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Abstract

Here we describe a new integrative approach for accurate annotation and quantification of
circRNAs named Short Read circRNA Pipeline (SRCP). Our strategy involves two steps:
annotation of validated circRNAs followed by a quantification step. We show that SRCP is
more sensitive than other individual pipelines and allows for more comprehensive
quantification of a larger number of differentially expressed circRNAs. To facilitate the use of
SRCP, we generate a comprehensive collection of validated circRNAs in five different
organisms, including humans. We then utilize our approach and identify a subset of
circRNAs bound to the miRNA-effector protein AGO2 in human brain samples.
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Background
Circular RNAs (circRNAs) are abundant RNAs generated through circularization of

specific exons by a process called back splicing [1–4]. circRNAs have been found in

bacteria, archaea, and most eukaryotes [5]. While circRNAs are produced by splicing

in most eukaryotes, it is not clear how are they produced in bacteria and archaea [4].

Because circRNAs are covalently closed molecules, they are generally more stable than

linear RNA transcripts, as they cannot be efficiently target by the canonical mRNA

degradation pathways (e.g., exonucleases digestion). circRNAs are highly expressed in

metazoans, particularly in the central nervous system (CNS) [1, 6–8]. Interestingly, cir-

cRNAs accumulate in the CNS as animals age in flies, worms, and mice [9, 10]. When

first discovered, circRNAs were thought to be a byproduct of splicing; however, mul-

tiple studies in the past years have clearly shown that at least some of these RNAs are

functional. Two pioneering works showed that circRNAs can bind to and likely modu-

late miRNA function [11, 12]. Other studies showed that these molecules can also

regulate the activity of RNA-binding proteins [13] and ribosome biogenesis [14] and

that a subset of them encode proteins [15–17]. Their functionality has also been

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Rabin et al. Genome Biology          (2021) 22:277 
https://doi.org/10.1186/s13059-021-02497-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02497-7&domain=pdf
http://orcid.org/0000-0003-0080-5987
mailto:skadener@brandeis.edu
mailto:skadener@brandeis.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


demonstrated in vivo [15, 18–20], some of them are altered in disease [21] and there is

evidence that circRNAs can be used as disease biomarkers [22].

Many computational pipelines exist for de novo discovery and quantification of cir-

cRNAs from RNA-seq data [23–25]. These include Acfs [26], DCC [27], segemehl [28],

CIRCexplorer [29], KNIFE [30], MapSplice2 [31], circRNA_finder [32], CIRI [33], and

find_circ [11]. The pipelines differ in sensitivity, precision, runtime, and storage re-

quirements [23], as shown in several independent studies [23, 34, 35]. Analysis of a

large number of datasets allowed researchers to generate different circRNA databases

[36]. One of the most popular circRNAs databases is known as circBASE [37], which

contains annotations and information on many, but not all, circRNAs. Since many cir-

cRNAs have been already discovered, the very time-consuming [23] process of de novo

identification of circRNAs for every RNA-seq library is redundant. Moreover, most cir-

cRNAs are identified by only a subset or even only one pipeline, making it difficult to

determine whether these are real circRNAs or sequencing and/or annotation artifacts.

Therefore, utilizing only one pipeline for circRNA annotation and quantification is

highly problematic [35].

Generally, circRNA detection relies on the identification of a splicing junction that is

unique for a given circRNA (i.e., the backsplicing junction). Importantly, other bio-

logical processes and technical artifacts can generate splicing junctions that can be con-

fused with those characteristic of circRNAs [25]. These include splicing errors, trans-

splicing, linear concatamers (i.e., from exon duplications), and artifacts resulting from

the template switching activity of the reverse transcriptase [25]. Hence, circRNAs need

to be validated experimentally. To do so, researchers use the 3′ exonuclease RNaseR,

which efficiently degrades linear RNA sequences and does not affect circular RNA mol-

ecules [38]. Briefly, the usual approach consists in comparing the abundance of specific

splicing junctions (determined by RT-PCR or RNA-seq) in samples pretreated or not

with RNaseR. Although this is the most straightforward approach for validation of can-

didate backsplicing junctions, it cannot be used as sole evidence of RNA circularity, as

some linear RNAs are resistant to RNaseR treatment [39, 40]. In sum, current pipelines

are useful for annotating and quantifying specific sets of circRNAs. However, utilizing

only one pipeline results in large numbers of false positives and false negatives. While

combining several pipelines could help to identify all bona fide circRNAs, the quantifi-

cation approaches are different, and their results cannot be merged. Moreover, to per-

form quantification of circRNAs, most pipelines rely on the de novo annotation of

circRNAs. The redundant de novo annotation is a very time consuming and computa-

tionally intensive process.

Here, we developed an alternative approach for both identifying and quantifying cir-

cRNAs. We first generate a reliable database of circRNAs by analyzing RNA-seq data

from RNaseR and mock-treated samples through several existing pipelines. In the sec-

ond step, we use this database to create a reference to which the RNA-seq data is

aligned. We showed that our approach outperforms the use of single pipelines with re-

gard to both annotation and quantification. Then, we generated, sequenced, and ana-

lyzed mock and RNaseR-treated samples from mouse, rat, monkey, and human tissues.

This allowed us to create a catalog of bona fide circRNAs for utilizing our new pipeline

in those species. Finally, we used this catalog to identify circRNAs bound to the

miRNA-effector protein AGO2 in human brain samples.
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Results
General approach

circRNA annotation

To accurately annotate and quantify circRNAs, we utilize a two-step approach that we

call the Short Read CircRNA Pipeline (SRCP; Fig. 1). The first step consists of the an-

notation of validated circRNAs. To do this, we utilize several pipelines to identify all

putative circRNAs in a given tissue/species (Fig. 1A). As annotation of the boundaries

of circRNAs can be ambiguous between reads and/or between pipelines, we score the

potential boundaries for a circRNA depending on the presence of zero, one, or two an-

notated spliced junctions (scores of 0, 1, and 2, respectively; Fig. 1B). Then, we proceed

to quantify all the putative circRNAs (from the output of all the used pipelines) using

SRCP (see below). We perform this quantification in two different RNA-seq libraries:

one generated from total rRNA-depleted RNA and one generated from the same RNA

pretreated with RNaseR (Fig. 1A, B). The comparison allows us to establish a database

containing all validated circRNAs based on RNaseR resistance, as well as on whether

they are contained within annotated exons (Fig. 1C). Creating this database is time con-

suming, but it is only performed once for each type of sample (e.g., tissue and/or organ-

ism). Importantly, generating the list of bona fide circRNAs requires the careful

determination of a threshold (Fig. 1C). The selection of this cutoff is somehow arbi-

trary, but the user can change the threshold to include circRNAs that were slightly sen-

sitive to RNaseR but are likely to be real based on other criteria. For example,

circRNAs that are detected by several pipelines and are expressed at medium to high

levels are usually real, even if slightly sensitive to RNaseR. Here, we utilize these criteria

in a combined fashion to choose the cutoff for the RNaseR sensitivity at which a cir-

cRNA is consider real (true circRNA) and generate a list of bona fide circRNAs from a

given tissue or animal. Our pipeline allows the user to customize the circRNA list to be

tested by either changing the threshold or rescuing specific circRNAs from the ones

considered false, and even manually provide a subset of potential circRNAs to be quan-

tified by SRCP (Fig. 1C). Furthermore, we combine validated circRNAs from different

tissues and replicas to generate a comprehensive list of likely valid circRNAs. The main

advantage of SRCP over other pipelines is that it can quantify circRNAs identified by

any pipeline. In addition, our pipeline does not require de novo identification and an-

notation to be generated for each sample/run.

circRNA quantification

Following the circRNA annotation step, our pipeline generates a reference of the back-

splicing junctions and the canonical (linear) splicing junctions of the first and last exon

contained in each circRNAs (Fig. 1D); the latter is used to quantify the linear RNA gen-

erated from the circRNA-hosting genes. Once the “annotation” and “index reference”

creation steps have been performed, SRCP can quantify the levels of circRNAs and

their linear counterparts from a particular set of samples. As stated above, this list can

be generated using any cutoff chosen by the user and even include specific circRNAs

that the user wants to test. Briefly, first SRCP aligns the RNA-seq reads to the species/

tissue reference of the sample to be quantified using bowtie2 to identify circRNA reads

in the datasets. Then, we align the backsplicing junction reads to the genome and linear

Rabin et al. Genome Biology          (2021) 22:277 Page 3 of 26



transcriptome and eliminate those that align to one or both of them. This is done to re-

move reads that cannot be unequivocally assigned to the circRNAs. Following this ap-

proach, SRCP allows the quantification of any circRNA junction independent of

Fig. 1 A comprehensive approach for annotation and quantification of circRNAs. A As a first step towards
using SRCP, we generated a comprehensive list of all possible circRNAs in a given tissue/species. We
generated this list by merging circRNA coordinates provided by different pipelines. B We then reannotate
the initial list to obtain one specific set of coordinates for each candidate circRNA. To do so, we rely on the
fact that most circRNAs are flanked by already annotated splice sites. Then, if the start coordinates and the
end coordinate of the circRNA are both exactly on a 5′ and 3′ boundaries of the transcript’s exons, we
compute a score of 2. (ii) If only one coordinate is exactly on an exon boundary, the score is 1. (iii) If neither
coordinate is on any exon boundary, the score is 0. We keep the transcript with the highest score. C We
determine the cutoff (false-positive and false-negative rate) based on RNaseR sensitivity and expression
level. Then we obtain a circRNA index. Importantly, circRNAs from other lists and/or databases can be
added to enrich the circRNA index. D Once the circRNA index is set up, SRCP allows accurate quantification
of circRNA reads
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whether is identified by only one, a few, or all available pipelines for circRNA identifica-

tion and quantification.

No current pipeline accurately annotates all circRNAs

We began by assessing circRNA levels detected by five commonly utilized circRNA

pipelines (find_circ [11], CIRI2 [41], Acfs [26], circExplorer [29], and circRNA_finder

[32]) in a previously published Drosophila melanogaster RNA-seq dataset obtained on

samples with and without RNaseR treatment [GSE55872]. As previously observed for

other datasets [23, 35], only about one third of circRNAs were identified by all the

tested pipelines (Fig. 2A). It has been previously proposed that a large fraction of

pipeline-specific circRNAs are false positives and that circRNAs detected by several

pipelines tend to be bona fide circRNAs [5, 35]. More than 50% of the initially identi-

fied circRNAs in the analyzed dataset are detected by only one or two pipelines.

Identification of bona fide circRNAs using RNaseR-seq datasets

The analyzed dataset also contains RNA-seq reads from RNaseR-treated samples, which

allowed us to determine the RNaseR sensitivity of the candidate circRNAs, a good way to

identify bona fide circRNAs and not computational and/or methodological artifacts. It is

important to point out that RNaseR sensitivity is not completely reliable, as linear RNAs

with strong secondary structure are resistant to this exonuclease [40]. For each identified

circRNA junction, we calculated the ratio between the signal obtained in the RNaseR-

treated samples and the signal in the total RNA (RNaseR/mock ratio). For each circRNA

candidate, we assumed that the larger the RNaseR/mock ratio, the more likely it repre-

sents a bona fide circRNA. For the sake of simplicity and to minimize false positives, we

utilized only circRNAs that are expressed in the mock sample.

As expected, linear RNA junctions (from the same locus hosting the circRNAs) have

lower RNaseR/mock RNA ratios than circRNA junctions (Fig. 2B). For linear mRNAs,

the RNaseR/mock ratios have a discrete peak with a normal distribution. Interestingly,

the putative circRNA distribution is broader. This is likely due to overlapping peaks ob-

served in the distribution of the candidate circRNAs. Therefore, it was necessary to

apply a cutoff in order to distinguish bona fide circRNAs from false positives. Since

false-positive circRNAs are linear molecules, we assumed that the distribution of the

linear RNAs and the false-positive circRNAs should be similar. Therefore, we defined

the error level to be an arbitrary percentage of the area on the right tail of the linear

distribution. We accepted all circRNAs that have a higher RNaseR/mock ratio than this

cutoff ratio as real, as this constitutes the barrier for declaring a molecule RNaseR-

resistant. The overlapping area of the linear and circular distributions may originate

from RNaseR-resistant linear RNA or from real circRNAs with some sensitivity to the

RNaseR treatment. The observed population of linear RNAs was quantified using a

similar metric (junction reads) but was restricted to the mRNAs generated from the

genes hosting the circRNAs. It is important to point out that the cutoff is arbitrary and

that SRCP takes as input a list of circRNAs that can be modified either by changing the

cutoff, by adding specific circRNAs manually or even selecting a specific subset of cir-

cRNAs to check (Fig. 1C).
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Setting a cut off in the RNaseR/mock ratio

A given circRNA would be consider real if the ratio of the signals obtained between the

RNaseR and mock samples is higher than a given threshold/cutoff value. The choice of

this threshold is somehow arbitrary, and it is initially based on the distributions of these

Fig. 2 SRCP accurately annotates circRNAs. A Venn diagram of the circRNAs found by the circRNA-identification
pipelines in analysis of the total RNA library from the GSE55872 dataset. For this and further analysis, we utilized only
circRNAs which were found in the mock samples. B RNaseR/mock ratio distribution in Drosophila melanogaster. The
data in orange represent the circular junctions and that in violet the linear junctions. For the linear junctions, we
utilized the SRCP output of the mRNAs produced from the genes hosting the potential circRNAs. C The number of
circRNAs identified as “true” positives as a function of the cutoff for circRNAs identified by 1, 2, 3, 4, or 5 of the
pipelines used. The dotted lines indicate three potential threshold/cutoffs (0.85, 0.9, or 0.95 respectively). The cutoff is
defined as the fraction of linear mRNAs that would have some resistance to RNaseR. D Number of true and false
circRNAs that have been identified from 1, 2, 3, 4, or 5 pipelines for different cutoffs in (C). E Boxplots showing the
distribution of expression (top) and the RNaseR/mock ratio (bottom) of the true and false circRNA that are identified
either by 3 (right), 4 (middle), or 5 (left) pipelines. F Percent of true and false positives identified by SCRP and each
individual circRNA-identification pipeline
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ratios for the circRNA candidates and their hosting mRNAs in a given tissue/species.

Moreover, this threshold can be accommodated by the user at a later point. Previous

work showed that circRNA junctions found by more pipelines are more likely to be

generated from bona fide circRNAs [23, 35]. Therefore, we decided to use that criterion

to guide the selection of the most appropriate cutoff for the RNaseR/mock RNAseq ra-

tio. Briefly, we looked at the proportion of validated and false-positive circRNAs when

circRNAs were identified by one to five pipelines. As we wanted to choose a reasonable

criterion for distinguishing bona fide from false-positive circRNAs, we looked at this

parameter as we changed the cutoff value (see Table S1, Fig. 2C, D, and Additional file

1: Figure S1A). We observed that using a cutoff between 0.85 and 0.95 (a cutoff that as-

sumes 5–15% of linear mRNAs have some resistance to RNaseR) we included most cir-

cRNAs identified by all pipelines (while eliminating 85–95% of linear RNAs, see

Additional file 2: Table S1, Fig. 2C, D). This was also the trend when we examined cir-

cRNAs detected by individual pipelines (Additional file 1: Figure S1B). For cutoffs over

0.95, the proportion of the true circRNAs selected decreased rapidly even for those cir-

cRNAs detected by all the pipelines, which are highly likely to be real (Fig. 2C, D, and

Additional file 1: Figure S1A). On the other hand, higher error rates result in the inclu-

sion of false positives (i.e., as the cutoff was made less stringent; Fig. 2C and Additional

file 1: Figure S1A). To determine the exact cutoff, we assumed that circRNAs detected

by multiple pipelines that have medium to high levels of expression are more likely to

be real. For instance, a cut off of 0.95 still eliminates some circRNAs that are of

medium expression and detected by multiple pipelines (see comparisons of distribution

of expression of true and false circRNAs for different thresholds in Additional file 1:

Figure S1C). Therefore, for this particular dataset, we chose to set up the cutoff at 0.90.

At this cutoff, the large majority of the circRNAs with middle or high expression and

which are detected by multiple pipelines are identified as true (Fig. 2E top), with a sig-

nificantly higher RNaseR/mock sensitivity (Fig. 2E bottom). Importantly, most of the

circRNAs with medium/high expression which we catalog as false are pipeline specific

(Additional file 1: Figure S1D). In sum, using both the RNaseR sensitivity and the ex-

pression criteria, we likely included most real circRNAs, while minimizing the number

of false positives. It is important to point out that the cutoff-derived percentage of po-

tential false positives is purely theoretical and it is likely below this 10% for two differ-

ent reasons: (1) As previously described [40], a subset of linear RNAs is resistant to

RNaseR, possibly due to secondary structures; (2) The estimated 10% is based on meas-

urement of junctions of mRNAs that host circRNAs, some of these junctions indeed

could also be shared with other circRNA isoforms making the number of linear mole-

cules less than the estimated 10%.

By utilizing the SCRP strategy with a cutoff of 0.9, the proportion of circRNAs identi-

fied by all pipelines increased from about 35% to almost 60% (Additional file 1: Figure

S1A). Importantly, some circRNAs detected by only one or two pipelines were identi-

fied as true circRNAs by the SCRP approach, demonstrating the utility of running mul-

tiple pipelines in the annotation step. However, most of the pipeline-specific circRNAs

have an RNaseR/mock ratio lower than the cutoff value (see dotted line in Fig. 2C,

Additional file 1: S2E, and Additional file 2: Table S1) indicating that they are likely

false positives and rightly eliminated by the annotation step of SRCP. One of the main

risks/possible drawbacks of our approach is to exclude bona fide circRNAs due to a too
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stringent cutoff (false negatives). In any case, more circRNAs can be manually added to

the “true” list if there is additional evidence of their circularity or if the researcher is

particularly interested on them. Using the chosen threshold, we determined how well

each pipeline annotates circRNAs. The proportion of true positives is variable between

the pipelines as well as the percentages of false positives (Fig. 2F). These results demon-

strate that the utilization of multiple pipelines and analysis of RNaseR susceptibility, as

implemented in SCRP, is more comprehensive than any previously described pipeline

for annotating circRNAs.

Expression and genomic features of bona fide circRNAs

Given our identification of a set of bona fide circRNAs, we asked whether these cir-

cRNAs could be identified using other genomic and/or expression features. As cir-

cRNAs lack a polyA tail, their appearance in polyA+ libraries is usually an indicator of

a false positive (the exceptions are the few circRNAs that contain stretches of adenosine

within them). Indeed, validated circRNAs had very low expression levels in polyA+-se-

lected RNA-seq libraries (Additional file 1: Figure S2A). In addition, bona fide cir-

cRNAs tend to be expressed at higher levels and be longer than false-positive circRNAs

identified in total RNA-seq libraries (Additional file 1: Figures S2B and S2C). These

two features could potentially be useful in identifying circRNAs.

To identify additional genomic feature differences between circRNAs and linear tran-

scripts, we compared a list of circRNAs to a group of transcripts containing exons ran-

domly selected from the group of exons that do not form circRNAs (see “Methods”).

Neither intron length nor GC content clearly discriminated between true and false-

positive circRNA junctions, although exons included within true- and false-positive cir-

cRNA junctions were flanked by much longer introns than randomly selected exons

(Additional file 1: Figure S2D), in agreement with previous analysis [42]. In addition,

the exons on both sides of bona fide circRNAs tended to be annotated (Additional file

1: Figure S2E). Hence, many of the junctions that are wrongly classified as circRNA-

specific are generated from poorly annotated genes. Interestingly, bona fide circRNAs

tended to be hosted by genes with more exons than false-positive circRNAs or ran-

domly selected exons (Additional file 1: Figure S2F). As previously described [43], bona

fide circRNAs were more likely to be generated from the second exon of the hosting

gene than were randomly selected exons, although we observed a similar trend for the

false-positive candidates (Additional file 1: Figure S2G). Thus, bona fide circRNAs have

genomic features that distinguish them from exons that are not circularized, but these

differences are not enough to design a non-experimental criterion for the identification

of “true” circRNAs from RNA-seq data.

Annotated circRNAs can be accurately quantified using SRCP

circRNA pipelines identify different sets of circular junctions. As these pipelines utilize

different quantification approaches, their results cannot be merged and compared for

downstream analysis. The methodology described here overcomes this limitation. SRCP

merges potential circRNA junctions identified using various pipelines and then quanti-

fies them using a seed-matching approach. In this approach, we require that a seed of

certain size around the circular junction must be included in the RNAseq in order to
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quantify it as a circular read. This allows calculation of differential expression of all val-

idated bona fide circRNAs, independently of which circRNA pipelines detected them.

Theoretically, the SRCP performance should be strongly affected by the length of the

seed utilized to identify the circRNA junctions. Longer seeds should unequivocally

identify the circRNA junction, and shorter seeds should result in higher false-positive

rates. We ran the SRCP with three different seed lengths (4, 6, and 10 bases) using one

read of the paired-end RNAseq sample (SRR1197359) which we computationally down-

sized in length and depth. As expected for each library depth, we detected more circu-

lar reads and a larger repertoire of circRNAs as we shortened the seed (Additional file

1: Figure S3A). Changing the seed length while keeping the read length and library

depth constant only marginally altered the circRNA detection, although seed length

was more important for shorter RNA-seq reads than longer (Additional file 1: Figure

S3B). For further experiments, we utilized a seed of 5 bases from each side of the back-

splicing junction (10 bases total when aligning to the backsplicing junction).

To determine the accuracy and sensitivity of our seed-based quantification, we used

both simulated and experimental data. First, we simulated seven sets of RNA-seq reads

based on known circRNA junctions from Drosophila melanogaster (see “Methods”).

Each set was designed to contain half of the number of circRNA read counts as the one

before (Additional file 2: Table S2). Importantly, these simulated data utilized circRNA

junctions that were identified by all pipelines, and hence the results reflect only the

quantification aspects of the pipelines. Of the pipelines tested SRCP, CIRI, circExplorer,

and acfs detected the most circRNA reads in each sample with very small variations,

while find_circ and circRNA_finder were less sensitive (Additional file 1: Figure S4A).

This means that SRCP, CIRI, circExplorer, and acfs are sensitive enough to detect low-

abundance circRNAs represented by only 10 to 40 reads per circle per sample (Add-

itional file 2:Table S2, samples 5-7). When we evaluated the number of circRNA reads

detected for the 100 most highly expressed circRNAs, we observed similar perfor-

mances for SRCP, CIRI, circExplorer, and acfs. These pipelines identified significantly

more junctions than find_circ and circRNA_finder (Additional file 1: Figure S4B).

These results demonstrate that SRCP sensitivity is comparable to the most sensitive

available circRNA-detection pipelines. However, these conclusions derived from simu-

lated single-end data and do not contain the variety of reads and signals existent on

in vivo data.

To further compare SRCP with the other circRNA computational pipelines, we uti-

lized a previously published dataset of fly heads at different ages [44]. Interestingly,

SRCP has the highest quantification power among the tested pipelines, as it was able to

detect a significantly larger number of circRNA reads from all the samples (Fig. 3A).

This is not due to the larger number of circRNAs identified by SRCP (Fig. 3B), as it

also detects more circRNA reads while quantifying only the set of circRNAs detected

by all pipelines (true circRNAs, which are identified and quantified by all the pipelines,

Fig. 3C). These results strongly suggest that the use of SRCP lowers the chance for false

positives with higher sensitivity than the more sensitive currently available circRNA-

detection pipelines.

As most pipelines rely on the identification of hybrid RNA-seq reads that align to

two regions of the transcriptome, circRNA identification and quantification becomes

less efficient as RNA-seq reads become shorter. In theory, SRCP should not have this
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Fig. 3 circRNAs can be accurately quantified using seed matching. A Total number of circRNA RNAseq
reads for True circRNAs detected by the different pipelines in the 8 samples from female flies of the
SRP001696 dataset. B Number of types of true circRNAs identified by each pipeline in each sample, using
the same dataset as in (A). C Number of true-common circRNAs identified by each pipeline in each one of
the indicated samples. As stated in the text, true-common circRNAs refers to circRNA identified by all the
pipelines in the mock samples and with a RNaseR/mock ratio above the cutoff value. D Total number of
circRNA RNAseq reads for true circRNAs detected by the different pipelines in one of the samples
(SRR1197359) in the intact PE reads (100 bases long) or after computationally truncate them to 50 or 70
bases long. E Number of types of true circRNAs identified by the different pipelines in the SRR1197359
sample in the whole or truncated (to 50 or 70 bases) reads. F As in D and E, showing the number of reads
originated from the True-common circRNAs. G Total number of true circRNA RNAseq reads for the different
pipelines when analyzing the two reads (R1 and R2) of the SRR1197359 sample independently (as single-
end reads). As in (D–F), we have done the analysis in the whole read (100 bases) or after it was truncated
to be 50 or 70 bases long. H Pearson correlation heatmap visualizes quantification by the different pipelines
and SRCP in the male and female fly samples (SRR1197359 and SRR1197473 respectively)
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problem as once indexes are established, the quantification of circRNAs relies on only

a certain number of the seed bases to align perfectly (the seed length can be adjusted

by the user but the default is 5 from each side). To test this hypothesis, we compared

the performance of SRCP with the different pipelines in two of the samples in which

the reads were maintained 100 bases long or computationally truncated using fastx

trimmer to 50 or 70 bases. SRCP consistently outperformed the other pipelines at all

the assayed lengths (Fig. 3D and Additional file 1: Figure S4C). As expected, SRCP also

detected more validated/true circRNAs at the three lengths of the reads tested (Fig. 3E

and Additional file 1: Figure S4D). To solely compare the quantification power of SRCP

with the other pipelines, we restricted the analysis to those bona fide (“true”) circRNAs

that are detected by all pipelines (common-true circRNA set). Also, in this subset,

SRCP outperforms the other pipelines while the subsamples are of different length (Fig.

3F and Additional file 1: Figure S4E), except for 50 bases long reads, in which CIRI and

SRCP perform similarly. These results suggest that SRCP could be also used to quantify

circRNAs from short RNA-seq libraries, like those generated from RNA precipitation-

based methods such as RIP and CLIP. Only SRCP and CIRI will be effective with tech-

niques that generate even shorter RNA-seq reads like ribosome foot printing, for which

we utilized a similar approach in the past [16].

Then, we determined the quantification power of the different pipelines when utiliz-

ing single-end (SE) rather than paired end (PE) RNAseq. To do so, we utilized the same

dataset but ran the pipelines utilizing the data as single end reads. We compared their

power to detect circRNAs from the intact or computationally truncated reads and de-

termined how they compare with the PE assessments. Interestingly, while utilizing SE

reads, the number of total (R1 + R2) circRNA reads identified by CIRI2 is slightly

higher than SRCP (Fig. 3G and Additional file 1: Figure S4F). This is not surprising as

CIRI2 corrects for false positive RNAseq reads as well as for potential double counts

when using PE data [45]. Therefore, CIRI2 might identify false-positive reads while util-

izing single-end reads, which are properly eliminated if PE data is available. None of

these is an issue for SRCP, as it only identifies reads aligned to the correct strand and

eliminates any RNAseq reads with strong alignment to the transcriptome and/or gen-

ome (Fig. 1D). Moreover, careful examination of the reads determined that no PE read

is counted twice by SRCP in this dataset. In conclusion, these data demonstrate that

SRCP outperforms all the other tested pipelines with PE. However, CIRI2 performs par-

ticularly well in single-end (SE) data (Fig. 3G), although it detects a lower number of

circRNAs types and junctions when the analysis is not restricted to the circRNAs de-

tected by all the pipelines (common circRNAs).

We then compared the quantification values obtained by the different pipelines and

observed a strong correlation between them in both males and female samples (Fig.

3H). To further asses the quantification power of SRCP, we calculated the correlation

between replicas for the different pipelines. In this analysis, we also included sailfish-

circ [46]. This pipeline utilizes all the RNAseq reads (not just the backsplicing junction

reads) and requires the previous annotation of circRNAs (we utilized the same list of

“true” validated circRNAs used while quantifying with SRCP). Most pipelines displayed

very high correlation between biological replicas (Pearson correlation > 0.98) with SRCP

having the highest correlation values for most samples (Additional file 3). Sailfish-circ

correlations were consistently lower, although still acceptable.
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SRCP identifies more differentially expressed circRNAs than other individual pipelines

To benchmark SRCP, we utilized a dataset that has been used previously to show that

the global levels of circRNAs increase with age [32]. We then compared the total num-

ber of circRNA reads in young (1 day old) and aged (20 days old) flies utilizing the dif-

ferent pipelines. In agreement with previous findings, most pipelines (including SRCP)

found a strong increase in the total circRNA counts at day 20 in comparison to day 1

(Fig. 4A). Surprisingly, sailfish-circ fail to show that increase (Fig. 4A).

We then used DESeq2 [47] and looked for differentially expressed circRNAs between

young and aged flies. We found that the SRCP pipeline more effectively detected differ-

entially expressed bona fide (true) circRNAs than all other pipelines (Fig. 4B and Add-

itional file 2: Table S3). Using the SRCP approach, we identified 102 bona fide

circRNAs that are differentially expressed (FDR < 0.05) between these two conditions;

all the other pipelines identified less than 80 (Fig. 4B). Importantly, using each of the

pipelines without pre-filtering for true-positive junctions resulted in sets that included

many false positives (Fig. 4B and Additional file 2:Table S3). These results emphasize

the importance of the annotation step that we present here. Using our annotation pro-

cedure lowers the number of false positives and thus results in higher accuracy in fur-

ther analyses.

We then utilized RT-qPCR to validate a subset of the circRNAs that were detected as

differentially expressed (DE) by SRCP between young and aged flies. For the validation,

we chose one circRNA (circWbp2) that we found DE by all pipelines, four that were

found only by SRCP (circAlph, circCG7546, circNolo, and circScrib), and three that

were found to be DE by SRCP and one or two additional pipelines (circGlut4EF and

circMchl, and circSlgA, respectively). As expected, the levels of the control mRNA (b-

tubulin) were similar in young and aged flies (Fig. 4C). Importantly, 6 out of the 8

tested circRNAs increased their levels significantly with age. Among them, 3 were out

of the 4 found DE only by SRCP (Fig. 4C), demonstrating that the changes (that could

only be detected by SRCP) are real. As circNolo and circMchl were barely detected by

qPCR (with Cqs beyond cycle 30), it is not possible to completely rule out that these

circRNAs also increase with age. In sum, these results show that the use of our two-

step procedure extracts more accurate information from the RNA-seq data than other

circRNA identification pipelines, although the computational prediction is still not per-

fect, since some data could not be validated experimentally.

Building a mammalian database of validated circRNAs for universal SRCP use

To extend the use of SRCP to mammals, we generated and sequenced RNAseq libraries

from mock and RNaseR-treated RNA obtained from mouse, rat, monkey, and human

samples (Fig. 5A). In the case of human and mice, we utilized different tissues and

brain regions (see Additional file 2: Table S4). Overall, we sequenced almost 2 billion

150-base-long pair-ended (PE) RNAseq reads (Additional file 2: Table S4).

To identify circRNAs from those samples, we utilized four different pipelines (CIRI2,

find_circ, circRNA finder, and circ_explorer), generated the circRNA index as we did

for the Drosophila samples (see above) and run SRCP to identify the circRNA and lin-

ear junctions for each tissue/specie. We then proceeded to determine the abundance of

all circRNAs in the RNaseR-treated and mock samples and plot them according their
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RNaseR resistance. As for D. melanogaster, we observed that circRNAs presented

higher RNaseR/mock ratios than their linear counterparts (Additional file 1: Figure S5).

However, the shape and value of the distributions of this ratio between linear and cir-

cRNAs differ between samples, likely due to different efficiencies of the RNaseR treat-

ment or maybe the tissue and origin (Additional file 1: Figure S5). These observations

Fig. 4 SRCP enables accurate identification of more differentially expressed circRNAs than other pipelines. A
Relative amount of total circRNAs reads (for true circRNAs) in young (1 day old) and aged (20 days old) flies.
The total number of circRNAs was calculated using the individual pipelines, and reads assigned to true
circRNAs were added up for each condition. The average of young flies was normalized to 1. * Indicates
significance (t-test, p value < 0.05), while NS indicates no statistically significant differences. The error bars
represent the standard error of the mean (SEM). B Number of true (violet bars) and false-positive (orange
bars) differentially expressed circRNA found by SRCP and the other circRNA-identification pipelines. C
Validation of DE circRNAs by qPCR. Expression of target circRNAs and beta-Tubulin mRNA were normalized
on the level of TBP mRNA. We then plotted the average of 3 independent biological replicates and the
error bar represents the SEM. The average of young flies (1 day old) was normalized to 1. We performed t-
test to compare 1 day old vs 20 days old. * Indicates p value < 0.05, ** p value < 0.005, NS non-significant

Rabin et al. Genome Biology          (2021) 22:277 Page 13 of 26



prompt us to determine specific thresholds for each organism/sample tissue. For most

samples, we detected less than 30% overlap between the circRNAs detected by the dif-

ferent pipelines (see magenta line at the y-intercept in Fig. 5B and Additional file 1: Fig-

ure S6A, and percentage of common circRNAs in Fig. 5C). To choose the threshold,

we assumed that circRNAs detected by all the pipelines are more likely to be bona fide

circRNAs. In general, these circRNAs presented much higher resistance to RNaseR and

hence their relative abundance tended to increase as we increased the cutoff (Fig. 5B,

Fig. 5 Validation of bona fide circRNAs in four mammalian species. A Strategy utilized to identify bona fide (true)
circRNAs from several tissues from four different mammal species. B The percent of circRNAs identified as “true”
positives as a function of the cutoff for circRNAs identified by 1, 2, 3, or 4 of the pipelines used in the indicated species
and tissue. C Table summarizing the percentage of common circRNAs selected as true at the chosen threshold. D
Table summarizing the number of pipelines that identify the sets of true and false circRNAs identified from the
indicated tissues and species. For building this table, we utilized the thresholds marked in (B) as a dotted line and
indicated in the table in (C). E Boxplots showing the distribution of expression of the true and false circRNA that are
identified in the indicated species
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Additional file 1: Figures S6A and S6B). Last, when possible, we adjusted the threshold

to include circRNAs detected by several pipelines and that are expressed at medium or

high levels. Based on these criteria, we selected specific thresholds and defined the lists

of “true” circRNAs for the different species and tissues. Indeed, we observed that the

percentage of common circRNAs was significantly increased at the selected threshold

compared to before setting this cutoff (Fig. 5C, Additional file 1: Figures S6A and S6B).

In addition, we observed that some circRNAs were resistant to the RNaseR treatment

in one tissue but fall just behind the threshold in a different one. This could be due to

a given junction being originated from a bona fide circRNA in one tissue and from

spurious splicing product in other, or just to different efficiency of the RNaseR treat-

ment, low coverage, or other technical artifacts. We favor the latter explanation based

on the current knowledge in the field, as well as on the finding that most of these cir-

cRNAs were lowly expressed in the tissue in which they were found to be in the “false”

group. Therefore, we expanded the list of true circRNAs by requiring their RNaseR/

mock ratio to be over the threshold just in one tissue. This not only might account for

different abundance in various tissues and efficiency of the RNaseR treatment among

samples, but also as a biological replicate. To further diminish the possibility of false

negatives, we performed a similar analysis in a recently published mock/RNaseR dataset

from human, mouse, and monkey brains [48]. Indeed, very few circRNAs detected in

the second study as “true” were qualified as “false” in our previous analysis. We then in-

corporated these circRNAs, which served as biological replicas for our RNaseR-treated

samples. Indeed, by collapsing tissues and incorporating these biological replicas, only a

small fraction of the false circRNAs were detected by all the pipelines (Fig. 5D and

Additional file 1: Figure S6C). Moreover, we observed that there was almost no “false”

common circRNAs with middle or high expression level (Fig. 5E and Additional file 1:

Figure S7A), validating the additional criteria we utilized. Indeed, the few circRNAs that

were considered “false” and still have middle expression in the mock samples, are

clearly degraded by the RNaseR treatment (Additional file 1: Figure S7B). We created

then the list of true circRNAs (Additional file 4). To compare this informed cutoff cri-

teria with a more standardized one, we tested what happened in some of the samples if

we follow the approach utilized by [23, 35] in which circRNAs were considered true

when they were enriched more than 5-fold in the RNaseR-treated samples. While this

cutoff criterion is reasonable and can work very well in particular samples, it does not

take into account the variability of the efficiency of the RNAse treatment between sam-

ples and differences in sequencing depth. Indeed, the specific enrichment of the cir-

cRNAs upon RNaseR treatment can vary greatly between samples, although linear

mRNAs are always clearly more sensitive to RNaseR (Additional file 1: Figure S5).

Therefore, a predetermined cutoff might lead to the exclusion of many bona fide cir-

cRNAs (the red dotted lines in Additional file 1: Figure S5 indicate the position of the

cutoff if a 5-fold enrichment is utilized as criteria for dividing true from false cir-

cRNAs). Although using this pre-set cutoff did not make much difference in the mouse

cerebellum sample, the outcome was completely different in the rest of the samples, in

which this criterion is too stringent and leads to the elimination of thousands of cir-

cRNAs that were identified by multiple pipelines (Additional file 2: Table S5). Specific-

ally, for most of the samples the 5-fold criteria would be comparable to use a cutoff of

0.95 or higher. Therefore, we concluded that using an informed a posteriori approach
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to pick the exact cutoff is safer than using a predetermined cutoff solely based on RNa-

seR/mock fold enrichment and leads to less false negatives. Hence, following these ex-

periments and the creation of the list of true circRNAs, SRCP can be used in any of

these species to accurately detect and quantify circRNAs. It is important to point out

that this list can be easily modified when: (1) more datasets are available for one spe-

cie/tissue; (2) if some circRNAs are validated by independent methods; (3) any of the

circRNAs in the “true” list is shown to be an artifact.

The miRNA effector protein AGO2 binds a subset of circRNAs in the human brain

Previous work has shown that at least two circRNAs (CDR1as and circSry) strongly bind

to the miRNA-effector protein AGO2 and that this binding might result on the regulation

of specific miRNAs (mir-7 for CDR1as [11, 12] and miR138 for circSry [12]). Since then,

many studies have proposed the potential function of circRNAs as miRNA sponges, but

until now, there is no clear evidence of a general sponging activity by circRNAs. To find

circRNAs that interact and potentially regulate miRNAs or are regulated by miRNAs, we

utilized SRCP to identify circRNA junctions from previously published AGO2-HITS-

CLIP data from two regions of the human brain [49]. CLIP data is particularly challenging

for many circRNA-identifying algorithms (like find_circ) because the library inserts are

usually small (50–70 bases, indeed this is the case for the analyzed dataset, see Additional

file 1: Figure S8A). When we applied SRCP in these datasets, we found 8 circRNAs with

backsplicing reads in more than one sample (Fig. 6A, B). As expected, the circRNA with

more AGO2-CLIP reads was CDR1as which is highly expressed and contains 71 miR-7

binding sites and which has been shown to strongly bind AGO2 in vivo [18]. Actually, we

found up to 3 of the 71 miR-7a sites in the reads spanning the backsplice junctions of

CDR1as.

To provide additional evidence of the binding of these circRNAs to AGO2, we ex-

tracted the reads supporting the backsplicing junctions and computationally predicted

miRNA sites using TargetScan [50]. We filtered the candidate miRNAs using expres-

sion data from the same report (by sub-setting the top 15% expressed miRNAs, Add-

itional file 1: Figure S8B and Additional file 5) [49]. This allowed us to restrict our list

to a few miRNA candidates per circRNA (Additional File 5, Fig. 6C, and Additional file

1: Figure S8C).

Interestingly, for almost all the AGO2-bound circRNAs, we could not find the corre-

sponding linear junction reads (Fig. 6B). This is not surprising, as circRNAs are gener-

ally produced from exons at the beginning or middle of the gene and the binding of

miRNAs (and hence AGO2) to mRNAs happens predominantly on the 3′UTR. The ex-

ception to this is ATRNL1 gene, which has also reported peaks in exons that are not

part of the circRNA. In fact, circATRNL1 is the only circRNA in which we could detect

the linear counterpart splice junction (Fig. 6B and Additional file 5). However, ATRN

L1 generate additional circRNAs, as stated in circBase, which could explain the add-

itional peak and the presence of linear CLIP reads in the middle of the RNA. In sum,

these results demonstrate that in the human brain only a handful of circRNAs are

strongly bound to AGO2 and could potentially regulate the function of specific

miRNAs.
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Discussion
In this study, we present a novel computational pipeline that facilitates accurate anno-

tation and quantification of circRNAs from RNA-seq data. The method, which we call

Short Read circRNA Pipeline (SRCP), quantifies circRNAs with high sensitivity and

with a low number of false negatives. This method is general and is not limited to a

specific circRNA detection pipelines. The quantification step is simpler than all other

pipelines since it does not search de novo for circular RNA junctions.

Fig. 6 circRNAs bind to AGO2 in the human brain. A Scheme of the approach utilized to analyze the AGO2
HITS-CLIP data set. B Table summarizing the circRNAs for which SRCP identified backsplicing reads in the
AGO2 CLIP data. The list contains circRNAs that were found in at least 2 different human brain samples.
Linear “left” or “right” reads refers to junctions encompassing the more proximal or more distal exon within
the circRNA with the exon before or after in the linear mRNA respectively. C IGV snapshot of the AGO2-CLIP
raw data in the region containing the gene hosting the AGO2-bound. We marked the backsplicing junction
with a dashed line. We represented with a colored shadow the AGO2 cluster enrichment analysis and
indicated the miRNAs for which an overlapping miRNA seed was identified
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A number of circRNA identification and quantification tools have been described in-

cluding acfs [26], DCC [27], segemehl [28], CIRCexplorer [29], KNIFE [30], MapSplice2

[31], circRNA_finder [32], CIRI [33], and find_circ [11]. All can be used to identify and

quantify circRNAs, but none of them alone identify all circRNAs. Indeed, only about

30% of circRNAs were identified by all the tested pipelines. Therefore, when looking

for differentially expressed circRNAs, researchers generally either chose one pipeline or

focus on those circRNAs detected by multiple pipelines. This is unfortunate as this pro-

cedure eliminates many real circRNAs from the analysis. Moreover, as different pipe-

lines utilize different quantification approaches, their results cannot be combined.

Besides, an important number of the potential circRNA reads, particularly the ones de-

tected only by one pipeline, are not originated from real circular reads. This is prob-

lematic for two different reasons. First, it might mislead the researcher into studying a

molecule that is not real. Second, it complicates the statistical analysis by increasing the

number of tests to be performed and diminishing the significance of the results. SRCP

solves both these issues by first annotating bona fide circRNAs and then utilizing com-

mon criteria for quantification. Thus, our approach analyzes a much larger group of

circRNAs than would be interrogated using only one method or the overlapping cir-

cRNAs among several methods and accurately quantifies circRNAs minimizing the

amount of false positives and negatives. The strategy utilized by SRCP is somehow

similar to the one used by KNIFE [30]. However, KNIFE examines and counts all pos-

sible splicing junctions, making it slower and very demanding from the computational

point of view.

Another strength of our approach is that the user can modify the annotation of the

false-positive circRNAs identified by different circRNA detection pipelines. As the annota-

tion is based on the RNaseR-treated library to the total (rRNA depleted) library (referred

as mock) ratio, the user can control the false-positive rate. While the RNaseR/mock ratio

is the gold standard for validating the circularity of RNA molecules, some linear highly

structured RNAs are also resistant to this RNAse [40]. In principle, this is not problematic

unless any of these RnaseR-resistant mRNA presents an artifactual backsplicing junction.

Nevertheless, accurate annotation of circRNAs is challenging due to difficulty in assigning

the cutoff, which might vary from sample to sample depending on the tissue, organism,

and efficiency of the RNaseR treatment. Here, we assumed that false-positive circRNAs

are as sensitive to RNaseR as linear RNAs and that circRNAs identified by several pipe-

lines tend to be bona fide circles. However, additional criteria could be utilized to deter-

mine the threshold in a more informed manner. For example, in pair-ended data, the

reads do not map to the backsplicing junction could be potentially utilized to determine if

the library fragment is contained within a circRNA or not. In addition, circRNAs that

have been validated by an independent method, in another tissue, or in a separate experi-

ment can be incorporated into the list at any time. As for most of the other available pipe-

lines, one limitation of SRCP is the identification of alternative circRNA isoforms,

especially those that involve the presence or absence of exons within the circRNA and the

same backsplicing junction. In these cases, all circRNA identification and quantification

pipelines, including SRCP, will quantify the sum of all the different isoforms. Therefore,

the detection and quantification of those isoforms would require a different type of ex-

perimental procedure, like the ones recently described utilizing full sequencing of cir-

cRNAs [51, 52] or a computational approach, as described for CIRIFULL [53].
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Interestingly, in our analysis of Drosophila circRNAs identified and quantified using

SRCP, we found that bona fide circRNAs share some genomic features and expression

characteristics. These include their very low abundance in polyA-selected RNA-seq li-

braries, slightly lower expression levels, larger exon size, hosted by genes with more in-

trons, and better genomic annotation compared to randomly selected exons. Although

none of these features individually allowed us to computationally discriminate between

“true” and “false” circRNAs, machine learning approaches might be trained to take

these features into account to improve de novo identification of circRNAs to diminish

false negatives.

Importantly, SRCP requires the presence of a validated list of circRNAs which can

only be generated by running several pipelines in mock and RNaseR-treated samples.

Here, we provide a comprehensive list of validated circRNAs for human brain and

blood as well as for mouse, rat, and monkey brain. Nevertheless, new datasets will have

to be generated and analyzed for using SRCP in other tissues and/or organisms. Once

generated, those lists can be utilized in further experiments and the computational time

and framework for analyzing circRNA expression will diminish considerably.

Conclusions
In sum, SRCP is a novel method that combines circRNA annotation and an efficient al-

gorithm for their quantification. To identify false positives from the several different

circRNA-identification pipelines, we compared the expression of the putative circRNAs

in mock and RNaseR-treated samples. We adjusted the threshold/cutoff of the RNa-

seR/mock ratio for minimizing the number of false negatives by taking into consider-

ation the detectability by several pipelines and the expression level of the circRNA. By

comparing the results obtained using SRCP with the ones obtained using five circRNA

identification and quantification pipelines on multiple simulated and real RNA-seq

datasets, we found that SRCP identifies more differentially expressed circRNAs than

any of the other methods. Finally, SRCP allows quantification of circRNAs that were

identified by different pipelines.

Methods
Creation of a circular reference

Using available genome annotation, we extract for every putative circRNA all its poten-

tial transcripts. We do this using bedtools intersect, we intersect the circRNA coordi-

nates with the genome transcriptome annotation. Next, we score the transcripts as

follows: (i) If the start coordinate and the end coordinate of the circle are both exactly

on a 5′ and 3′ boundaries of the transcript’s exons, the score is maximal. (ii) If only

one coordinate is exactly on an exon boundary and the other is not, the score is 1. (iii)

If neither coordinate is on any exon boundary, the score is 0. Next, we choose for each

circRNA in the database, a transcript that best fits the circle. This is the transcript with

the highest score or, if a few transcripts all have the same highest score, one is ran-

domly chosen. Next, using bedtools getfasta [54], we extract the circle sequences of the

chosen transcript or transcripts and build an index using bowtie2 build [55]. This is

done for each potential circRNA.
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Creation of a linear index

To create linear references, for each circRNA junction, we select the closest annotated

exons upstream and downstream of the circular junction. We then extract the FASTA

sequences for those exons using bedtools get_fasta [54]. We concatenate the upstream

exon sequence to the circular sequence, we name this “linear_left.” We also concaten-

ate the downstream exon sequence to the circRNA sequence this is “linear_right”. We

then build its corresponding index using bowtie2 build for the right and for the linear_

right and linear_left FASTA sequences [55].

Detection and quantification of circRNAs

RNA-seq reads are aligned to the circular index with bowtie2 [55]. The reads that align

to the circular index are next aligned to the genome and to the transcriptome. The

alignment to the genome is done to remove reads that come from unannotated genes.

The alignment to the transcriptome is done to ensure that no reads that are originally

from a linear transcript are included in the detection and quantification of circRNAs

analysis. Reads that align to the circular index and not to the genome or transcriptome

are candidates for circular circRNA reads. To be confirmed as a circRNA, the junction

must be included in the read and a certain number (j) bases upstream or downstream

or the putative junction have to match the exon with no mismatches.

To quantify circular reads, the number of reads that align to the circular index for

each circRNA is calculated. For linear reads, the number of reads that align to the lin-

ear index is calculated for all transcripts once for the downstream of the circle and

once to the upstream side of the circle.

Selection of the cutoff value

To select an appropriate cutoff value, we compared the number of circular and linear

RNA reads classified as RnaseR resistant for an array of different cutoff values of the

RNaseR/mock ratio (Additional file 1: Figure S2A, B). We performed this analysis for

all the pipelines utilized in this study including SRCP. We first re-scaled the data. The

cutoff value is expressed as the percentage of linear RNAs would be considered RnaseR

sensitive (i.e., a 0.90 cutoff value excludes 90% of the linear mRNAs). A cutoff of 95%

removes most linear RNA reads (Fig. 2E). Interestingly, circRNAs identified by more

than one pipeline tended to be enriched among those considered real at higher cutoff

values (Fig. 2E). For example, a cutoff of 0.8, 98% of the circRNAs that were found by

all pipelines (and are believed to be true circRNAs) were annotated as bona fide cir-

cRNAs. On the other hand, at a cutoff of 0.99 only 77% were found by all five pipelines

to be bona fide circRNAs. At a cutoff of 0.95, 92% were bona fide circRNAs (Fig. 2E,

Additional file 2: Table S1). Thus, the lower the cutoff, the more false positives we

introduce. Elevating the cutoff results in fewer false positives but also fewer true

positives.

Collapsing tissues from the same species

In some scenarios, a circRNA can pass the cutoff in one sample and not in another, for

example, if we have big differences in coverage of the mock and/or if a circRNA is

expressed in certain condition that was present in one of the tissues and not in another.
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To try and minimize the false-negative detection due to these different reasons, we de-

cided to rescue by looking at the collection of all collapsed “true” circRNAs from the

same species. For species which we had more than one tissue, such as human and

mouse, we first calculated the RNaseR/mock ratios and the cutoffs. We then annotated

the circRNAs accordingly.

Next, we collected all the “true” circs from each of the tissues (of the same species)

and used that as a reference to exclude “false” circRNAs. If a “false” circRNA was found

in the collapsed “true” circ list, we changed its annotation to “true.” The final “true” cir-

cRNA list per tissue consists of circRNAs that passed the cutoff plus some circRNAs

that passed the cutoff in a different tissue.

Creation of simulated data

In order to create a simulated dataset, we took all the circular junctions found in Dros-

ophila melanogaster heads and extracted the fasta sequences for the junction area (70

bases upstream and downstream of the circular junction) plus the fasta sequences for

the upstream and downstream exons. We then randomly selected start positions on the

circRNA and generated 70-base circular reads (from the circle sequences) and linear

reads from the upstream and downstream exons.

Selection of random exons

To select random exons, we used the Drosophila melanogaster annotation from UCSC.

For each gene, we selected the starting exon in the transcript. We then randomly se-

lected the desired number of exons. Using the gene annotation from UCSC, we ex-

tracted the annotation for each of these random made transcripts. We then use

bedtools getfasta to extract the corresponding fasta sequences for each of these random

transcripts.

Detection and quantification of circRNAs with the different pipelines

We ran circRNA detection pipelines Acfs, CircExplorer, circRNA_finder, CIRI2, and

find_circ with default parameters with the dm3 genome and genome annotation from

the UCSC genome browser as input. In all cases, we utilized the default parameters.

Detection and quantification of circRNAs with the different pipelines for additional

human, mouse, and monkey datasets

We downloaded the data ran SRCP on these data, using the circ lists we had estab-

lished from the previous analysis of the atlas. We used the same parameters as we used

for the datasets in the atlas with hg38(human), mm10(mouse), and rheMac10(monkey)

genomes. The corresponding genome annotations were downloaded from the UCSC

genome browser and used as input. In all cases, we utilized the default parameters.

Similar to the rescue we performed by collapsing the tissues, we collected the “true

circRNAs” found in these datasets while in our data did not pass the cutoff and chan-

ged their annotation to “true.”
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Detection and quantification of circRNAs with the different pipelines for species data

We ran circRNA detection pipelines CircExplorer, circRNA_finder, CIRI2, and find_

circ with default parameters with hg38(human), mm10(mouse), rheMac10(monkey),

and rn5(rat) genomes. The corresponding genome annotations were downloaded from

the UCSC genome browser and used as input. In all cases, we utilized the default

parameters.

Examination of PE reads by SRCP

To determine with certainty that the SRCP does not contain double counted reads, we

ran SRCP on each of the sides: R1 and R2. Next, we extracted the SRCP reported reads

and filtered to look at the true circs only. We compare the list of read names which are

associated to R1 as well as to R2. None of the reads appear in both lists.

Differential expression analysis

We normalized the circular reads to the number of aligned reads in the sample. We

used DESeq2 [47] to detect the differentially expressed circs. We combined the results

from all pipelines into one data frame and filtered out circRNAs that had less than two

reads. We then performed the analysis and selected the circRNAs with adjusted p value

< 0.05 as significantly differently expressed.

Ago2 HITS-CLIP re-analysis

We downloaded the data from GEO (GSE52082) and realigned it to human genome

version Hg38 after trimming linker and adapter. SRCP was run using 5 base pair seeds

and the brain circRNA list used as a reference. We retrieved miRNA abundance ana-

lysis from [49]. BigWig visualization files were generated with bamCoverage with a bin-

Size of 5.

We expanded the miRNA binding site prediction in the detected circRNA backsplice

junction reads using TargetScan7.0. For this, we extracted the reads supporting splice

junctions from SAM files generated by SRCP. Then we run TragetScan 7.0 using Homo

Sapiens miRNA family information.

RNA extraction from Drosophila heads and RT-qPCR

Total RNA was prepared from female fly heads (day 1 and 21 post eclosion, D. melano-

gaster Canton-S) using TRI Reagent (Sigma, Aldrich) according to the manufacturer’s

protocol. RNA was DNase treated (DNase I, NEB) and cDNA derived from this RNA

(iScript Select cDNA synthesis Kit, Bio-Rad. Random Priming, following the manufac-

turer’s instructions) was utilized as a template for quantitative real-time PCR performed

with the C1000 Thermal Cycler Bio-Rad. The PCR mixture contained Taq polymerase

(SYBR green Bio-Rad). Cycling parameters were as follows: 95 °C for 3 min, followed by

40 cycles of 95 °C for 10 s, 55 °C for 10 s, and 72 °C for 30 s. Fluorescence intensities

were plotted versus the number of cycles by using an algorithm provided by the manu-

facturer. All the primers used in this assay are listed in Additional file 6.
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RNaseR libraries

Human Adult Normal Brain Total RNA (R1234035-50), Human Adult Normal Cere-

bellum Total RNA (R1234039-50), Rat Brain Total RNA (R1434035-50), Monkey (Rh)

Brain (R1534035-50) Total RNA, and Human Blood Total RNA (custom made) were

obtained by BioChain.

One C57BL/6 male and one female were sacrificed at p21, different brain regions

were harvested (cerebellum, cortex, olfactory bulb, brain stem, and thalamus) by the

Nelson’s lab at Brandeis University. The RNA was extracted with TRI reagent (Sigma,

Aldrich), followed by Zymo RNA cleaning and concentrator -25 Kit (Zymo), according

to the manufacturers’ instruction. The RNA was treated with DNase (DNase I, NEB).

We collected and dissected 10-day-old D. melanogaster (Canton-S) heads and brains.

Total RNA was extracted with TRI reagent (Sigma, Aldrich), followed by DNase

(DNase I, NEB) treatment.

Ribodepletion was performed on 5 μg of total RNA with Ribo-Zero Gold rRNA Re-

moval Kit according to the manufacturer’s instruction. Degradation of rRNA was

checked by Tape Station. Ribodepleted RNA was treated with 3 units of RNaseR (Luci-

gen) per 1 μg of total RNA or with buffer only (Mock) for 15 min at 37 °C. The RNA

was immediately extracted with TRI reagent (Sigma, Aldrich) according to the manu-

facturer’s instruction. For Human Blood Total RNA, only 2 μg of total RNA were

rRNA-depleted and then treated with RNaseR as indicated above. For D. melanogaster

samples, 2 μg of total RNA was rRNA-depleted with a homemade protocol and then

treated with RNaseR as indicated above. Recovered RNA was used to prepare a total

RNA library, adapting the protocol from [56]. Specifically, we prepared one library for

the RNaseR-treated samples and one for the mock ones. Briefly, RNA was fragmented

for 3 min at 92 °C in FAstAP 2X buffer (Thermo Fisher). Subsequently, samples were

dephosphorylated with FastAP enzyme (Thermo Fisher), the first linker was ligated,

and samples belonging to the same library were pulled together. Retro-transcription

was performed using Affinity Script (Agilent). After second ligation, we performed PCR

to add the external barcode. For Human Blood RNA samples and D. melanogaster sam-

ples, libraries were prepared using the NEXTFLEX® Rapid Directional RNA-Seq Kit 2.0

by PerkinElmer, following the manufacturer’s instructions. The samples were se-

quenced by Novogene (Novogene Corporation Inc. 8801 Folsom BLVD, Suite 290, Sac-

ramento, CA 95826) with Hiseq-4000.
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