6 85.8 85.9 85.8

L1 75.9 79.0 82.5 80.7

L2 77.9 82.3 81.6 81.8

Tree-based 83.0 85.7 86.8 86.2

PCA 81.1 84.5 84.7 84.6

Results

Data balancing, rescaling, and feature
selection

The dominant class of the dataset had 22% more samples

(Figure 2). After SMOTE, we obtain two types of datasets: the

original imbalanced dataset and the SMOTE dataset.

We then used Logistic Regression as the baseline model to

choose the appropriate feature selection methods. The results

show that the Tree-based is most effective on the original data

followed by UFS (Table 2). In the SMOTE dataset, PCA is most

effective, followed by LV (Table 3). We used Tree-based and UFS

in subsequent experiments on the original dataset and reported

the best results. Likewise, we used PCA and LV in subsequent

experiments on the balanced SMOTE dataset and reported the

best results.

Evaluation of the performance of the
machine learning models on the original
dataset

We conducted experiments to acquire empirical evidence

on the original imbalanced dataset using the ML models listed
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FIGURE 2

Target data (LRTI) distribution before and after applying SMOTE. The label ’0’ is pneumonia and “1” for bronchitis. (A) Imbalanced data. (B)

Balance data.

TABLE 3 LR prediction result of feature selection method on balanced

dataset.

Feature selection Accuracy Precision Recall F1-score

LV 83.6 85.4 81.3 83.4

UFS 82.2 83.3 80.9 82.0

L1 77.3 78.2 75.4 77.1

L2 79.1 81.5 75.2 78.0

Tree-based 82.0 83.1 80.3 81.6

PCA 85.4 86.6 83.0 84.7

TABLE 4 Machine learning model prediction results on the original

dataset.

Model Accuracy Precision Recall F1-score

LR 81.4 82.7 84.2 84.3

NB 59.8 89.6 39.2 53.7

SVM 80.7 82.8 86.5 84.5

ADT 90.1 91.3 92.7 91.9

KNN 72.1 87.3 63.8 73.5

RF 92.0 91.3 96.0 93.6

XGBoost 90.8 92.6 92.3 92.4

MLP 79.4 83.7 82.5 82.9

above. From Table 4, the Ensemble machine learning models

such as RF (accuracy = 92.0%, precision = 91.3%, recall =

96.0%, f1-Score = 93.6%) and XGBoost (accuracy = 90.8%,

precision = 92.6%, recall = 92.3%, f1-score = 92.4%) achieved

the highest performance accuracy while NB achieved the lowest

performance accuracy on the original imbalanced dataset. Also,

ADT (accuracy= 90.1%, precision= 91.3%, recall= 92.7%, F1-

Score = 91.9%) had a performance which was almost similar to

that of XGBoost.

We also visualize the confusion matrix of RF and XGBoost

in Figure 3. We observe that the XGBoost model wrongly

predictedmore pneumonia samples (25) than the RFmodel (13).

However, XGBoost performed better than RF when predicting

other LRTIs other than pneumonia. Generally, it can be deduced

that the models could learn from the data.

The ROC curves of the XGBoost and RF are shown in

Figure 4. We observe that both the XGBoost and RF models

achieve a similar performance of 0.97 and 0.96, respectively.

Also, the “steepness” of the ROC shows that the XGBoost model

has a slightly high positive rate than the RF model.

Figures 5, 6 show the essential features that XGBoost and

RF models consider essential for prediction. Both XGBoost

and RF models consider hemoglobin, C-reactive protein,

and procalcitonin features very notably. Tracheal secretion,

antibiotics taken within the last 90 days, total bilirubin and

hematocrit features are also considered necessary by both

models, but their importance is relatively low compared with

those listed earlier. However, XGBoost does not consider some

features necessary (e.g., age, years of smoking, years of drinking,

dyspnea, tachycardia) compared to the RF model.

Evaluation performance of the machine
learning models on the SMOTE dataset

We also conducted experiments to acquire empirical

evidence on the SMOTE dataset using similar machine learning

models listed above.
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FIGURE 3

Confusion matrix of XGBoost and random forest on the original dataset. (A) XGBoost. (B) RF.

FIGURE 4

ROC curves of XGBoost and random forest on the original dataset. (A) XGBoost. (B) RF.

From Table 5, the RF model achieved the highest

performance followed by XGBoost and ADT, while NB

achieved the lowest prediction performance. The f1-scores of RF

and XGBoost are 92.0 and 91.2%, respectively, which indicates

how robust the models are.

We also visualized the confusion matrix of XGBoost and RF

in Figure 7 and made the following observations. The XGBoost

model wrongly predicted more pneumonia samples (24) than

the RF model (18). Generally, it was observed that the models

could learn significantly from the data.

The ROC curves of the XGBoost and RF are shown

in Figure 8. We observe that RF models achieve the

same superior performance as the XGBoost model.

Also, the “steepness” of the ROC shows that the

RF model has a slightly high positive rate than the

XGBoost model.

Figures 9, 10 show the features the XGBoost and

RF model considers vital for prediction. XGBoost

and RF models consider hemoglobin, hematocrit,

drinking, mean arterial pressure, plural effusion, tracheal

secretion, tachycardia, years of smoking, C-reactive

protein, antibiotics taken within the last 90 days,

procalcitonin, and total bilirubin features significantly in

the prediction.

Because we performed machine learning experiments on

both the original and the SMOTE data, we run ANOVA

to compare whether there are statistical differences in the

prediction performances of the models before and after SMOTE.
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FIGURE 5

Feature importance according to XGBoost model on the original dataset.

FIGURE 6

Feature importance according to the RF model on the original dataset.

We did this by comparing their AUCs. AUC is a measure

of the accuracy of a quantitative diagnostic test. It is the

average value of specificity for all values of sensitivity. Table 6

shows the AUCs of the models for the original and balanced

datasets. We observed that the AUCs of some models (LR,

MLP, KNN, NB) differ significantly in the two datasets

while others (SVM, XGBoost, ADT, RF) achieved similar or

showed no significant difference in their before and after

SMOTE AUCs.

Decision boundaries of the models

Decisions, or boundaries, are lines drawn using the best

decisions (for our purposes, binary classifiers) that separate

samples of one class from the other class. All instances of one

class and the opposing class are found on each side. The decision

boundaries of the models show that the RF and XGBoost models

learn a robust decision boundary (Figure 11). RF and XGBoost

models can learn and correctly classify the samples at the bottom
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compared to the other models. This observation is expected

because the two models (RF and XGBoost) achieved the best

performance on the original dataset.

Based on the balanced dataset (Figure 12), the ADT, RF, and

XGBoost models demonstrate a well-bodied boundary while LR

and SVM show poor boundaries.

External validation of the models

To validate our models for generalizability, we externally

collected data from 77 patients with lower respiratory tract

infections (either pneumonia or bronchitis). The two best

models, RF and XGBoost, were chosen for the external

validation. Although the data used for this experiment was

limited, the models were still robust in the prediction of

pneumonia (Table 7). The ROCs values (Figure 13) show AUCs

TABLE 5 Machine learning model prediction results in the balanced

dataset.

Model Accuracy Precision Recall F1-score

LR 83.6 84.9 81.2 83.1

NB 68.4 75.8 54.4 62.7

SVM 81.1 83.0 77.2 80.1

ADT 91.0 91.2 90.1 90.9

KNN 75.0 91.9 54.8 68.4

RF 92.2 93.0 91.2 92.0

XGBoost 91.2 91.1 91.6 91.2

MLP 81.4 81.9 83.2 82.4

of 95 and 96% for XGBoost and RF models confirming that our

models have good generality.

Discussion

Laboratory tests, blood culture, C-reactive protein,

serology, and procalcitonin are diagnostic tests with varying

rates of accuracy (20). Our models showed that individual

clinical history and symptoms do not have adequate

discriminatory power except dyspnea, diminishing breath

sound on auscultation, cough, fever, and phlegm to diagnose

pneumonia. Earlier studies have shown that radiographic

pneumonia cannot be diagnosed by a single clinical symptom

and this was consistent with our study (21). Fever, tachycardia,

and breathing rate were among the most useful predictors of the

clinical signs. Evidence suggests that adults whose respiration

rates exceed 20 breaths per minute are probably unwell, and

those whose respiration rates exceed 24 breaths per minute

are deemed to be critically ill (22). The findings of this study

are similar to previously published study (23). Similar to other

studies (24), diminishing sound on auscultation was shown to

be an important predictor of pneumonia in our models. As

part of externally validated prediction models for pneumonia,

diminishing sound on auscultation, tachycardia, and fever were

found to be useful predictors (25). In a study by Niederman

et al., it was postulated that patients with symptoms such as

cough, sputum production, and/or dyspnea, in addition to other

indicators like fever and auscultatory findings of abnormal

breath sounds may have a higher risk of developing pneumonia

(26). Tracheal secretion, antibiotics taken within the last 90

days, total bilirubin, and hematocrit were all features considered

FIGURE 7

Confusion matrix of XGBoost and RF on SMOTE data. (A) XGBoost. (B) RF.
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FIGURE 8

ROC curves of XGBoost and random forest on the SMOTE dataset. (A) XGBoost. (B) RF.

FIGURE 9

Feature importance according to the XGBoost model on the SMOTE dataset.

important for pneumonia prediction in our models. Tracheal

secretion has been noted by several authors as an important

diagnostic tool for pneumonia (27, 28).

Biomarkers can support clinicians in the differentiation

of bacterial pneumonia from other disorders. Among all

the variables tested in our prediction models, biomarkers

such as CRP and PCT demonstrated the most significant

discriminating power in the prediction of pneumonia. CRP

and PCT, are extensively used in the monitoring of treatment

of severe infections in the ICU. PCT is a marker that is

strongly correlated with bacteria load and severity of infection

(29). Also, a high PCT level indicates a bacterial infection

rather than a viral infection. A meta-analysis reported that

the use of PCT to guide antibiotic treatment in pneumonia

resulted in a reduction in exposure to antibiotics (30). A

PCT level of >0.25 ng/ml is indicative of an underlying

bacterial infection (31). This evidence supports our results that,

PCT can accurately predict pneumonia. Among patients with

pneumonia, the prognostic value of PCT and its correlation

with disease severity has been exclusively studied (31). In

ambulatory care, CRP has been widely used as a point of

care test. Researchers have examined CRP as a diagnostic
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FIGURE 10

Feature importance according to the RF model on the SMOTE dataset.

TABLE 6 AUCs of the various models before and after SMOTE.

Model Original dataset Balanced dataset P value

LR 89 91 0.032

NB 82 76 0.019

SVM 89 86 0.221

ADT 91 94 0.071

KNN 79 84 0.016

RF 96 97 0.050

XGBoost 97 97 0.314

MLP 80 86 0.005

tool in screening for inflammation and detecting bacterial

infections (32). Through the use of CRP in primary care,

antibiotic exposure can be reduced in suspected LRTI (risk

ratio [RR] 0·78 [95% CI 0·66–0·92]) (33). According to the

NICE’s guidelines, antibiotics should not be given to patients

without a convincing clinical diagnosis of pneumonia, when

their CRP is <20 mg/L (34). Our results showed that CRP

is a useful diagnostic tool to predict pneumonia. This finding

is similar to previous studies (32). CRP has been shown to

improve the diagnostic discriminatory power of models built

on basic signs and symptoms during the prediction of patients

with pneumonia (35).

From our machine learning models, RF and XGBoost were

considered the best models on both the original dataset and the

SMOTE balanced data. RF model has demonstrated superiority

and stability in numerous medical studies (36, 37). Because

of the extensive application of integrated algorithms, the RF

model has become a well-established technology (38). RF uses

the bagging ensemble technique for classification. Decision

trees (DTs) are the building blocks of the RF classifier. In

order to train uncorrelated decision trees, each tree is trained

with a random sample selected from the dataset. Then, final

decisions are made by combining the outputs from all the

DTs. Because the forest is randomized, it slightly increases

the biasness of the forest. However, due to the averaging of

the outputs, its variance decreases, hence yielding an overall

better model. As an efficient and scalable tree boosting system

(39), the XGBoost model has shown excellent performance

in several ML competitions, primarily due to its simplicity

and accuracy in prediction (40). Our study showed that the

XGBoost model had a good performance, with an F1-score

of 92.4% and an accuracy of 90.8%. Because ensemble ML

models (RF and XGBoost) integrate multiple base learners or

classifiers, they are robust and have high accuracy which was

confirmed in this study. All models on the original data had

AUC values lower than those observed in the ensemble ML

models. However, comparing XGBoost, a boosting ensemble

method to RF which is a bagging ensemble method, RF needs

to train a large amount of decision trees and aggregate them,

thereby requiring longer time to trade numerous random

computations for high accuracy. Moreover, XGBoost leverages

second order derivative and implements sampling method in
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FIGURE 11

Decision boundaries of the models on the original dataset.

FIGURE 12

Decision boundaries of the models on the balanced dataset.

each iteration to alleviate overfitting and speed up computation.

In addition to the RF and XGBoost models, ADT also

achieved better performance on the SMOTE balanced data.

The strength of AdaBoost resides in combining weak learners

with a powerful learner with a high prediction accuracy

based on the adjustments of weights (41). These weights are
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TABLE 7 External validation results from the best models.

Model Accuracy Precision Recall F1-score

RF 88.6 84.8 95.6 89.7

XGBoost 88.7 86.4 93.1 89.3

FIGURE 13

AUROC curves for the external validation dataset. (A) XGBoost. (B) RF.

mainly related to samples that are used by the learner in

the training phase. The learners in this phase can generate

a set of misclassified samples. AdaBoost tries to resolve this

issue by providing appropriate weights for samples that have

been wrongly classified. Those samples that are misclassified

are assigned a larger weight while samples that are already

well classified receive a smaller weight. The unique ability of

AdaBoost to spot the misclassified samples, correct them, and

re-feed them to the next learner until an accurate predictor

model is constructed, makes it one of the best powerful

binary classification models. Comparing the results of this study

with other studies that used non-invasive measure to build

algorithms for disease predictions, we realized that our results

were comparable to these studies or even performed better than

most studies (Table 8).

Conclusions

This study predicted pneumonia from other LRTIs such as

bronchitis using biomarkers, physical indicators, and laboratory

parameters. Individual clinical history and symptoms do not

have adequate discriminatory power, hence should not be

considered in unison during the diagnosis of pneumonia.

Two biomarkers, C-reactive protein and procalcitonin, in

TABLE 8 Comparing prediction performance from various studies that

used non-invasive measures.

Models Predicted

disease

Performance

evaluation

Ref

DT, SVM, LR Pneumonia Accuracy-84, 82, 83 (42)

RF, LightGBM,

SVM, DT

COVID-19 Accuracy-89, 88, 84, 82 (43)

LogitBoost, RF, DT Blood diseases Accuracy-98.2, 97.1, 97 (44)

XGBoost,

LightGBM

Accuracy-93, 91 (45)

LR COVID-19 Specifificity-0.95; AUC-0.971;

Sensitivity-0.82

(46)

RF, XGBoost Pneumonia Accuracy-92, 90.8;

AUCs-0.96, 0.97

This

study

addition to other features, were considered very important

in the prediction of pneumonia. Compared to the SMOTE

balanced data, using the original data achieved a higher

prediction performance. Therefore, we can conclude that

the original dataset was sufficient to predict pneumonia

without balancing. RF and XGBoost were considered

the best models on both the original dataset and the
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SMOTE balanced data. From this, we can conclude that

the ensemble ML models performed better in the prediction

of pneumonia.
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