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Abstract
Wnt ligands and their downstream pathway components coordinate many developmental

and cellular processes. In adults, they regulate tissue homeostasis through regulation of

stem cells. Mechanistically, signal transduction through this pathway is complicated by

pathway components having both positive and negative roles in signal propagation. Here

we examine the positive role of GSK-3/Zw3 in promoting signal transduction at the plasma

membrane. We find that targeting GSK-3 to the plasma membrane activates signaling in

Drosophila embryos. This activation requires the presence of the co-receptor Arrow-LRP5/

6 and the pathway activating protein Disheveled. Our results provide genetic evidence for

evolutionarily conserved, separable roles for GSK-3 at the membrane and in the cytosol,

and are consistent with a model where the complex cycles from cytosol to membrane in

order to promote signaling at the membrane and to prevent it in the cytosol.

Introduction
TheWnt or Wingless (Wg in Drosophila) signaling pathway is essential for the proper devel-
opment of animals. Wnt signals control cell differentiation, proliferation, migration, polarity,
and patterning [1,2]. In humans, Wnt components have been found to affect stem cell mainte-
nance and tumor progression [1,2]. There are several types of Wnt pathways, including polari-
ty determination and ion concentration branches [3,4]. Here we concentrate on the canonical
branch of signaling, where the basic step is the regulation of Armadillo/β-catenin (Arm/β-cat)
protein levels. When the pathway is active, Arm protein levels increase followed by transloca-
tion to the nucleus and transcriptional activation. In the absence of ligand, the pathway is
turned off by the formation of a degradation complex consisting of the scaffold proteins Axin
and APC and the kinases CKI and GSK-3 (Shaggy, Zw3). This complex controls the phosphor-
ylation state of Arm with N-terminal phosphorylation tagging it for proteasome-mediated deg-
radation. When signaling is activated, Wnt binding initiates the movement of the destruction
complex to the plasma membrane where it becomes the activating complex adding the trans-
membrane receptors Frizzled (Fz) and Arrow (LRP5/6, Arr) and the signaling protein Dishev-
eled (Dsh). This complex activates signaling by counteracting the destruction of Arm causing
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increased Arm protein levels. Arm in turn translocates to the nucleus where it activates tran-
scription in conjunction with the transcription factor TCF [2,5,6].

The Wnt ligands were discovered over 30 years ago [7], but the pathway mechanism was es-
tablished through genetic screens in the late 1980’s [8–10], biochemistry, genetic epistasis, and
cancer cell studies starting in the early 1990’s [11–14]. The membrane-proximal activating
complex, however, is more recent. The key discovery underpinning this complex was an unex-
pected activating function of GSK-3 when expressed in a membrane-tethered form [15]. Previ-
ously, the membrane-proximal events of Wnt signal transduction were poorly understood. The
discovery of a positive role for GSK-3 went some way to bridge the gap between ligand binding
and destruction complex inhibition. The current model posits a mechanism where ligand me-
diated receptor activation leads to GSK-3 mediated phosphorylation of Arrow on PPPSPxS
motifs creating binding sites for Axin disrupting the destruction complex [15,16]. This is an
important advance as Axin appears to be the rate-limiting component, and its levels are regu-
lated through proteasomal degradation in a signal dependent manner [17–19].

Here we report that a membrane-tethered form of GSK-3 activates Wnt signaling in Dro-
sophila embryos. We use epistasis to characterize the pathway position of membrane-tethered
GSK-3 as compared to untethered GSK-3. We find that membrane-tethered GSK-3 is unable
to activate signaling unless functional copies of Arrow and Dsh are present. These results
support a model where a membrane-proximal complex must form in order for signal to
be transmitted.

Results

Membrane tethered GSK-3 activates signaling
GSK-3 and CKI comprise a dual kinase phosphorylation mechanism activating Arm degrada-
tion and turning off signaling [20,21]. Upstream, GSK-3 and CKI phosphorylate Arrow and
turn on signaling [15]. The former function is epistatic to the latter, and GSK-3 mutants have a
strong “naked” phenotype coinciding with Wnt pathway hyper-activation (Fig 1A) [13,22,23].
Loss of GSK-3 in Drosophila embryos results in high levels of Arm protein. This loss of func-
tion phenotype and pathway activation can be rescued with the overexpression of a wild-type
form of GSK-3, but not a kinase deficient form (Table 1, and [24]). In wild-type adult fly tis-
sues, over expression of GSK-3 can block signaling whereas a kinase dead form has no effect
[24], but this does not occur in embryos as overexpression is more difficult in the presence of a
large quantity of maternal mRNA. To test for the upstream function of GSK-3, we generated a
membrane-tethered form of GSK3 (contains a Src myristoylation sequence at the N-terminus
[25–27]) and expressed it in embryos. As opposed to untethered GSK-3, myr-GSK-3 led to
strong activation of signaling known as the naked phenotype similar to zw3 loss of function
mutants (Fig 1A–1G). Epidermal cells expressing myr-GSK-3 made fewer denticles and denti-
cle precursors much like GSK-3 mutants (Fig 1E–1G), whereas cells expressing untethered
GSK-3 did make denticles (Fig 1B and 1C). Additionally, the level of Arm protein increased
with myr-GSK-3 expression as compared to wild-type embryos (Fig 2A) suggesting that the
pathway was being activated normally downstream of myr-GSK-3.

In order to establish the level of construct expression (UAS-Zw3-HA and UAS-myr-Zw3-HA)
in the embryos, we performed western blots with protein extracts from embryos expressing the
two constructs and probed for the presence of both endogenous GSK-3 and the exogenous ex-
pressed constructs with a pan-GSK-3 antibody (Fig 2B). The blot demonstrates that expression of
exogenous GSK-3 relative to endogenous GSK-3 is comparable, showing that in embryos GSK-3
is not over-expressed but rather expressed at a similar level to the endogenous gene.

GSK-3 Functions in the Activating Complex
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In a control experiment, we generated a myr-GSK-3 kinase dead form where two lysines
from the ATP binding domain are mutated inactivating the kinase activity (KK83-84MI)[24].
This form did not activate signaling, nor did it rescue GSK-3 mutants (Fig 2C and 2D). Cells
expressing the kinase dead form of myr-GSK-3 KK-MI did form denticles similarly to unteth-
ered GSK-3 and in contrast to myr-GSK-3, demonstrating that kinase activity at the membrane
is required for pathway activation.

Myr-GSK-3 functions downstream of Wnt to activate signaling
In Drosophila embryos the primary Wnt molecule responsible for patterning the embryo is
Wingless (Wg or Wnt1) [28,29]. Wg binds to receptors on the plasma membrane beginning
the formation of the activation complex, activating signaling and causing the naked cell fate
[6]. All the events of signal transduction should therefore be downstream of Wnt, and we pro-
ceeded to test this by expressing myr-GSK-3 in wgmutants. We found that the absence of Wnt
had no effect on the activity of myr-GSK-3 (Fig 3, Table 1), whereas untethered and kinase
dead forms did not change the wg phenotype, showing that myr-GSK-3 is downstream of Wnt.

Fig 1. Expression of membrane-tethered GSK-3 activatesWnt signaling. (A) Loss of GSK-3 (zw3M11-1 germline clones maternally and zygotically
mutant) embryos show hyper-activated Wnt signaling or the naked phenotype. (B) Overexpression of GSK-3 has no effect on cuticle patterning. (C)
Expression of membrane-tethered myr-GSK-3 shows the hyper-activatedWnt signaling or the naked phenotype. (D) Wild-type cuticle for comparison. (E-E”‘)
A wild-type embryo at stage ~15 with junctions and cell outlines in green (Arm) and denticle precursors in red (pTyr). (F-F”‘) Similar stage embryo (M/Z)
mutant for GSK-3 shows no denticle precursors. (G-G”‘) Membrane-tethered GSK-3 expression also prevents denticle precursors from forming. Scale
bar = 10μm.

doi:10.1371/journal.pone.0121879.g001
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Myr-GSK-3 requires Arrow to activate signaling
The membrane function of GSK-3 is to phosphorylate specific residues on the Wnt co-receptor
Arrow (Arr, or Lrp 5/6 in vertebrates) [15,30–32]. When Wnt signaling is on, GSK-3 phos-
phorylates Arr providing binding sites for Axin and preventing the destruction complex from
forming. As this function appears to be separate, we sought to place it genetically into the signal
transduction pathway. We first looked at the localization of GSK-3 and myr-GSK-3 and found
that the untethered form is predominantly cytoplasmic, but the tethered form is enriched at
the plasma membrane of embryonic epithelial cells (Fig 3E–3H). The destruction complex role
of GSK-3 is upstream of Arm, but downstream of Dsh and the receptors (Table 1, [18]). For ex-
ample, a dsh, zw3 double mutant gives a naked phenotype whereas a dsh single mutant shows a
wg cuticle. This downstream function masks the upstream activating role genetically, but the
myr-GSK-3 flies can now be used to overcome this limitation.

As the membrane complex function involves phosphorylation of Arr, we started by testing
the interaction of Arr and myr-GSK-3. We made embryos maternally and zygotically mutant
(dominant female sterile germline clones [33]) for arr and expressed myr-GSK-3 within them
using the Gal4/UAS system [34]. Mutant arr (M/Z) embryos give a strong wingless-like pheno-
type [35], but are rescued by a paternal wild-type copy [35]. Expression of myr-GSK-3 had no
effect in arrmutant embryos (Fig 4A), note denticle producing cells expressing myr-GSK-3.
This experiment shows that Arr must be present for myr-GSK-3 mediated pathway activation.

Myr-GSK-3 requires Dsh to activate signaling
Dsh is the upstream activating protein that inhibits the destruction complex. Genetically, it is up-
stream of GSK-3 and the destruction complex. Molecularly, its role appears to be in nucleating
the activation complex at the membrane [36]. We investigated whether Dsh was required for
myr-GSK-3 pathway activation. Loss of dsh in germline clone embryos (M/Z) mutants gives a
strong wingless-like phenotype [10]. We expressed myr-GSK-3 in dsh (M/Z) mutant embryos
but did not observe signal activation (Fig 4B), note denticle producing cells expressing myr-GSK-
3. This experiment shows that Dsh is required for myr-GSK-3 mediated pathway activation.

As a final control, we also expressed myr-GSK-3 in arm (M/Z) mutant embryos in an allelic
series of phenotype severity. In the two signaling loss of function alleles, armF1a (milder form)

Table 1. Summary of cuticle phenotypes from various pathwaymutants expressing the four forms of GSK-3.

UAS-MyrGSK-3 UAS-MyrGSK-3KK-MI UAS-GSK-3 UAS-GSK-3KK-MI
Wild-type Naked (~100% N>100) Wild-type (~100% N>100) Wild-type (~100% N>100) Wild-type (~100% N>100)

wgIG22 Naked (~25% N = 143) wg (~25% N = 110) wg (~25% N = 90) N.D.

zw3M11-1 Naked (~100% N>100) Naked (~100% N>100) Wild-type (~25% N = 189) Naked (~100% N>100)

dshv26 wg (~50% N>100) wg (~50% N>100) wg (~50% N>100) wg (~50% N>100)

arr2 wg (~50% N>100) wg (~50% N>100) wg (~50% N>100) N.D.

armF1a wg (~50% N>100) wg (~50% N>100) wg (~50% N>100) N.D.

armXM19 wg (~50% N>100) wg (~50% N>100) wg (~50% N>100) N.D.

arm043A01 wg (~25% N = 98) N.D. Crumbs (~50% N = 201) N.D.

For dsh, zw3, arr, and arm mutations embryos were maternally and zygotically (M/Z) mutant, whereas wg was only zygotically mutated. All crosses use

second chromosome armGal4 except for arr mutants where third chromosome daGal4 was used. The wg phenotype refers to a wg-like embryo or a loss

of signaling phenotype. Naked refers to a loss of denticles phenotype similar to ectopic Wg activation or loss of GSK-3. N.D. means that the experiment

wasn't done. In zw3 mutant embryos, little paternal rescue is observed with half the embryos being completely naked and the other half mostly naked, so

the rescue must involve a significant return to wild-type patterning only observed in UAS-GSK-3 expressing embryos. For dsh, arr, and arm mutations,

paternal rescue is complete with 50% of embryos returning to a wild-type phenotype.

doi:10.1371/journal.pone.0121879.t001
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and armXM19 (stronger form) [26,37] we did not observe any effect on patterning with expres-
sion of myr-GSK-3 (Table 1, Fig 4D). In the strong loss of function arm043A01, however, where
adherens junctions are disrupted and embryos fall apart during development (crumbs pheno-
type [38,39]), we did observe a mild rescue of cuticle integrity but no signaling activation (Fig
4E and 4F). These results show that Arm is required for myr-GSK-3 signaling activation, but
additionally show that activation of the membrane-proximal complex can still inhibit degrada-
tion of Arm to the extent that adhesion function returns.

Discussion
Recent findings in the Wnt signal transduction pathway have shown that the mechanism of
this pathway is still not entirely understood. In this paper we focused on the genetics of GSK-3
and its two roles in the signal transduction pathway. We find that the activating role in the
membrane signal-activating complex is conserved in Drosophila. We show that the activation

Fig 2. Expression of membrane-tethered GSK-3 increases embryonic levels of Arm. (A) Western blot
comparing total Arm protein levels between five embryos expressing myr-GSK-3 and 5 wild-type embryos.
(B) Western blot comparing total GSK-3 protein levels. Higher band represents expressed GSK-3 as this has
a 3XHA tag, making it slightly larger than the endogenous GSK-3 directly below. (C) Cuticle of embryo
expressing myr-GSK-3 kinase dead variant using ArmGal4. (D) Cuticle of embryo expressing myr-GSK-3
kinase dead variant using ArmGal4 in an embryo maternally and zygotically mutant for GSK-3.

doi:10.1371/journal.pone.0121879.g002
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occurs downstream of the extracellular ligand, but requires the membrane complex compo-
nents Arr and Dsh to be present. This function is dependent on the kinase activity of GSK-3 as
a kinase dead version cannot activate signaling. These results show the evolutionary conserva-
tion of this pathway from Drosophila to vertebrates.

We are not able to answer the pressing question, however, as to how the destruction com-
plex moves out of the cytoplasm, rearranges in the presence of Dsh/Arrow and activates signal-
ing, a hot topic in the Wnt field [40,41]. Our results only show that both are required for the
proper transduction of signals. From a genetic perspective, our findings formally show that
GSK-3 kinase activity has two separable roles required for signal transduction. Myr-GSK-3 is
targeted to the membrane through a lipid modification, where in the presence of Dsh and
Arrow it activates signaling. If the role of the activating complex was simply to localize GSK-3
to the membrane, then Dsh and Arrow would be dispensable, but our epistasis experiments
show this to not be true. We therefore believe that to be able to phosphorylate LRP5/6, GSK-3
requires the presence of complex components to facilitate phosphorylation (Fig 5). As our
western blot shows, the expression levels achieved in embryos are not high compared to the en-
dogenous GSK-3 expression, and certainly much lower than those achieved in tissue culture
cells [15,40]. Similarly, we had previously failed to get strong Wnt activation in embryos with a
membrane-tethered cytoplasmic domain of Arrow [17] whereas this worked very well in cul-
tured cells [42]. Taken together, these results suggest that at the levels of expression achievable
in Drosophila embryos, the membrane-proximal activation complex is required for mem-
brane-tethered GSK-3 to be able to activate signaling.

Dsh is required under normal circumstances to activate signaling. It binds to Fz through the
PDZ domain and to Axin through both their DIX domains [43,44]. Once the external binding
of Wnt to both LRP and Fz is included, a five protein complex holds the receptors in place
forming the activation complex (Fig 5). Interestingly, two studies argued that membrane teth-
ering of APC and Axin is sufficient to inactivate signaling, or to reconstitute the destruction

Fig 3. Membrane-tethered GSK-3 functions downstream of Wnt. (A) Cuticle of an embryo zygotically mutant for Wnt (wgIG22) shows the classic segment
polarity phenotype [29] and a loss of all naked cuticle. (B) Expression of wild-type GSK-3 using ArmGAL4 in Wnt mutants showed no effect, or thewg
phenotype. (C) Expression of myr-GSK-3 in Wnt mutants led to the naked phenotype showing that myr-GSK-3 is epistatic to Wnt and functions downstream.
(D) Kinase function is required as myr-GSK-3-KKMI failed to cause a naked phenotype in Wnt mutant embryos. Embryonic staining using ectopic tag HA in
green and DNA in blue. (E-F) Close up of embryonic expression of GSK-3 shows high cytoplasmic expression. (G-H) Myr-GSK-3 localizes strongly to the
plasmamembrane. Scale bar = 10μm.

doi:10.1371/journal.pone.0121879.g003
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complex at the membrane [27,45]. It will be interesting to dissect the specifics of these models,
as these results imply that simple membrane localization does not activate signaling, and sug-
gests that it is the composition of the complex perhaps controlled through phosphorylation
that determines whether signaling will be turned on or off [40]. Further, it is most intriguing
that apart from GSK-3 other components including APC and Axin appear to have complicated
roles in the pathway suggesting that much work remains before we fully understand the canon-
ical Wnt signaling pathway [46–48].

Materials and Methods

Crosses and expression of UAS constructs
Maternally mutant eggs were generated by the dominant female sterile technique [49]. Oregon
R was used as the wild-type strain. Please see Flybase for details on mutants used (flybase.bio.
indiana.edu). Mutants used: wgIG22, zw3M11-1, dshV26, arr2, armXM19, armF1a, and armO43A01

[37]. For mis-expression experiments, the ArmGAL4 2nd chromosome and daGAL4 3rd chro-
mosome drivers were used. All X-chromosome mutants use FRT 101 except for dshV26 that has
FRT 18E and second chromosome arr2 mutants use the G13 FRT. The following crosses were
conducted:

1. zw3M11-1 FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-myr-GSK-3

2. zw3M11-1 FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-GSK-3

Fig 4. Myr-GSK-3 functions upstream of Arrow, Arm, and Disheveled. (A) arr2 (M/Z) mutant embryos expressing myr-GSK-3 (HA magenta) fail to
prevent formation of denticles (pTyr Green). (B) dshV26 (M/Z) mutant embryos expressing myr-GSK-3 (HAmagenta) also fail to prevent formation of denticles
(pTyr Green). (C) Expression of myr-GSK-3 in GSK-3 mutant embryos shows no effect as no denticles are formed (HA red, pTyr green). (D-F) Cuticles of an
allelic series of armmutants expressing myr-GSK3 show variable phenotypes. (D) Expression of myr-GSK-3 in armXM19 (M/Z) mutant embryos shows no
effect. (E) armO43A01 (M/Z) embryos tend to fall apart leaving a crumbs phenotype. (F) Expression of myr-GSK-3 can rescue the cuticle integrity to a small
degree. Scale bar = 10μm.

doi:10.1371/journal.pone.0121879.g004
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3. zw3M11-1 FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-GSK-3 KK-MI

4. zw3M11-1 FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-myr-GSK-3 KK-MI

5. armF1a FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-myr-GSK-3

6. armXM19 FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-myr-GSK-3

7. armO43A01 FRT101/ovoD1 FRT101; arm-Gal4/+ females x UAS-myr-GSK-3

8. dshV26 FRT18E/ovoD2 FRT18E; arm-Gal4/+ females x UAS-myr-GSK-3

9. arr2 FRTG13/ovoD1 FRTG13; da-Gal4/+ females x arr2/+; UAS-myr-GSK-3

10. wgIG22, Arm-Gal4/+ x wgIG22; UAS-myr-GSK-3

Most X chromosomes were marked with the yellowmutation or the balancers were marked
GFP to simplify analysis. For all crosses more than 100 embryos were analyzed in multiple, sep-
arate experiments (n>100).

UAS-transgenes and GAL4 driver lines
Two ubiquitous drivers were used for expression of transgenes: the weaker armadillo-GAL4 and
the stronger daughterless-GAL4 [34]. UAS constructs were made using Gateway recombination
(Invitrogen). Myristoylated constructs were made by adding a sequence identical to the NH2
terminus of src (MGNKCCSKRQGTMAGNI) to the NH2 terminus of GSK-3 by PCR. This
sequence has proven to be very effective for membrane targeting of Arm [25–27,37]. The
PCR products were then transferred by Gateway cloning (Invitrogen) into pUASg.attB with

Fig 5. Simplified model for the membrane-proximal Wnt signaling activating complex.Wnt binding brings together the receptor Fz and the co-receptor
Arrow/LRP5 or 6 extra-cellularly. Inside the cell, Axin and Dsh interact through their DIX domains bringing GSK-3 into proximity with phosphorylation sites on
Arrow. In the absence of Dsh or Arrow, even membrane tethering of GSK-3 isn’t sufficient to activate Wnt signaling as the complex fails to form. ID on Axin is
short for interaction domain, as this is the region mapped for CKI, GSK-3 and β-catenin interaction [57].

doi:10.1371/journal.pone.0121879.g005
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COOH-terminal 3XHA tag (A kind gift from J. Bischof and K. Basler, Zurich) [50]. Transgenes
were injected into attP2 (Strain #8622) P[CaryP]attP2 68A4 by BestGene Inc. (California) [51].
Kinase dead GSK-3 was made by mutating lysines KK83-84MI in the ATP binding domain [24]).

Antibodies and Immunofluorescence. Embryos were fixed with Heat-Methanol treat-
ment [52] or with heptane/4% formaldehyde in phosphate buffer (0.1M NaPO4 pH 7.4) [26].
The antibodies used were: anti-Armadillo (mAb N2 7A1, Developmental Studies Hybridoma
Bank developed under the auspices of the NICHD and maintained by The University of Iowa,
Department of Biological Sciences, Iowa City, IA 52242), anti-HA (ratAb 3F10 and mouse
12CA5, Roche), rabbit anti-Armadillo [53], phospho-tyrosine pY99 (Santa Cruz Biotechnolo-
gy), anti-β-tubulin (E7, DSHB), and anti-Sexlethal (mAb M-14, DSHB). Staining, detection
and image processing as described in [54].

Western Blotting. Embryos were selected for fertilization and developmental stage, lysed
in extract buffer (50mM Tris pH 7.5, 150 mMNaCl, 1% NP-40, 1mM EDTA, 10% Glycerol,
Complete Mini Protease, Sigma) or RIPA lysis buffer (Santa Cruz Biotechnology Inc.), the ex-
tracts were separated on 7.5% SDS-PAGE, and blotted as described in Peifer et al.[55]. To com-
pare expression levels of endogenous and exogenous GSK-3, the embryo extracts were made in
a similar manner and separated on SDS-PAGE (4–20%) and blotted using Rabbit Anti-Zw3
primary antibody [56].
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