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An empirical meta-analysis of the 
life sciences linked open data on the 
web
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While the biomedical community has published several “open data” sources in the last decade, most 
researchers still endure severe logistical and technical challenges to discover, query, and integrate 
heterogeneous data and knowledge from multiple sources. To tackle these challenges, the community 
has experimented with Semantic Web and linked data technologies to create the Life Sciences Linked 
Open Data (LSLOD) cloud. In this paper, we extract schemas from more than 80 biomedical linked 
open data sources into an LSLOD schema graph and conduct an empirical meta-analysis to evaluate 
the extent of semantic heterogeneity across the LSLOD cloud. We observe that several LSLOD sources 
exist as stand-alone data sources that are not inter-linked with other sources, use unpublished schemas 
with minimal reuse or mappings, and have elements that are not useful for data integration from a 
biomedical perspective. We envision that the LSLOD schema graph and the findings from this research 
will aid researchers who wish to query and integrate data and knowledge from multiple biomedical 
sources simultaneously on the Web.

Introduction
Over the last decade, the biomedical research community has published and made available, on the Web, several 
sources consisting of biomedical data and knowledge: anonymized medical records1, imaging data2, sequencing 
data3, biomedical publications4, biological assays5, chemical compounds and their activities6, biological molecules 
and their characteristics7, knowledge encoded in biological pathways8,9, animal models10, drugs and their pro-
tein targets11, medical knowledge on organs, symptoms, diseases, and adverse reactions12. However, biomedical 
researchers still face severe logistical and technical challenges to integrate, analyze, and visualize heterogeneous 
data and knowledge from these diverse and often isolated sources. Researchers need to be aware of the availability 
and accessibility of these sources on the Web, and need extensive computational skills and knowledge to query 
and explore them. To systematically consume and integrate the data and knowledge from these sources for use in 
their analyses, researchers often spend a significant amount of their time dealing with the heterogeneous syntaxes, 
structures, formats, schemas, and biomedical entity notations used across these sources.

The complexity and time in inter-disciplinary scientific research drastically increase as the biomedical 
researcher ends up learning multiple systems, configurations, and means to reconcile similar entities across dif-
ferent sources. In most cases, the biomedical researcher just wishes to retrieve relevant data pertaining to their 
unique criteria or to retrieve answers to specific queries, such as “What are the medications prescribed to mel-
anoma patients who have a V600E mutation in their BRAF gene?”, or “List molecular characteristics of antineo-
plastic drugs that target Estrogen Receptor α and have molecular weight less than 300 g/mol”. However, due to the 
current state of the biomedical data and knowledge landscape with multiple, isolated, heterogeneous sources, the 
researcher has to hop across several Web portals (e.g., PubChem5) and search engines (e.g., PubMed4) for these 
tasks.

Semantic Web and linked data technologies are deemed to be promising solutions to tackle these challenges, 
and enable toward Web-scale data and knowledge integration and semantic processing in several biomedical 
domains, such as pharmacology and cancer research13–17. Biomedical researchers have been some of the earliest 
adopters of these technologies, and have used them to drive knowledge management, semantic search, clinical 
decision support, rule-based decision making, enrichment analysis, data annotation, and data integration12,16,18–20. 
Moreover, these technologies are used to represent data and knowledge stored in isolated, heterogeneous sources 
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on the Web to create a network of linked open data and knowledge graphs, often referred to as the Linked Open 
Data (LOD) cloud21. The LOD cloud was conceived from a vision that a decentralized, distributed, and heteroge-
neous data space, extending over the traditional Web (i.e., World Wide Web, or Web of Documents), can reveal 
hidden associations that were not directly observable22. The linked open data and knowledge sources, relevant to 
biomedicine, in the LOD cloud are collectively described as the Life Sciences Linked Open Data (LSLOD) cloud13. 
A diagrammatic representation of the LSLOD cloud can be found as part of the popular Linked Open Data cloud 
diagram23 (https://lod-cloud.net/).

These technologies have matured enough that they are also being widely adopted by several companies, and 
subsets of the generated knowledge graphs are used in biomedical applications (e.g., Google24, IBM25, Elsevier26, 
NuMedii27, Pfizer28). Semantic Web technologies could also be combined with natural language processing-based 
relation extraction methods to systematically extract scientific relations between biomedical entities and to make 
them available for querying and consumption through a structured representation of the knowledge graph26,29.

Ideally, the LSLOD cloud should serve as an open Web-based scalable infrastructure through which biomedi-
cal researchers can query, retrieve, integrate, and analyze data and knowledge from multiple sources, without the 
requirement on the part of the researchers to download and manually integrate those sources and be concerned 
with the location, heterogeneous schemas, syntaxes, varying entity notations, representations, or the mappings 
to reconcile similar concepts, relations, and entities between these sources. However, it is well known that the 
LSLOD cloud has several shortcomings for this vision to be achieved. Specifically, most biomedical researchers 
find it difficult to query and integrate data and knowledge from the LSLOD cloud for use in their downstream 
applications, since the LSLOD cloud faces a set of challenges similar to those that it had set out to solve in the first 
place13,30–34. The rampant semantic heterogeneity across the sources in the LSLOD cloud, due to the heterogene-
ous schemas, the varying entity notations, the lack of mappings between similar entities, and the lack of reuse of 
common vocabularies, leads to the question on whether the LSLOD cloud can truly be considered “linked”.

In this paper, we present our results on an empirical meta-analysis conducted on more than 80 data and 
knowledge sources in the LSLOD cloud. The main contributions of this research can be outlined as follows:

	 1.	 Using an approach to automatically extract schemas and vocabularies from a set of publicly available LOD 
endpoints that expose biomedical data and knowledge sources on the Web, we have created an LSLOD 
schema graph encapsulating content from more than 80 sources.

	 2.	 We estimate the extent of reuse of content in LSLOD sources from popular biomedical ontologies and 
vocabularies, as well as the level of intra-linking and inter-linking across different LSLOD sources.

	 3.	 Combining methods of similarity computation and community detection based on word embeddings, we 
identify communities of similar content across the LSLOD cloud.

We believe that the resources and findings established through this meta-analysis will aid both: (i) the biomed-
ical researchers, who wish to query and use data and knowledge from LSLOD cloud in their applications, and (ii) 
the Semantic Web researchers, who can develop methods and tools to increase reuse and reduce semantic het-
erogeneity across the LSLOD cloud, as well as develop efficient federated querying mechanisms over the LSLOD 
cloud to handle heterogeneous schemas and diverse entity notations. In subsequent sections of this paper, we 
provide a brief overview on the Semantic Web technologies and the LSLOD cloud, delve deeper into the different 
biomedical data and knowledge sources that were used in this research, and provide an overview on the different 
methods used to extract schemas and vocabularies from publicly available LOD graphs and to evaluate the reuse 
and similarity of content across the LSLOD cloud. We will present the results from this empirical meta-analysis 
of the quality, reuse, linking, and heterogeneity across the LSLOD cloud, summarize some of our key findings 
and observations on the state of biomedical LOD on the Web, and discuss what it means moving forward on the 
querying and consumption of data and knowledge on the Web in biomedical applications, in a more systematic 
and integrated fashion.

The LSLOD schema graph and other pertinent data, as well as the results and visualizations from this 
meta-analysis are made available online at http://onto-apps.stanford.edu/lslodminer. The code used in this 
research is made available on GitHub (https://github.com/maulikkamdar/LSLODQuery).

Background and Related Work
Semantic web technologies and the life sciences linked open data (LSLOD) Cloud.  To achieve 
the goals of a Linked Open Data (LOD) cloud over the Web, the Semantic Web community has developed sev-
eral standards, languages, and technologies that aim to provide a common framework for data and knowledge 
representation — linking, sharing, and querying, across application, enterprise, and community boundaries. 
Semantic Web languages and technologies have been used to represent and link data and knowledge sources 
from several different fields such as life sciences, geography, economics, media, and statistics, to essentially create 
a linked network of these sources and to provide a scalable infrastructure for structured querying of multiple 
heterogeneous sources simultaneously, for Web-scale computation, and for seamless integration of big data.

Some Semantic Web languages and technologies have been standardized and recommended by the World 
Wide Web Consortium (W3C) and are also widely used by the biomedical community to create the LSLOD 
cloud. For example, The Resource Description Framework (RDF), a simple, standard triple-based model for 
data interchange on the Web, is used to represent information resources (e.g., biomedical entities, relations, 
classes) as linked graphs on the LSLOD cloud35. Each resource is uniquely represented using a HTTP Uniform 
Resource Identifier (URI), so that users can view information pertaining to that resource using a Web browser 
(i.e., Web-dereferenceable). An example of an HTTP URI from the LOD graph of DrugBank — a knowledge base 
of drugs and their protein targets11 — is http://bio2rdf.org/drugbank:DB00619, where http://bio2rdf.org/drug-
bank: is considered to be the URI namespace – a declarative region that provides a scope to the identifiers, and 
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DB00619 is the specific identifier of the drug Gleevec. RDF extends the linking structure of the Web by using 
the URIs to represent relations between two resources. Hence, RDF facilitates integration and discovery of rele-
vant data and knowledge on the Web even if the schemas and syntaxes of the underlying data sources differ. The 
vocabularies and schemas of biomedical RDF graphs are generally annotated by the elements from the Resource 
Description Framework Schema (RDFS) language36. Similarly, in the last few years, the biomedical community 
has adopted the Web Ontology Language (OWL) as the consensus knowledge representation language to develop 
biomedical ontologies37. RDFS vocabularies and OWL ontologies enable the modeling of any domain in the world 
by explicitly describing existing entities, their attributes and the relationships among these entities. These entities 
and relationships are usually classified in specialization or generalization hierarchies. An ontology also contains 
logical definitions of its terms, along with additional relations, to facilitate advanced search functionalities38. 
Whereas, RDF is essentially only a triple-based, schema-less modeling language, semantics expressed in RDFS 
vocabularies and OWL ontologies can be exploited by computer programs, called reasoners, to verify the consist-
ency of assertions in an RDF graph and to generate novel inferences13.

After the data and knowledge sources have been published as LOD using the RDF triple-based model, with 
semantics encoded using the RDFS and OWL languages, the SPARQL Protocol and RDF Query Language 
(SPARQL) can be used to query across multiple diverse sources using federated architectures17,39,40. While this 
distributed querying approach is inspired from the relational database community, SPARQL query federation 
architectures leverage the advantages provided by the graphical, uniform syntax, and schema-less nature of RDF 
to achieve query federation with minimal effort.

Representative example on use of semantic web technologies in biomedicine.  Using Fig. 1, we 
give a more concrete real-world example on the use of Semantic Web technologies for representing data in the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) — an integrated data source consisting of several databases, 
broadly categorized into biological pathways, proteins, and drugs9 – and linking the different biomedical entities 
to similar entities in other biomedical sources, such as DrugBank11, PubMed4, and Gene Ontology — a unified 
representation of gene and gene product attributes across all species19.

kegg:Drug, kegg:Protein, and kegg:Compound are all RDFS classes in the KEGG vocabulary 
(Fig. 1a). It should be noted that kegg:Drug is a concise representation for a URI http://bio2rdf.org/kegg:Drug. 
kegg:Drug is a subclass of kegg:Compound (shown using rdfs:subClassOf). kegg:inhibit and 

Fig. 1  Diagrammatic representation to depict annotated RDF graphs: The KEGG RDF graph whose vocabulary 
is annotated using RDFS constructs and classes from the Gene Ontology. (a) The T -Box consists of the 
terminological component of the KEGG RDF Graph (i.e., the vocabulary). The pink nodes represent the 
different classes from KEGG and other RDF graph vocabularies (e.g., drugbank:Drug) annotated with 
rdfs:Class construct. The blue nodes represent the different properties annotated with rdf:Property 
(with associated domain and range classes). (b) The A-Box consists of the assertional component of the KEGG 
RDF graphs, with different individuals (e.g., kegg:D01441) explicitly typed with corresponding classes from 
T -Box. (c) The R-Box (relational component) consists of the property hierarchy. (d) The KEGG individual 
(pathway Ca2+ Signaling Pathway)) may be cross-linked to the corresponding Gene Ontology class, causing a 
semantic mismatch (i.e., a class is considered equivalent to an individual).
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kegg:target are both RDFS properties, with kegg:inhibit being a sub-property of kegg:target 
(shown using rdfs:subPropertyOf in Fig. 1c). Using a reasoning-enabled query engine, a user who queries 
for kegg:Compound entities should retrieve all kegg:Drug entities, as well as all non-drug compounds. 
Similarly, all queries that look for kegg:target relations should retrieve all kegg:inhibit relations, along 
with non-inhibiting interactions. The domain and range of the properties are also shown using the • and ▸ arrow 
heads respectively. The KEGG RDF Graph can be aligned to this KEGG RDFS vocabulary, with a class (e.g., 
kegg:Drug) instantiated with corresponding instances (e.g., kegg:D01441 (Gleevec)) using the rdf:type 
construct, and properties realized as property assertions between different instances (e.g., kegg:pathway 
assertion between kegg:hsa_5156 (PDGFR) and kegg:map04020 (Ca2+ Signaling Pathway)). These 
property assertions are shown using red arrows (Fig. 1b).

Figure 1b also shows an example of RDF reification, where a blank node (represented using a black colored 
node) is used to capture and represent additional information on the interaction between the drug Gleevec and 
the receptor protein PDGFR, involved in regulating cell growth and implicated in cancer. The blank node links 
the additional information to a publication with a URI from a PubMed LOD graph. Object properties (e.g., keg-
g:pathway) generally have rdfs:Class classes as domains and ranges, whereas data properties (e.g., keg-
g:mol_weight) link an rdfs:Class to a datatype (e.g., xsd:Float is the datatype for float numbers).

RDF graphs, annotated using the RDFS language, can be divided into two main components: the terminolog-
ical component T -Box and the assertional component A-Box (Fig. 1). The T -Box consists of only the axioms 
pertaining to the vocabulary or schema (e.g. rdfs:Class, rdfs:subClassOf axioms, along with other 
logical combination constructs). The A-Box consists of axioms pertaining to the individuals and their property 
assertions. RDF graphs (and their associated vocabularies) can be exposed through SPARQL endpoints on the 
LSLOD cloud for programmatic access.

In general, classes, properties, and instances in RDF graphs may be cross-linked with elements from exter-
nal ontologies and vocabularies, as well as with entities from other LOD graphs, and making such linkages is 
often considered a best practice when modeling and publishing datasets on the LOD cloud41. For example, 
kegg:D01441 (Gleevec) of the KEGG RDF graph is linked to a similar entity drugbank:DB00619 of 
the DrugBank RDF graph, and kegg:map04020 (Ca2 + Signaling Pathway) is mapped to the similar class 
GO:0019722 in the Gene Ontology (Fig. 1b,d).

Semantic heterogeneity across linked open data graphs.  Entity reconciliation and integrated query-
ing are major problems in biomedicine, as there is often no agreement on a unique representation of a given entity 
or a class of entities41. Many biomedical entities are referred to by multiple labels, and the same labels may be 
used to refer to different entities. For example, similar gene entities could be represented using Ensembl42, Entrez 
Gene43, and Hugo Gene Nomenclature Committee (HGNC)44 identifiers simultaneously.

One of the key principles for publishing LOD is the use of HTTP Uniform Resource Identifiers (URIs) for 
entity reconciliation and integrated querying. Each entity (e.g., Lepirudin), or a class (e.g., Drug), should be 
represented uniquely using one unique URI and other publishers should reuse that URI in their datasets. 
However, most data publishers create their own URIs by combining the entity IDs from the underlying data 
sources (e.g., Gleevec DrugBank ID DB00619) with a unique namespace (e.g. http://bio2rdf.org/drugbank:) to 
represent entities. To resolve the problem of entity reconciliation, efforts such as Bio2RDF20 and Linking Open 
Drug Data16 have released guidelines for using cross-reference x-ref attributes rather than using the same URI. 
Similar entities in different sources should be mapped to each other (e.g., drugbank:DB00619 ← →

−x ref
 keg-

g:D01441 to map Gleevec entities in DrugBank and KEGG), or all similar entities should be mapped to a 
common terminology (e.g., drugbank:BE0000048 ← →

−x ref
 hgnc:3535 ← →

−x ref
 kegg:HSA_2147, where the 

different URIs for protein Prothrombin are mapped to the Hugo Gene Nomenclature Committee (HGNC) 
identifier) using such x-ref attributes from popular RDFS vocabularies41.

Ideally, in the case of RDF datasets, the terminological T -Box elements (i.e., classes and properties used in the 
schemas) should be reused from existing OWL ontologies or RDFS vocabularies. Large repositories of existing 
RDFS vocabularies are developed, either curated manually (e.g., Linked Open Vocabularies45 — a catalog consist-
ing of standardized versions of general RDFS vocabularies that are often used to encode additional semantics for 
RDF graphs on the LOD cloud) or by exploring the LSLOD cloud through automated crawlers. These repositories 
can serve as sources for data publishers to reuse elements from existing vocabularies. Moreover, in biomedicine, 
the classes from existing biomedical ontologies in the BioPortal repository46 can also be reused when publishing 
LOD. RDF instances in the assertional A-Box may also be linked to classes from OWL ontologies using equiva-
lence properties, such as x-ref or owl:sameAs as shown in Fig. 1d, where kegg:x-go and keg-
g:x-drugbank are subproperties of x-ref. However, cases where RDF ‘instances’ are mapped to ‘classes’ in 
other ontologies or LOD graphs using equivalence properties are often designated as semantic mismatch cases. An 
example of this scenario is depicted in Fig. 1b,d. The pathway Ca2+ Signaling Pathway is represented as a class 
in the Gene Ontology (GO:0019722), but it is represented as an individual (instance) of the kegg:Pathway 
class in the KEGG RDF Graph (kegg:map04020). However, these two entities are linked and designated 
equivalent through the kegg:x-go property.

In some cases, the same relation may be expressed in different RDF graphs using different semantics or graph 
patterns13. For example, the same attribute of molecular weight is expressed in two different LOD sources, 
DrugBank and KEGG, using drugbank:molecular-weight and kegg:mol_weight data properties 
respectively. Ideally, the molecular weight attribute assertions should be structured using a uniform property 
across different sources. This property can originate from any of the LOV vocabularies or biomedical ontologies 
(e.g. CHEMINF:000216 “average molecular weight descriptor” from the Chemical Information Ontology47). As 
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a similar example, drug–protein target interactions are represented using different object properties and graph 
patterns across DrugBank (e.g., Gleevec  → 

−drug target
 PDGFR) and KEGG (e.g., Gleevec → →∙

target link
 PDGFR, 

where the • represents a blank node to capture additional information such as the source) RDF graphs. A user 
may wish to retrieve and reconcile such relations and attributes from both DrugBank and KEGG, as well as mul-
tiple other LOD graphs, to gain a complete picture in biomedicine, as unique drug–protein target relations may 
exist across the sources depending on the nature of their creation, or there may be conflicting information13,40. In 
the current state of the LSLOD cloud, the user must be aware of the underlying semantics and the data model 
used in these graphs as well as formulate lengthy SPARQL queries, which makes the entire process of information 
retrieval from the LSLOD cloud non-trivial.

There are several other benefits for reuse or cross-linking between similar entities or classes in different LOD 
graphs or ontologies41,48 — i) reduction in data and knowledge engineering costs since the publisher can reuse 
existing minted URIs or link to existing entity descriptions, ii) enabling semantic interoperability among different 
datasets and applications, and iii) querying multiple LOD graphs simultaneously using federated architectures. 
The lack of reuse or cross-linking, the use of different semantics or graph patterns for modeling data in a given 
LOD graph, as well as semantic mismatch caused due to linking, are different manifestations of semantic hetero-
geneity across the LSLOD cloud.

Related research.  Previously, we had conducted a study to estimate term reuse (i.e., reuse of classes from 
existing ontologies) and term overlap (i.e., similar classes across ontologies which are not reused) across biomedi-
cal ontologies stored in the BioPortal repository48. We found that ontology developers seldom reuse content from 
existing biomedical ontologies. However, there is significant overlap across the BioPortal ontologies. The concepts 
of term reuse and term overlap also hold true in the context of linked open data (LOD) sources. However, in the 
biomedical domain, there are several critical differences between ontologies and LOD sources due to the manner 
through which these sources are created and formalized. Some of these differences include: i) the vocabularies 
and schema for biomedical LOD sources are significantly smaller compared to most biomedical ontologies, ii) 
LOD sources have a much higher number of instances compared to biomedical ontologies and these instances 
may be reused from external resources, iii) LOD vocabularies formalized using the RDFS language may have less 
rich annotations compared to OWL ontologies (e.g., lack of synonyms and alternate labels), and iv) LOD sources, 
formalized using RDF and RDFS, may use reification to capture information at a higher granularity. Hence, the 
methods to analyze semantic heterogeneity across biomedical ontologies cannot be translated “as is” to analyze 
semantic heterogeneity across biomedical LOD sources.

A recent study found that the coverage of biomedical ontologies and public vocabularies is not sufficient 
to structure the entirety of biomedical LOD49. Hence, linked data publishers end up creating their own cus-
tom vocabularies, and do not publish them in a standardized way for reuse in other projects. Recently, multiple 
studies have been conducted on the larger Linked Open Data cloud to investigate the availability and licensing 
of Semantic Web resources, as well as to provide a mechanistic definition of what constitutes a ‘link’ in open 
knowledge graphs available on the Web30,33,50. However, these studies do not particularly focus on the semantic 
heterogeneity and vocabulary reuse across the LSLOD cloud51

We use an Extraction Algorithm to extract and merge the schemas and vocabularies used by LSLOD sources 
for conducting our meta-analysis. The theory behind the Extraction Algorithm has identical characteristics to 
linked data profiling algorithms52–55. However, the linked data profiling algorithms have, in many cases, only been 
implemented over some of the popular SPARQL endpoints, do not account for variable SPARQL versions, require 
the retrieval of all instances and assertions that is often not scalable for LSLOD sources, or may not extend behind 
minimal schema extraction. Similarly, RDF graph pattern mining algorithms (e.g., evolutionary algorithms56) 
often require exhaustive training samples of (source,target) pairs which are often not possible to obtain for the 
LSLOD cloud.

Methods
Extracting schemas and vocabularies from the LSLOD cloud.  For conducting our meta-analysis of 
the Life Sciences Linked Open Data (LSLOD) cloud, we have selected a set of LOD projects, SPARQL endpoints, 
and RDF graphs, by querying the metadata of the projects in the “Life Sciences” section of the popular Linked 
Open Data cloud diagram (April 2018 version)23,30, as well as through a literature review13 of articles, document-
ing popular biomedical LOD projects, available on the PubMed search engine4. Furthermore, we established the 
following criteria for an LSLOD source to be included in the meta-analysis: (i) Each LSLOD source must have 
a functional SPARQL endpoint, (ii) For cases when an LSLOD source does not have a functional SPARQL end-
point, the source should be available as RDF data dumps that can be downloaded and stored in a local SPARQL 
repository, and (iii) Each LSLOD source must have at least 1,000 instances under any classification scheme that 
can be queried through the SPARQL endpoint.

The entire list of the different LOD projects and details about sample RDF Graphs evaluated in this research 
are shown in Table 1. These RDF graphs include popular biomedical data sources such as DrugBank11, 
Kyoto Encyclopedia of Genes and Genomes (KEGG)9, Pharmacogenomics Knowledgebase (PharmGKB)57, 
Comparative Toxicogenomics Database (CTD)58, exposed by the Bio2RDF consortium20, UniProt7, ChEMBL59, 
and Reactome8, exposed by the EBI-RDF consortium60, and other sources such as The Cancer Genome Atlas 
(TCGA)3, PubChem5, National Library of Medicine (NLM) Medical Subject Headings (MeSH), National 
Bioscience Database Center (NBDC), and WikiPathways61. It should be noted that some of these projects (e.g., 
Bio2RDF20) have reprocessed publicly available data and knowledge published by other groups (e.g., DrugBank11), 
whereas in some cases data publishers themselves use Semantic Web technologies to provide access to their pro-
prietary data as LOD (e.g., the European Bioinformatics Institute (EBI) RDF Platform60). These RDF graphs 
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contain data and information on several biomedical entities such as drugs, genes, proteins, pathways, diseases, 
protein–protein interactions, drug–protein interactions, biological assays, and high-throughput sequencing. The 
SPARQL endpoint locations for these projects are listed at http://onto-apps.stanford.edu/lslodminer.

The meta-analysis relies on a set of extractors that navigate to each SPARQL endpoint and extract the schemas 
and vocabularies used in the RDF graphs exposed through those SPARQL endpoints. The extractors encapsulate 
an Extraction Algorithm that uses a set of SPARQL query templates (Box 1) to extract schemas (e.g., classes, prop-
erties, domains, ranges) as well as sample instances of those classes and their property values from the SPARQL 
endpoints in the LSLOD cloud. A snippet of the extracted information for a given source is shown in Box 2. The 
input to the Extraction Algorithm is the SPARQL endpoint, whose version of SPARQL can be automatically 
detected based on the SPARQL queries and keywords supported. The Extraction algorithm not only accounts for 
different versions of SPARQL supported at the remote SPARQL endpoints, but also uses alternative SPARQL que-
ries if the remote endpoint times out during the extraction phase. The Extraction algorithm is presented in Box 3.

An extractor selects the set of SPARQL query templates for execution against the input SPARQL endpoint, 
given its version (Step 2). The extractor queries the SPARQL endpoint and extracts the named RDF Graphs NG 
exposed through the SPARQL endpoint (Step 3, SPARQL Query SQ1). For each RDF graph, the extractor 
extracts the set of classes C and the total number of instances for each class k(C) (Step 7, SQ2). The extractor iden-
tifies the properties P  for which a specific class serves as the domain for all assertions, and also retrieves the range 
classes r(P) for object properties, or the datatypes dt(P) for data properties (Step 12, SQ3). The Extraction algo-
rithm also extracts a random sample (without replacement) of 2,000 instances for each class (Step 9, SQ4) and 
2,000 property assertions (Step 14, SQ5) for a class–property combination, and generates summary characteris-
tics (e.g.is_categorical, datatype, namespace, median length) of the associated data.

Classes, properties, and datatypes, are represented as nodes in the schema graph GT –Box extracted from the 
SPARQL endpoint by the specific extractor (Steps 11, 17, 18, 21, 22). The edges link property nodes to class nodes 
and datatype nodes depending on the domain and range descriptions of the corresponding property (Steps 19 
and 23). The nodes and edges are annotated by the count (k(C) and k(P)) and summary characteristics of corre-
sponding instances or property assertions respectively (Steps 11, 19, 23). This schema graph is a fragment of the 
actual T -Box of the RDF graph. The GT –Box graphs extracted for all RDF graphs in the LSLOD cloud are merged 
to generate the schema graph GLSLOD of the entire LSLOD cloud. A diagrammatic representation of this method 
and a subset of the merged GLSLOD schema graph are shown in Fig. 2.

Determining vocabulary reuse across LSLOD sources.  Estimating the extent of observed vocabulary 
reuse across different LSLOD sources requires identifying the classes and properties most commonly reused from 
standard ontologies and vocabularies. For this goal, along with the GLSLOD schema graph extracted from the 
LSLOD cloud, we use two different corpora of ontologies and vocabularies:

Linked Data Project Example RDF Graphs and Descriptions

Bio2RDF20

Several reprocessed data and knowledge sources such as:

DrugBank11 — Drug and drug target information

KEGG9 — Biological pathways, proteins, and drugs

PharmGKB57 — Protein–drug–disease relations

CTD58 — Environmental chemical–protein interactions and pathway–disease relations

EBI-RDF60

Several proprietary data and knowledge sources such as:

Reactome8 — Biochemical reactions and pathways

BioSamples70 — Metadata about biological samples

ChEMBL59 — Drug-like molecules and activities

UniProt7 UniProt database on proteins and their characteristics

MO-LD94 Model Organism databases on different species such as Fly, Mouse, Yeast, Rat, Human and Zebrafish

NBDC RDF95 Japanese Life Sciences databases on chemicals, structures, sequencing data, pathways, and diseases

Linked Life Data91

Several reprocessed data and knowledge sources such as:

EntrezGene43 — Genes and variants in diseases

BioGrid96 — Protein and chemical interactions

IntAct97 — Protein–protein interactions

Linked TCGA17 DNA methylation, gene expression and clinical data of cancer patients from The Cancer Genome Atlas3

NIH PubChem5 Databases on substances, compounds, structures, and biological assays stored in the PubChem repository

WikiPathways61 Database of biological pathways maintained using a crowd-sourcing architecture

PathwayCommons98 Data warehouse consisting of several biological pathways and molecular interactions datasets

NLM MeSH86 Medical Subject Headings used to index biomedical publications in MEDLINE repository67

DisGenet99 Data warehouse on genes and variants associated to diseases

NextProt100 Data warehouse on protein structures and interactions

LinkedSPL101 Structured product labels of drugs represented as RDF

Table 1.  Linked Open Data sources queried to generate the GLSLOD schema graph of the LSLOD cloud.
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	 1.	 BioPortal repository of biomedical ontologies: BioPortal repository is the world’s largest open repository 
of biomedical ontologies46. We obtained a dump of 685 distinct biomedical ontologies, serialized using 
the N-triples format and versioned up to January 1, 2018. This dump did not contain some ontologies 
that were deprecated or merged with existing ontologies, or added to BioPortal after January 1, 2018. This 
corpus includes ontologies such as Gene Ontology (GO)19, National Cancer Institute Thesaurus (NCIT)15, 
Chemical Entities of Biological Interest (ChEBI) Ontology6, and Systematized Nomenclature of Medicine 
- Clinical Terms (SNOMED CT)62, which are widely used in biomedicine for data annotation, knowledge 
management, and clinical decision support.

	 2.	 Linked Open Vocabularies (LOV): LOV is a catalog of RDFS vocabularies available for reuse with the aim 
of describing data on the Web45. Popular examples of RDFS vocabularies include the W3C Provenance 

Box 1 SPARQL Query templates to extract schema descriptions from the LSLOD Cloud.

------------------ SPARQL QUERY 1 ------------------
SELECT DISTINCT ?g WHERE {
                    GRAPH ?g {?s ?p ?o}
}

------------------ SPARQL QUERY 2 ------------------
SELECT ?Concept (COUNT (?x) AS ?cCount) WHERE {
                    GRAPH <GRAPH_URI> {?x rdf:type ?Concept}
}GROUP BY ?Concept ORDER BY DESC(?cCount)

------------------ SPARQL QUERY 3 ------------------
SELECT DISTINCT ?p ?c (COUNT (?x) AS?count)?valType WHERE {
                    GRAPH <GRAPH_URI> {“?x rdf:type <CONCEPT_URI> ;?p ?o.
                    OPTIONAL {?o rdf:type?c}.
                    FILTER(!(?p = ’ rdf:type’)).
                    BIND (DATATYPE(?o) AS ?valType)}
} GROUP BY ?p ?c ?valType ORDER BY DESC(?count)

------------------ SPARQL QUERY 4 ------------------
SELECT ?x WHERE {
                    GRAPH <GRAPH_URI> {?x rdf:type <CONCEPT_URI> }
} ORDER BY RAND() LIMIT 2000

------------------ SPARQL QUERY 5 ------------------
SELECT ?x WHERE {
                    GRAPH <GRAPH_URI> { ?c rdf:type <CONCEPT_URI> ; <PROPERTY_URI> ?x }
} ORDER BY RAND() LIMIT 2000

Box 2 Information from the Bio2RDF DrugBank RDF Graph extracted by the Extraction Algorithm.

Source: DrugBank
Source URI: http://bio2rdf.org/drugbank_resource:bio2rdf.dataset.drugbank.R3
Classes:
              Class: Drug
                          Class URI: http://bio2rdf.org/drugbank_vocabulary:Drug
                          Sample Instances: [’http://bio2rdf.org/drugbank:DB03536’,…]
              Class: Drug-Drug-Interaction
                          �Class URI:http://bio2rdf.org/drugbank_vocabulary:Drug-Drug-In-

teraction
                          …
Properties:
              Object Property: target
                          Property URI: http://bio2rdf.org/drugbank_vocabulary:target
                          Property Realization: drugbank:Drug - > drugbank:target
                                       Domain: Drug, Range: Target
                                       �S a m p l e  A s s e r t i o n  V a l u e s :  [ ’ h t t p : / / b i o 2 r d f . o r g /

drugbank:BE0000059’,…]
              Data Property: molecular-weight
                          �Property URI: http://bio2rdf.org/drugbank_vocabulary:molecular-weight
                          �Property Realization: drugbank:Enzyme - > drugbank:molecular-weight
                                       Domain: Enzyme, Range: Float
                                       �Sample  Assertion  Values:  [52221.099999999999,  56345.0, 

57530.0,…]
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Interchange63, Simple Knowledge Organization System (SKOS)64, and Schema.org65. We used 647 vocabu-
laries that were present in the LOV catalog, as of January 1, 2018. The vocabularies in this catalog generally 
include concept descriptions (i.e., human-readable labels using the rdfs:label annotation properties).

For each URI in the GLSLOD schema graph (class, property, or sample instance URI), the origin of the URI is 
determined using a heuristic approach66 by converting each URI to lowercase and using regular expression filters 
constructed from namespaces (e.g., ncicb.nci.nih.gov for NCIT15) and common identifier patterns.

Box 3 LSLOD Schema Extraction Algorithm.

https://doi.org/10.1038/s41597-021-00797-y
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For each LSLOD source, we compute the following statistics:

	 1.	 The number of ontologies and vocabularies reused in the source
	 2.	 The percentage of schema elements reused from external LSLOD sources
	 3.	 The percentage and distribution of classes whose entities are mapped or linked to other entities in external 

LSLOD sources (inter-linking)
	 4.	 The percentage and distribution of classes whose entities are mapped or linked to entities of other classes in 

the same LSLOD source (intra-linking)
	 5.	 The percentage of entities reused or mapped to external LSLOD sources

Previously, we outlined a method to estimate reuse of classes across multiple biomedical ontologies48. We 
repurposed this method to estimate vocabulary reuse across biomedical LOD sources. We generated an undi-
rected network composed of different URIs from the GLSLOD schema graph as nodes (i.e., the classes and the prop-
erties), and the edges indicating reuse and mapping between the different schema element URIs. “Patterns” of 
instance URIs are also represented as nodes in this network to check if instances are reused or mapped to classes 
in biomedical ontologies (i.e., semantic mismatch). We extract connected components from this network and use 
Eq. 1 to estimate vocabulary reuse.

M
=

∑ −| ∈
Vocabulary Reuse

n k

N (1)
j T jj r

In the above equation, assume that the network is composed of k connected components {T 0, T 1, …, T k}, and 
each component T j is formed from nj schema elements (i.e., {t0j, …, tnj}∈ T j). Assume that N is the total number 
of schema element URIs in the network. The number of terms in a component Tj must follow 1 < nj < N (i.e., 
components with a single term are not allowed). All schema elements in one component exhibit some reuse with 
respect to each other.

Detecting communities of related content in the LSLOD cloud.  To detect clusters of related content 
in the LSLOD cloud, we used a 5-step algorithm that maps similar schema elements (e.g., classes and properties) 
between two different sources in the LSLOD cloud. A diagrammatic representation of this algorithm is shown in 
Fig. 3. This algorithm uses the schema elements extracted from the various LSLOD public SPARQL endpoints 
(see 1) and included in the GLSLOD graph. These schema elements may or may not be reused from a common 
vocabulary or ontology (vocabulary reuse in LSLOD cloud was determined using the methods described in the 
previous section).

The algorithm uses two sources to generate the mappings between two different schema elements:

	 1.	 The set of biomedical ontologies and vocabularies that are reused in the LSLOD cloud: Biomedical ontol-
ogies and vocabularies whose elements are reused across multiple RDF graphs were determined using the 
previous methods.

Fig. 2  Diagrammatic representation of the Extraction Algorithm: During the extraction phase, automated 
extractors (represented as black spiders here) query each SPARQL endpoint in the LSLOD cloud and extract the 
schemas (i.e., classes, object properties, data properties, URI patterns, graph patterns) to generate the LSLOD 
Schema Graph GLSLOD. A portion of GLSLOD is visualized here, using a force-directed network, with classes (purple 
nodes), object properties (green nodes) and data properties (orange nodes) extracted from multiple sources, 
such as Bio2RDF, EBI-RDF, etc.
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	 2.	 Pre-trained word embedding vectors: We use 100-dimensional word embedding vectors pre-trained from 
a corpus of approximately 30 million biomedical abstracts, stored in the MEDLINE repository67, using the 
GloVe (Global Vectors for Word Representation) method68. Word embeddings represent words as high-di-
mensional numerical vectors based on co-occurrence counts of those words as observed in the abstracts. 
The pre-trained embedding vectors and inverse document frequency (IDF) statistics for a vocabulary of 
2,531,989 words are available under a CC BY 4.0 license at figshare69. These word embedding vectors have 
been used to map metadata fields in the BioSamples repository70 to ontology terms in the BioPortal reposi-
tory71, as well as to identify biomedical relations in unstructured text26.

Label extraction.  In the first sweep, the algorithm extracts a label for each schema element URI (i.e., class, 
object property or data property) in the GLSLOD graph. This is done through three approaches in a sequential flow: 
[noitemsep]

	 1.	 A label is extracted from the values for the rdfs:label36 or skos:prefLabel64 annotation 
properties, if the GLSLOD schema element has already been reused from existing biomedical ontologies and 
vocabularies (see Datasets).

	 2.	 A label is extracted by querying the source (i.e., the SPARQL endpoint) of the schema element for rdfs:-
label or skos:prefLabel annotation assertions.

	 3.	 A label is generated using Regular Expression (RegExp) filters from the URI of the schema element. Specif-
ically, the filters deal with cases where separators (e.g., “-”, “_”) and camel case (e.g. hasMolecularWeight) 
is present in the URI. In Fig. 3, the labels “Has Molecular Weight” and “Mol Weight” will be extracted from 
the two URIs respectively.

URI embedding generation.  We use the pre-trained word embedding vectors to represent each schema 
element URI in a high dimensional space. Specifically, a URI embedding vector is generated by computing a 
weighted average of the embedding vectors of the words in the URI label, with the weights being the IDF statistic 
for each word. A default embedding vector and IDF statistic is created for any word that is not present in the 

Fig. 3  Diagrammatic representation of the algorithm to detect communities of similar content across LSLOD 
cloud: The labels for two URIs are extracted either (i) by matching to a reused ontology, or (ii) by using 
annotation properties such as rdfs:label or skos:prefLabel, or (iii) by using regular expressions on the URI. URI 
embeddings are generated from the extracted labels, by using a background source of MEDLINE biomedical 
abstracts. A similarity network is created with nodes representing the different URIs from the GLSLOD schema 
graph and edges representing the cosine similarity scores between two URI embeddings. We detect 
communities in this network using the Louvain method. The trivial example shown here is related to similar 
“molecular weight” URIs between the MO-LD project and the Bio2RDF KEGG LOD graph.
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vocabulary. The equation to generate a URI embedding vector is shown below. Here, x(wi) represents the 
100-dimensional word embedding vector, and L(URI) is the URI label.
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Cosine similarity score computation.  For any two schema element URIs that are not present in the same 
source, cosine similarity scores are computed using their URI embedding vectors. The equation to compute the 
similarity between two elements is presented below.
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Creating a similarity network.  A similarity network is created where the different schema element URIs 
represent the nodes of this network. An edge exists between two nodes if: (i) the cosine similarity score between 
the corresponding URIs is greater than the threshold of 0.75, and (ii) there exists a one-to-one mapping between 
the two schema elements for the particular combination of LOD sources.

For example, consider three URI nodes n1, n2, n3, such that, n1, n2 ∈ LD1 and n3 ∈ LD2. If Sim(n1, n2) = 0.87, 
Sim(n1, n3) = 0.93 then an edge will only be created between n2 and n3 nodes. This criteria has an underlying 
assumption that there should exist a unique alignment between similar schema elements in different LOD 
sources. While the cosine similarity scores in the previous step can, by itself, aid in detection of similar schema 
elements (e.g., all schema elements pertaining to Molecular weight), this similarity network will aid in the detec-
tion of sources that contain relevant information pertaining to a given biomedical concept or relation type.

Community detection using Louvain method.  Finally, the Louvain method72 for community detection 
in weighted networks is used. The cosine similarity scores form the edge weights in the similarity network. This 
method has been used to detect communities of users using social networks and mobile phone usage data, as well 
as detect species in network-based dynamic models73–75. The Louvain method maximizes a ‘modularity’ statistic 
Q, which measures the density of edges inside communities compared to edges between communities. In the 
equation below (reproduced from Blondel, et al.72), 2m is the sum of all edge weights in the graph (i.e., 

= ∑m Sim i j( , )ij
1
2

) and ki is the sum of all weights to edges attached to node i (i.e. = ∑k Sim i j( , )i j ). δ c c( , )i j  is a 
delta function that looks at the community assignments (ci and cj) for connected nodes i and j.
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The communities are visualized using the Cytoscape platform76.

Results
LSLOD schema graph GLSLOD.  Using the Extraction Algorithm, we extracted 99 RDF graphs from ≈20 
SPARQL endpoints. The total number of classes, object properties, data properties, and datatypes extracted and 
linked in the GLSLOD schema graph were 57,748, 4,397, 8,447 and 24 respectively. The extractors can function on 
any SPARQL endpoint irrespective of its (i) version, (ii) support for different SPARQL keywords39, and (iii) the 
size of the underlying RDF graphs. The Extraction Algorithm can generally process most SPARQL endpoints 
within 4–8 hours. A visualization of a portion of the extracted GLSLOD schema graph is shown in Fig. 2b. A snippet 
of the extracted information for a given source is shown in Box 2.

Through an empirical analysis, we have found some overlap between the different schema elements, based on 
the way linked data publishers model the underlying data (i.e., some object properties in a given source are used 
as data properties in another LOD source). We found standard datatypes defined under the XML Schema 
Definition (XSD)77 and RDFS36 such as xsd:string, xsd:integer, xsd:float, xsd:dateTime, 
xsd:boolean, rdfs:Literal. The analysis also found an ontology class UO:0000034 (Units Ontology78 
Week class) used as a datatype. In some cases, we also found that RDF graphs may exhibit semantic mismatch 
where instances are aligned to classes from an exhaustive ontology, such as ChEBI6 or NCIT15 that have more than 
50,000 classes, using the rdf:type property. Semantic Mismatch in LOD is a form of semantic heterogeneity. 
Since rdf:type is a predicate in almost all the SPARQL query templates used by the Extraction Algorithm, 
semantic mismatch significantly increases the number of classes in the GT –Box, and consequently the number of 
queries that need to be formulated for each class significantly increases.

Vocabulary reuse across biomedical linked open data sources.  We analyzed the 70,592 total schema 
elements (classes, object properties, and data properties) extracted from the LOD sources in GLSLOD for vocabulary 
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reuse. In this research, we looked only at reuse of schema elements from vocabularies published at the Linked 
Open Vocabularies (LOV) repository45 and ontologies that are either published at the BioPortal repository46 or on 
the Web as OWL files available for download (and have .owl in the namespace prefix, for easy search).

Figure 4 shows the results of the analyses. Figure 4a depicts a histogram of schema elements that are shared 
across X number of LOD sources. It can be observed that most LOD sources are composed of unique schema 
elements that are present only in that particular source (i.e., the first histogram bar from the left). However, there 
are at least >100 schema elements that are shared between >10 LOD sources (i.e., the last four histograms from 
the right).

Terms are reused in biomedical LOD graphs from 34 BioPortal ontologies, 7 other biomedical ontologies, 
available on the Web but not stored in the BioPortal repository, and 43 LOV vocabularies (Fig. 4b). Some of 
the reused ontologies and vocabularies are very popular in biomedicine (e.g., ChEBI6, SNOMED CT62, NCIT 
— National Cancer Institute Thesaurus15, GO — Gene Ontology19) and in the Semantic Web community (e.g., 
DCTerms Metadata Description Model79, RDFS36, SKOS — Simple Knowledge Organization System64, Data 
Catalog Vocabulary80) respectively.

However, most of these biomedical ontologies are used only in the schemas of a few LOD sources (X-axis), 
and moreover only a few elements from these ontologies are reused (Y-axis). For example, the Anatomical 
Therapeutic Chemical Classification terminology81 — popularly used to classify drugs according to their mech-
anism of action — is used in the schema of only one LOD source. It can be seen that several LOD sources use 
unpublished schemas (green diamonds), hence, a large number of unique schema elements are present in only 
one source in Fig. 4a.

Several LOD sources do reuse schema elements from a set of widely used vocabularies (≈100 as per Fig. 4a). 
However, the elements of these vocabularies are not useful for data integration and integrated querying from a 
biomedicine perspective. It should be noted that several elements from the combination of the Semantic Science 
Ontology and Chemical Information Ontology (SIO-CHEMINF)47,82 are reused across several LOD sources and 
may be a popular resource for the emergence of a common data model for integrated querying of these sources. 
A large number of these LOD sources however only use one particular element from SIO-CHEMINF ontology..

Fig. 4  Vocabulary reuse across biomedical linked open data sources (RDF graphs): (a) A histogram of schema 
elements that are shared across multiple LOD Sources. It can be seen that most LOD Sources use a unique 
schema or vocabulary whose elements are not reused across any other data source. However, there are at least 
100 schema elements that are shared by >10 LOD Sources. (b) The different vocabularies (published at LOV 
repository) and ontologies (BioPortal and other OWL ontologies) whose elements are reused in the schemas of 
LOD sources. Several LOD sources either use unpublished schemas or use elements from common vocabularies 
(e.g. DCTerms and SKOS).
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Using Eq. 1, vocabulary reuse was determined to be 19.86%, which may indicate favorable reuse across LOD 
sources in comparison to ontologies. However, it should be noted that this statistic may be driven by the reuse 
of 30,251 ChEBI classes in a few sources. We also determined several cases of semantic mismatch where classes 
from popular biomedical ontologies in the BioPortal repository (e.g., SNOMED CT, NCIT, GO) are mapped to 
instances in these LOD sources.

Figure 5 shows the different RDF graphs extracted as nodes in a network. The size of the node indicates the 
number of unique object properties used to link entities in different classes from the same source (intra-linking). 
The size of the edge connecting two different nodes indicates the number of unique object properties used to link 
entities in different classes in different sources or RDF Graphs (represented using the corresponding node). This 
network diagram can be perceived to be similar to the LSLOD cloud diagram23 (available at http://lod-cloud.net).

It can be observed that the LSLOD cloud is not actually as densely connected as is often indicated through the 
LSLOD cloud diagram. Several sources, which may exhibit a higher degree of intra-linking are not inter-linked 
with other RDF graphs and exist as stand-alone data sources converted using RDF. It can also be observed that 
the PDB RDF graph, exposed by the NBDC project, and the UniProt RDF graph, published by the EBI-RDF con-
sortium, show a lack of connectivity. While the underlying data sources are similar and consist of information on 
proteins, the lack of connectivity can be explained if the NBDC project uses a different representation scheme for 
URIs used to denote protein entities as compared to the EBI-RDF consortium. The highly appreciated efforts by 
the Bio2RDF20 and EBI-RDF60 consortia can be seen in the dense inter-linking between the consortia-published 
sources.

Communities of related content in the LSLOD cloud.  While the low level of vocabulary reuse across 
LOD sources present a bleak picture of the Semantic Web vision toward facilitating Web-scale computation and 
integrated querying, it should be noted that there is significant similarity of content across these sources.

Using the pre-trained word embedding vectors and IDF statistics, we generated 100-dimensional URI embed-
ding vectors for different schema elements URIs in the GLSLOD schema graph. Whereas the word tokens for most 
URI labels were found in the vocabulary, 3,340 word tokens, such as ‘differn’, ‘heteronucl’, and ‘neoplas’ were not 
found either due to typos or due to minimal occurrence frequency in publications. We represented these words 
using the default embedding vector and IDF statistic. We computed cosine similarity scores to detect additional 
mappings between different schema elements. For example, the drugbank:Molecular-Weight class has 
higher cosine similarity scores to related schema elements, such as kegg:mol_weight, biopax:molec-
ularWeight, and MOLD:hasMolecularWeight data properties, as well as the CHEMINF:000198 
(Molecular Weight Calculated by Pipeline Pilot) class.

Fig. 5  Inter-linking and intra-linking across biomedical linked open data sources (RDF graphs): Each unique 
RDF Graph retrieved by the Extraction Algorithm is shown as a node in this network. The size of the node 
indicates the number of unique object properties used to link entities in different classes from the same source. 
The size of the edge indicates the number of unique object properties used to link entities in different classes in 
different sources.
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A similarity network was created with 12,613 schema elements as nodes in this network. This number of nodes 
is less than the total number of schema elements in the GLSLOD schema graph (70,587). We excluded 
domain-specific classes that were reused from ChEBI and other ontologies through semantic mismatch. We also 
excluded URIs for which labels could not be extracted.

Edges were created between these nodes using the cosine similarity scores between the corresponding 
schema elements. There were 169,005 pairs of schema element URIs that satisfied the first criterion of having 
a cosine similarity value above the threshold of 0.75. This threshold was predetermined after an exploratory 
analysis of pairs of schema elements that satisfied this criterion. While it would make sense to have a higher 
threshold (≈0.95) for a higher degree of certainty on similarity, having a threshold of 0.75 allowed the inclu-
sion of pairs, such as obo:regulates ↔ drugbank:mechanism-of-action: 0.75, chembl:-
mechanismDescription ↔ drugbank:mechanism-of-action: 0.85, faldo:location ↔ 
drugbank:cellular-location: 0.89. After applying the second criterion of one-to-one mapping 
between two schema elements for a particular combination of LOD sources, the network had 22,855 pairs of 
schema-element URIs for which edges were created.

We used the Louvain method for detecting communities in the weighted similarity network. The method ter-
minated after achieving a maximum modularity statistic (i.e., the density of edges inside communities compared 
to edges between communities) of 0.817296. We detected 6,641 communities. While most of these communities 
had minimal membership (i.e., ≤10 schema elements were members), there were 51 communities with more 
than 10 schema elements as members. On visual inspection using the Cytoscape network visualization platform, 
we determined that these communities primarily consisted of schema elements related to a few key biomedical 
concepts or relation types. These communities are partially visualized in Fig. 3, with two communities composed 

Fig. 6  Communities of similar content across biomedical linked open data: Two communities composed of 
schema elements related to Enzyme and Phenotype concepts are visualized in a greater detail. The nodes 
indicate a distinct schema element (distinct URI), and are colored according to the LOD project they are present 
in. The shape of the nodes indicates the type of schema element (class, object property, data property). The 
width of an edge between two nodes is proportional to the cosine similarity score between the URI embeddings 
of the corresponding schema element. Smaller sub-communities related to Reaction, Enzyme Commission 
Number and OMIM Phenotype Identifier (Online Mendelian Inheritance in Man) are also observed.
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of schema elements related to Enzyme and Phenotype concepts visualized in a greater detail in Fig. 6. Enzyme 
entities are specialized proteins which act as biological catalysts to accelerate biochemical reactions, whereas 
Phenotype entities are composite observable characteristics or traits of an organism.

In Fig. 6, each node is a distinct schema element URI (i.e., class, object property or data property) observed in 
the GLSLOD LSLOD schema graph. These nodes are colored based on the LOD project they are primarily present in 
(e.g., Bio2RDF, EBI-RDF). It should be noted that each LOD project (e.g., Bio2RDF) may publish multiple sources 
as distinct RDF graphs (e.g., KEGG9, DrugBank11). The shape of the nodes is reminiscent of the type of schema 
element — classes are represented as rectangular nodes, object properties as elliptical nodes, and data properties 
as diamond nodes. The nodes are labeled using the extracted labels, but the underlying URIs may be completely 
different. The width of the edge connecting different nodes is proportional to the cosine similarity scores between 
the URI embeddings of the connected schema elements.

It can easily be seen that different schema element URIs may be used across different sources (even if the 
sources are published by the same LOD project) to model and represent similar content and information (e.g., 
information on enzymes or phenotypes). It also showcases that data and knowledge relevant to a particular 
biomedical entity may be scattered across multiple sources (i.e., knowledge on a particular Enzyme entity can 
be retrieved from Bio2RDF, EBI-RDF and NextProt, and in many cases this knowledge may be novel). Other 
communities composed of schema elements focused on other key biomedical concept or relation types are also 
observed (e.g., Drug, Publication, Chromosome). The primary composition of a few of these larger com-
munities (>30 members) is listed in Table 2. It should be noted that these communities may be composed of 
multiple sub-communities. For example, a sub-community of schema elements related to the Reaction concept 
is linked to the main cluster of nodes related to the Enzyme concept, since Enzyme entities are often associated 
with Reaction entities.

Smaller communities (<10 members) also consist of specific schema elements in different sources that are 
similar to each other but that are in label mismatch through use of different URIs (e.g., snoRNA is represented 
using

MOLD:yeastmine_SnoRNAGene, MOLD:humanmine_SnoRNA, EBIRDF:ensembl/snoRNA, 
BIO2RDF:ncbigene_vocabulary/SnoRNA-Gene, NBDC:mbgd#snoRNA). Knowledge of such 
communities will aid biomedical researchers to determine which sources in the LSLOD cloud contain informa-
tion relevant to their domain of interest (e.g., research on small nucleolar RNAs snoRNA, a class of small RNA 
molecules that primarily guide chemical modifications).

Discussion
Semantic heterogeneity across different data and knowledge sources, either in the use of varying schemas or entity 
notations, severely hinders the retrieval and integration of relevant data and knowledge for use in downstream 
biomedical applications (e.g., drug discovery, pharmacovigilance, question answering). Enhancing the quality and 
decreasing the heterogeneity of biomedical data and knowledge sources will lead to enhanced inter-disciplinary 
biomedical research, which will lead to developing better clinical outcomes and increasing our knowledge on 
biological mechanisms.

So far, significant resources have been invested to represent, publish, and link biomedical data and knowledge 
on the Web using Semantic Web technologies to create the Life Sciences Linked Open Data (LSLOD) cloud. 
However, there are very few biomedical applications that query and use multiple LOD sources and biomedical 
ontologies directly on the Web to generate new insights, or to discover novel implicit associations serendipitously. 
This is, in part, due to the semantic heterogeneity emanating from underlying sources, which has also penetrated 
the LSLOD cloud in varying forms. Some of the primary benefits of the LSLOD cloud — querying, retrieval, and 
integration of heterogeneous data and knowledge from multiple sources on the Web seamlessly — cannot be 
availed.

Linked data publishers are strongly encouraged to reuse existing models and vocabularies and to provide links 
to other sources in the LSLOD cloud21,41. Similarly, biomedical ontology developers are strongly encouraged to 
reuse equivalent classes existing in other ontologies, while building new ontologies83,84. There are several bene-
fits if biomedical ontologies and LOD sources reuse content from existing sources — (i) reduction in data and 
knowledge engineering and publishing costs, (ii) decrease in semantic heterogeneity and increase in semantic 
interoperability across datasets, and (iii) ease of querying, retrieval, and integration of data from multiple sources 
simultaneously through existing query federation methods48. On the other hand, lack of reuse will manifest as 
increased semantic heterogeneity across different LSLOD sources.

It can be asserted through the findings presented in this research that the Life Sciences “Linked” Open Data 
cloud is not actually as densely connected as is often indicated through the ubiquitously-referenced LSLOD cloud 
diagram. Several sources, which may exhibit a higher degree of intra-linking are not inter-linked with other RDF 
graphs and exist as stand-alone data sources converted using RDF (Fig. 5). Similarly, Fig. 4 shows that several 
biomedical LOD sources use unpublished schemas. Biomedical LOD sources do reuse schema elements from 
a set of popular vocabularies. However, these vocabularies originate from the Semantic Web community (e.g., 
those that are mainly used to refer to data elements and attributes) rather than from the biomedical community 
(e.g., those that are used to provide normalization schemes for biomedical entities). Hence, the elements of these 
vocabularies are not useful for data integration and integrated querying from a biomedical perspective (e.g., for 
retrieving all drug–protein target interactions).

Similar content across the LSLOD cloud.  As seen in Fig. 6, several online sources have data and knowl-
edge pertaining to Enzyme or Phenotype entities but use completely different schema elements. Communities 
of similar content depicted in Fig. 6, while showcasing the different schema element URIs to represent sim-
ilar content, may also provide an idea on the different equivalence attribute URIs used to link entities across 
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different sources to a specific entity coding scheme. For example, the Enzyme entities in the different sources of 
the LSLOD cloud are linked to the Enzyme Commission number (a numerical classification scheme for enzymes) 
using different attribute URIs with labels such as Ec Code, Ec Number, X Ec, and Has Ec Number. Similarly, 
Phenotype entities are linked to the OMIM phenotype identifiers (i.e., Online Mendelian Inheritance in Man 
is a knowledge base of human genes and genetic phenotypes85) using different attribute URIs with labels such as 
Omim Reference, X Omim, and Has Omim Phenotype. Communities that are composed entirely of different 
attribute URIs referring entities in different sources to a uniform coding scheme are also observed (e.g., Ensembl 
and HGNC Gene Coding scheme attributes). The knowledge on the different equivalence attribute URIs could 
guide query federation methods to perform entity reconciliation after the retrieval of information from multiple 
sources.

Through a manual inspection of such “identifier” communities (e.g., communities 1417 and 1632 in Table 2), 
we were able to detect different URI representations for similar entities (classes and instances). A few examples 
of different URI representations are shown in Table 3 for chemical entities of ChEBI6, PubChem5 and MeSH86 

Com. Id.
Total 
Elements Key Biomedical Concepts

5023 549

Clinical (Age, Treatment, Summary, Dosage, Diagnosis)

Cancer (Stage, Tumor, Cell, Sample, Rate)

Genomics (Experiment, Target, Function, Interaction, Correlation, Assembly, Association, Expression, Genetic)

3098 281 Protein and Genomic Sequences (Sequence, Position, Start, Length, Protein, End, Repeat, Gene, Match, Begin, 
Translation, Exact, Exon, Frame, Distance)

2842 271 Clinical (Date, Condition, Entry, Process, Person, Diagnosis, Participant, Outcome, Indication, Therapy, Evidence, 
Access)

4346 260 Data (Code, Reference, Database, Sample, Data, Ontology, Semantic, Experiment, Dataset, Assembly, Registry)

2879 231
Clinical (Clinical, Group, ICD)

Genetic (Gene, Entity, Ncbigene, Species, Atom, Ref)

3945 228 Biomedical Relations (Disease, Relationship, Expression, Gene, Level, Sample, Drug, Interaction, Component)

2515 211 Protein (Protein, Site, Region, Molecule, Domain, Binding, Interaction, Active, Atom, Canonical, Primary, 
Structure)

63676 210 Literature (Description, Author, Entity, Details, Note, Article, Issue, List, Type, Study, Entry, Document, Data, 
Address)

1417 192 Identifiers (Uniprot, Identifier, Accession, Ensembl, Taxonomy, PDB, Genbank, Gene, MGI, Database, Id, Refseq, 
NCBI, CDS)

1632 171
Identifiers (Id, Taxon, Mesh, Entity, Type)

Genomics (Platform, Entry, Sample, Genus, Array, Gene, List)

3249 171 Genotype–Phenotype Associations (Gene, Symbol, Association, Product, Variant, Tag, Locus, Phenotype, Allele, 
Disease)

5652 158 Genomics (RNA, Probe, Strand, Direction, Region, DNA)

1446 132 Software (Version, Software, File, Format, Image, Email, Scale)

2535 126 Drug (Drug, Chemical, Action, Ingredient, Bond, Activity)

2421 110 Chromosome (Location, Chromosome, Entity, Cellular)

2317 105
Pathway (Pathway, Molecular, Formula)

Unit (Weight, Body, Units, Volume, Unit)

1806 101 Source (Source, Natural, Vector, Derived, Tissue)

2672 99 Literature (Count, Text, Comment, Editor, List, Data, Notes)

6316 97 Ontology (Annotation, Ontology, Type, Structure)

5969 83 Social (Status, Gender, Authority, Interaction)

2429 79 mRNA (Transcript, mRNA, Signal, Frequency, Expression)

1868 77 Literature (Citation, Publication, Journal, Literature)

1349 67 Assay (Method, Assay, Type, Measurement)

6241 62 Genetic (Strain, Allele, Mutation, Genotype, SNP)

6052* 50 Enzyme (EC, Enzyme, Reaction)

3524* 50 Phenotype (Phenotype, Omim)

2490 50 Organization (Component, Complex, Assembly, Entity)

1849 49 Interaction (Interaction, Experiment, Strength)

2897 49 Cell Line (Cell, Line, Tissue, Type, Node)

6283 39 Organism (Organism, Host, Entity)

2911 38 Ontology (Synonym, Term, Ontology)

1787 32 Evolution (Member, Family, Orthologue, Homologue, Evidence)

5695 31 Literature (Pubmed, Keyword)

Table 2.  Primary composition of communities in terms of key biomedical concepts. (*) marked communities 
are visualized in Fig. 6.
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sources. Most LOD querying architectures rely on the existence of exact URIs to query multiple sources simulta-
neously (using data warehousing, link traversal or query federation methods)13,17,40. However, since these URIs 
are essentially different, querying architectures will not be able to integrate data and knowledge from differ-
ent sources (e.g., protein–ligand binding information from PDB and biological assay experimental data from 
PubChem). These examples qualify as “intent for reuse” and add to the challenges of semantic heterogeneity 
across the LSLOD cloud.

Intent for reuse across the LSLOD cloud.  A few LOD sources do reuse content from existing biomed-
ical ontologies, but in many cases the reuse is limited to very few classes or involve incorrect representations. 
Previously, we have documented similar cases to be “intent for reuse” on the part of ontology engineers in the 
biomedical domains48. Table 3 documents similar cases of intent for reuse that were observed across the biomedi-
cal LOD sources. Essentially, these URI patterns generally have the same identifier and source ontology or vocab-
ulary, but are reused from different versions of the source ontology or vocabulary, or represented using different 
notations or namespaces. These patterns cannot be considered as actual reuse, as these are different, and often 
incorrect, representations for the same terms, and no explicit mappings are found. Hence, the advantages of reuse 
cannot be experienced. By using the correct representations, the semantic heterogeneity (i.e., content overlap) can 
be reduced substantially. Ideally, the representation of the URI used at the “authoritative source” (i.e., the source 
where the respective semantic resource is published and regularly maintained) is the standard representation that 
should be consistently reused across other LSLOD sources. Determining the “authoritative source” is out of the 
scope for this meta-analysis, but is a field of active research50. The recommended representations in Table 3 are 
based off the “authoritative source”. Ontology engineers and linked data publishers may lack sufficient guidelines 
and tools to identify authoritative sources for any semantic resource and use the recommended representation 
while reusing or referring to that semantic resource.

Intent for reuse and semantic heterogeneity severely hinders most query federation and link traversal meth-
ods for heterogeneous data and knowledge integration across the LSLOD cloud. For a more concrete example, 
consider the user query “Retrieve Assays which identify potential Chemopreventive Agents that have Molecular 
Weight < 300 g/mol and target Estrogen Receptor present in Human.” This query requires the retrieval of knowledge 
from the KEGG knowledge base9 on all the chemicals that target Estrogen Receptor protein, and then the 
retrieval of assay data on these chemicals from the ChEMBL chemical bioactivity repository59. The KEGG knowl-
edge base and the ChEMBL data repository are both published on the LSLOD cloud20,60, and have chemical URIs 
that have x-ref links to chemical URIs in the ChEBI ontology of biological chemicals6. However, since Bio2RDF 
KEGG uses the URI representation scheme http://bio2rdf.org/chebi:* and ChEMBL uses the URI representation 
scheme http://purl.obolibrary.org/obo/CHEBI/* for the same identifiers in the ChEBI ontology (Table 3), it is 
impossible to formulate a federated SPARQL query that can query KEGG and ChEMBL, simultaneously and 
retrieve the relevant results in an integrated fashion.

Increasing the reuse of schema elements from existing vocabularies and ontologies may decrease semantic 
heterogeneity and enable the integrated querying of multiple data and knowledge sources across the LSLOD 
cloud using the Semantic Web technologies. In cases where linked data publishers have the need to use a custom 
vocabulary or ontology, the overarching advice would be to publish this vocabulary or ontology to a popular 
repository, so other publishers can use these resources. The challenges for data and knowledge integration due 

Entity Origin URI Representation Sources

ChEBI

http://purl.obolibrary.org/obo/CHEBI/*
LinkedSPL, PubChem, NBDC

ExpresssionAtlas, BioSamples

http://identifiers.org/chebi/CHEBI:
BioModels, PDB, WikiPathways

Bio2RDF, PathwayCommons

http://identifiers.org/obo.chebi/CHEBI: BioModels, BioPax, WikiPathways

http://www.ebi.ac.uk/chebi/ PDB, ChEMBL

http://bio2rdf.org/chebi: Bio2RDF

PubChem http://identifiers.org/pubchem.compound/ Bio2RDF, WikiPathways, NBDC

Compound

http://rdf.ncbi.nlm.nih.gov/pubchem/compound/* WikiPathways, PubChem

http://bio2rdf.org/pubchem.compound: Bio2RDF

http://pubchem.ncbi.nlm.nih.gov/compound/ NBDC

MeSH

http://purl.bioontology.org/ontology/MESH/* NBDC, PDB, LinkedSPL

http://id.nlm.nih.gov/mesh/YEAR/* MeSH, DisGenet, PDB

http://identifiers.org/mesh/ Bio2RDF, DisGenet, PDB

http://www.ncbi.nlm.nih.gov/mesh/ BioSamples

http://rdf.imim.es/rh-mesh.owl# DisGenet

http://bio2rdf.org/mesh_resource: Bio2RDF

http://bio2rdf.org/mesh: Bio2RDF

Table 3.  Different kinds of URI representations for chemical compounds observed in LOD Sources. (*) marks 
the recommended representation(s). Acronyms: (NBDC) National Bioscience Database Center, (PDB) Protein 
Data Bank, (MeSH) Medical Subject Headings.
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to semantic heterogeneity across fragmented and incompatible data sources will also prevail as the wider data 
science community moves toward the adoption of the FAIR (Findable, Accessible, Interoperable, Reusable) prin-
ciples87 for publishing and reusing open datasets on the Web.

Over the years, the Semantic Web community has recommended several best practices and standards on 
how to reuse schema elements from existing vocabularies and ontologies when publishing LOD sources30,41,50,88. 
However, centralized top–down approaches may be needed to evaluate and enforce the use of these standards 
and existing ontologies and vocabularies (e.g., SKOS64, Schema.org65, Semantic Science Ontology82) when a new 
source is published in the LOD cloud. Such centralized approaches are already being developed to monitor the 
accessibility and availability of the different sources in the LOD cloud30,33,89,90, and can be extended to avoid the 
proliferation of incompatible and redundant LOD sources and reduce our reliance on reuse standards and best 
practices that would emerge through an evolutionary process.

Limitations and future work.  The use of word embeddings in the community detection algorithm enables 
the identification of mappings between similar LOD schema elements (e.g., kegg:therapeutic-category 
↔ drugbank:Drug-Classification-Category:  0.93, obo:regulates  ↔ drug-
bank:mechanism-of-action: 0.75, faldo:location ↔ drugbank:cellular-location: 
0.89). These mappings may provide suggestions to linked data publishers and consumers on relevant informa-
tion in different sources. However, many of these mappings may not be accurate due to reliance on the word 
embeddings, as well as the 0.75 threshold on the cosine similarity scores. For example, as seen in Fig. 6, while the 
Reaction concept in the Enzyme community symbolizes biochemical reactions where enzyme entities may act 
as catalyzing agents, an error with the community detection algorithm also indicates that Adverse Reaction 
(clinical concept observed in patients treated with a set of drugs) may be a part of this community. This is due to 
the fact that the singular schema element pertaining to Adverse Reaction from an RDF graph in the Linked 
Life Data project91 is linked to schema elements pertaining to Biochemical Reaction (i.e., the edges have a 
cosine similarity score of more than 0.75).

In this research, we have limited this meta-analysis to only include the BioPortal repository46 and Linked Open 
Vocabularies (LOV) catalog45 as background sources of biomedical ontologies and LOD vocabularies. However, 
several other repositories may contain ontologies and vocabularies which are useful toward this meta-analysis 
(e.g., Ontology Lookup Service – OLS92). There were two underlying assumptions behind this decision: i) There 
may be very few biomedical ontologies and vocabularies that are not present in BioPortal and LOV catalog, but 
are exposed in another public source (e.g., As of October 2020, OLS has 252 ontologies whereas BioPortal has 
896 ontologies, and only around 40 ontologies in OLS are not present in BioPortal. Out of these 40 ontologies, 
it should also be noted that 30 ontologies are “organism” ontologies which may have domain-specific concepts 
not present in the LSLOD cloud), and ii) the LSLOD cloud diagram at https://lod-cloud.net indicates that LOD 
sources are more intricately linked to biomedical ontologies in BioPortal repository. This meta-analysis can be 
extended in the future to include other additional sources of background knowledge.

While we have tried to conduct the meta-analysis by classifying the LSLOD sources according to the pro-
ject that publishes them (e.g., Bio2RDF, EBI, NBDC), a further analysis can be conducted in conjunction with 
author citation networks to discern the common publishers across different LSLOD sources (e.g., publishers of 
Bio2RDF20 sources may be involved with the publishing efforts of WikiPathways61 or PubChem5 RDF graphs). 
This would enable us to determine the true independent publishers of LSLOD sources. Ideally, data publishing, 
curation, reusability, and governance should be a community-driven process, with monitors to ensure that the 
best practices and standards are followed by the different RDF sources.

For this research, the meta-analysis was conducted over the April 2018 snapshot of the LSLOD cloud, as well 
as using the biomedical ontologies and RDFS vocabularies from that time period. However, the LSLOD cloud is 
constantly evolving and the biomedical data and knowledge sources are published, updated, or deprecated on a 
regular basis. In the future, the methods presented in this research can be embedded within a Web application 
which automatically extracts schema elements from any novel biomedical data or knowledge source, which is 
registered by linked data publishers, and analyzes these elements in the context of the current LSLOD cloud and 
biomedical resources stored in public catalogs (e.g., BioPortal46 and the LOV catalog45). A formatted report with 
analyses results and recommendations can be issued to the data publishers empowering them to improve reuse 
in their source. This Web application, while outside the scope of the current meta-analysis research, can also 
continually monitor the LSLOD cloud to generate insights on the evolution, availability, quality, and semantic 
heterogeneity, of the different sources in the LSLOD cloud on a regular basis.

Conclusion
Semantic Web and linked data technologies garner significant interest and investment from the biomedical research 
community toward tackling the diverse challenges of heterogeneous biomedical data and knowledge integration. In 
this paper, we conduct an empirical meta-analysis to demonstrate that there is considerable heterogeneity and dis-
crepancy in the quality of Life Sciences Linked Open Data (LSLOD) sources on the Web, which are published using 
the above technologies. We discuss on whether the LSLOD cloud can truly be considered “linked” due to the heter-
ogeneous schemas, varying entity notations, the lack of mappings between similar entities, and the lack of reuse of 
common vocabularies. While increasing reuse across biomedical ontologies and LOD sources is definitely considered 
to be an attractive alternative to decrease semantic heterogeneity, it will take a while for biomedical ontology develop-
ers and linked data publishers to realize the incentives of reuse and actually embrace the guidelines and best practices 
while publishing data and knowledge. Actual reuse through the use of correct URI representations in biomedical 
ontologies and LOD sources, rather than “intent to reuse”, can decrease semantic heterogeneity substantially itself. The 
findings from our meta-analysis across the LSLOD cloud, as well as the resources such as the LSLOD schema graph 
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made available through this research, will lead to the development of better tools and methods to increase vocabulary 
reuse and enable efficient querying and integration of multiple heterogeneous biomedical sources on the Web.

Data availability
The LSLOD Schema Graph extracted from the different SPARQL endpoints of the biomedical LOD graphs in the 
LSLOD cloud is made available in the JavaScript Object Notation (JSON) format serialized as a Pickle file in the 
figshare repository (https://doi.org/10.6084/m9.figshare.12402425.v2) under a CC BY 4.0 license93. The project 
also contains tab-separated values files consisting of information about extracted classes, object properties, data 
properties, datatypes, as well as of statistics on the LOD graphs from the LSLOD cloud used in this research.

Code availability
The different visualizations and observations presented in this research are also made available at the project 
website (http://onto-apps.stanford.edu/lslodminer). The scripts for the extraction algorithm and the community 
detection algorithm used in this research are made available on GitHub (https://github.com/maulikkamdar/
LSLODQuery).
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