
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13980  | https://doi.org/10.1038/s41598-022-18361-y

www.nature.com/scientificreports

Investigation of pathogenesis 
of hyperuricemia based 
on untargeted and targeted 
metabolomics
Nankun Qin1,4, Ming Qin1,4, Wenjun Shi1, Lingbo Kong2, Liting Wang1, Guang Xu1, 
Yuying Guo1, Jiayu Zhang3 & Qun Ma1*

Hyperuricemia (HUA) seriously harms human health but the exact etiology and pathogenesis of HUA 
are not fully understood. Therefore, it is still of great significance to find effective biomarkers and 
explore the pathogenesis of HUA. Metabolomics reflects the influence of internal and external factors 
on system metabolism, explains the changes in metabolite levels during the development of diseases, 
and reveals the molecular mechanism of pathogenesis. Metabolomics is divided into untargeted 
metabolomics and targeted metabolomics according to different research modes. Each other’s 
advantages can be fully utilized by combining the two so that the results of metabolomics research 
can be consummated. 20 HUA patients and 20 healthy individuals participated in the experiment, and 
untargeted metabolomics was employed to find 50 differential metabolites in HUA serum samples. 
Twelve candidate biomarkers were screened based on literature research and ROC Curve analysis for 
subsequent verification. Based on the UPLC-TQ-MS analysis platform, the targeted metabolomics 
detection methods were established and the content of 12 candidate biomarkers was precisely 
quantified. Compare with the results of untargeted metabolomics, the targeted metabolomics results 
were considered more reliable. 
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SUA	� Serum uric acid
UPLC-Q-TOF/MS	� Ultra-performance liquid chromatography-quadrupole time-of-flight mass 

spectrometry
UPLC-TQ-MS	� Ultra-performance liquid chromatography triple quadrupole mass spectrometry
VIP	� Variable importance in projection

Hyperuricemia (HUA) is a metabolic disease caused by purine metabolism disorder, excessive uric acid pro-
duction, or reduced excretion, resulting in increased serum uric acid1. The diagnostic criteria of HUA are that 
under a normal purine diet, two fasting serum uric acid (SUA) levels on different days are ≥420 μmol/L in males 
and ≥360 μmol/L in females2. In recent years, with the rapid development of the economy and the continuous 
improvement of living standards, the prevalence of HUA is on the rise globally, especially in Asia such as China3. 
A large number of epidemiological and clinical studies have shown that HUA shares the same pathogenesis basis 
with diabetes and hyperlipidemia—metabolic syndrome4–6. HUA is closely related to gout and is an independent 
risk factor for the occurrence and development of diabetes, cardiovascular disease, hypertension, chronic kidney 
disease, and other diseases7. HUA is the fourth "high" after hypertension, hyperlipidemia, and hyperglycemia.

In recent years, metabolomics has developed rapidly in the field of disease research and has been widely used 
in the study of the pathological mechanism of various diseases8,9, the search for disease biomarkers10–12, early 
diagnosis of disease13, drug potential targets to explore14, disease treatment and prognosis. According to different 
research models, metabolomics has been divided into untargeted metabolomics and targeted metabolomics15. 
Untargeted metabolomics is a global analysis of all unknown metabolites in a sample, without the presupposition 
of specific metabolites and bias, the sufficient and complete metabolite information provided by it is a prerequisite 
for screening effective biomarkers. Targeted metabolomics studies are designed to validate previous scientific 
hypotheses or possible biomarkers with high accuracy and to conduct more targeted studies. In the analysis of 
a given variety of known metabolites, it is possible to find abnormal associations in metabolites under specific 
physiological states. In recent years, studies on HUA based on metabolomics have been widely reported at home 
and abroad16–19. Qin et al.20 divided 20 HUA serum samples and 20 healthy serum samples into seven equal 
samples, which were pre-treated by different solvent systems, and then analyzed on the ultra-performance liquid 
chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) analysis platform 
under the same chromatographic and mass spectrometry conditions. Differences in each group at each analysis 
stage and final pathway analysis results were subsequently compared. The results showed that there were differ-
ences in metabolite extraction ability, differential metabolite quality, and metabolic pathway analysis among all 
groups. Yang et al.21 used UPLC-Q-TOF/MS lipidomics method to analyze the changes in serum metabolites in 
hyperuricemia rats and identified 13 potential biomarkers, which are mainly involved in the glycerophospholipid 
metabolism pathway and glycosylphosphatidylinositol anchor protein biosynthesis pathway. It has important 
guiding significance for clinical diagnosis and screening of hyperuricemia.

Currently, research on endogenous differential metabolites or biomarkers of HUA metabolomics is mostly 
focused on non-targeted metabolomics studies, which may have false-positive results and are not verified by 
targeted metabolomics. Untargeted and targeted metabolomics have their advantages and disadvantages. The 
combination of the two can be used as a powerful tool for the discovery and accurate quantification of differ-
ential metabolites, and play an important role in the process of target discovery, making the screened markers 
more accurate and repeatable, and improving the results of metabolomics research. Not targeted and targeted 
metabolomic analysis method was used to analyze the different biological samples (such as blood, urine, feces, 
etc.) to discover metabolite differences and metabolic pathway changes closely related to specific disease phe-
notypes. Further combine with biological research to explore the function of metabolites and the mechanism 
of the occurrence and development of diseases, discover relevant targets and perform functional verification. 
Therefore, now more and more studies combine the two methods22–24 to obtain more accurate information and 
experimental results. Metabolomics can provide a new research direction for searching for markers of HUA and 
exploring metabolic disorders in the development of HUA.

In general, based on nuclear magnetic resonance (NMR), mass spectrum (MS), liquid chromatography (LC), 
and gas chromatography (GC) has become a mainstream platform for the identification and quantification of 
metabolites13,25–27. Through sample preparation, instrumental analysis, data pretreatment, multivariate statistical 
analysis, and subsequent functional and pathway analysis, a complete set of metabolomics studies can be real-
ized, so as to reveal physiological function changes, early diagnosis, screening of diseases, and explore disease 
mechanisms and discover new drug targets28,29. Liquid chromatography-mass spectrometry (LC–MS) is a widely 
used analytical method in untargeted metabolomics. Using high-throughput analytical techniques, LC–MS data 
could provide a global metabolic profile30. Chen et al.31 combined untargeted and targeted metabolomics data-
dependent acquisition performed on a quadrupole time-of-flight (Q-TOF) MS system enabling the acquisition 
of a large number of auto-MS/MS spectra. Subsequently, the targeted ion pairs are selected and measured by 
triple quadrupole QQQ/MS in MRM mode. Xu et al.32 based on the detection of amino acids by ultra-efficient 
tandem mass spectrometry (LC–MS/MS), the correlation between the content changes of amino acids and 
chemotherapy sensitivity of patients with advanced breast cancer was investigated. Glycine, l-glutamine, and 
sarcosine were used to guide the prognosis of patients with breast cancer, providing the basis for the optimi-
zation of individualized treatment strategies for advanced breast cancer; Yang33 based on LC–MS to targeted 
metabolomic methods, analyzing the characteristic of the metabolism of patients with gastric cancer and normal 
serum group, the metabolic disorders of gastric cancer patients included phospholipid, cholesterol, and amino 
acids, among which dihydro cholesterol could be a potential marker for gastric cancer diagnosis. In a word, 
LC–MS provides a certain basis for the in-depth understanding of HUA, discovery of drug therapy targets, and 
exploration of etiology and pathogenesis.
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In this paper, 12 candidate biomarkers and seven metabolic pathways were screened by non-targeted metabo-
lomics and verified by targeted metabolomics. The results showed that 12 biomarkers and seven metabolic 
pathways played an important role in the metabolic activities of HUA. Then based on the ultra-performance 
liquid chromatography triple quadrupole mass spectrometry (UPLC-TQ-MS) analysis platform, with a simulated 
serum sample added with mixed standards as the research object, the targeted metabolomics detection methods 
of serum polar metabolites and lipids metabolites were established respectively, and methodological verifications 
were conducted respectively. Combined with the results of untargeted and targeted metabolomics, the charac-
teristics and activities of 9 biomarkers with the same content concentration change trend were analyzed. In this 
way, the reliability of targeted metabolomics was verified. Therefore, this research provided reference value for 
the biomarker research of HUA metabolomics to a certain extent.

Results
Multivariate data analysis.  Based on LC–MS results of MeOH/MeCN (1:9, v/v) groups’ serum samples, 
principal component analysis (PCA) was used to study the distribution of metabolites. Figure 1A,D show the 
groups’ PCA score plots of the control group and HUA group in ESI+ and ESI− mode. According to the PCA 
score plots, the metabolic patterns of humans behaved differently in different states. It revealed that HUA would 
cause disturbance in the metabolic pathway in humans.

The orthogonal partial least squares discriminant analysis (OPLS-DA) model is a common fitting model to 
demonstrate the results of untargeted metabolomics experiments. The OPLS-DA model showed the differences 
between the HUA group and control group more clearly compared with the results of PCA. The groups’ OPLS-
DA score plots of the control group and HUA group in ESI+ and ESI− mode were shown in Fig. 1B,E. The HUA 
group’s OPLS-DA score plots showed an obvious separation trend from the corresponding control group, which 
means there was a significant difference in metabolic profiles between the two groups. The values of R2Y of the 
OPLS-DA model were 0.909 (ESI+) and 0.898 (ESI−). The values of Q2 of the OPLS-DA model were 0.840 (ESI+) 
and 0.761 (ESI−). Both of them were higher than 0.755, showing that the established model had a high stability 
and prediction rate. The permutation test (n = 200) was further used to validate the model, and Fig. 1C,F and 
are the results of the permutation tests of the MeOH/MeCN (1:9, v/v) group. All R2 and Q2 values were smaller 
than the values in the actual model, indicating that there was no overfitting in the OPLS-DA model.

Metabolites identification and metabolic pathway.  There were 461 differential metabolites of 
MeOH/MeCN (1:9, v/v) group between the control group and HUA group satisfying VIP > 1.0, P < 0.05 and 
log2FC > 2.0 or log2FC < 0.5. According to the online database, 50 characteristic metabolites of the group inpa-
tient serum metabolic profiles of the group were finally identified, and the results are listed in Supplementary 
Table S1.

In order to further explore the overall metabolic changes during the development of HUA, 50 differential 
metabolites identified in this study were imported into the MetaboAnalyst website for metabolic pathway enrich-
ment and analysis. The significant seven metabolic pathways of serum differential metabolites were shown in 
Fig.  2, the result implied that multiple metabolic pathways had a certain extent of disturbance effect on HUA. 
The relevant metabolic pathways are numerically labeled in Fig.  2.

Screening of candidate biomarkers.  Area under the curve (AUC) values are commonly used to screen 
candidate biomarkers, 12 differential metabolites with AUC greater than 0.9, which were closely related to HUA 
and the most relevant metabolic pathways in the literature were identified as candidate biomarkers for further 

Figure 1.   In ESI+ mode and ESI- mode, PCA score, OPLS-DA score, and permutation test of serum samples 
from the control group and HUA group were performed (C control group, H HUA group).
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verification, and the specific information is shown in Table  1. The reliability of three biomarkers (l-Valine, 
l-Lactic acid, and Palmitic acid) with inconsistent content trends was verified according to the results of targeted 
metabolomics experiments. Among them, AUC results were obtained through Receiver operating characteristic 
curve (ROC) curve analysis, and ROC Curve analysis results of 12 candidate biomarkers were shown in Fig. 3.

Method validation.  The results of specificity, linearity, and lower limit of quantitation (LLOQ), precision 
and accuracy extraction recovery, and matrix effect, stability are shown in supplementary materials.

Basic characteristics and biochemistry results.  HUA patients’ serum samples and normal serum sam-
ples’ concentration trends in untargeted and targeted metabolomics and their average target material content 
determination results as shown in Table 2, and basic characteristics and serum biochemistry results of partici-
pants in the control group and HUA group were presented in Fig.  4. The control group included 20 participants, 
with a mean age of 40.3 ± 11.6 years, 55% were male. The mean age of 20 participants in the HUA group was 
41.1 ± 12.6 years, and 55% were male. There was no significant difference (P > 0.05) between age and gender. It 
means that the distribution of age and sex in each group is relatively balanced, which can eliminate the influence 
of age and sex on the measured indexes to a certain extent. Compared with the control group, l-Tyrosine and 
l-Phenylalanine of the patients in the HUA group all decreased significantly (P < 0.05), and l-Valin and l-Lactic 
acid of the patients in the HUA group all increased significantly (P < 0.05).

Figure 2.   Metabolic pathway analysis of 138 differential metabolites. (1) Glycerophospholipid metabolism; 
(2) phenylalanine, tyrosine, and tryptophan biosynthesis; (3) phenylalanine metabolism; (4) linoleic acid 
metabolism; (5) α-linolenic acid metabolism; (6) arachidonic acid metabolism; (7) sphingolipid metabolism.

Table 1.   Target biomarkers for HUA patients.

Substances Counts Target biomarkers Molecular formula Formula weight (g/mol) AUC​

Organic acids 1 l-Lactic acid C3H6O3 90.0317 0.9975

Amino acids 3
l-Valine
l-Tyrosine
l-Phenylalanine

C5H11NO2 117.0790 0.9950

C9H11NO3 181.0739 0.9900

C9H11NO2 165.0790 0.9975

Fatty acids 5

Arachidonic acid C20H32O2 304.2402 0.9750

Stearic acid C18H36O2 284.2715 0.9475

Linoleic acid C18H32O2 280.2402 0.9825

Palmitic acid C16H32O2 256.2402 0.9200

Oleic acid C18H34O2 282.2559 0.9100

Lipids 3

LysoPC(18:0) C26H54NO7P 523.3638 0.9850

LysoPC(16:0) C24H50NO7P 495.3325 0.9925

LysoPC(18:1(9Z)) C26H52NO7P 521.3481 0.9625
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Figure 3.   ROC Curve analysis results of candidate biomarkers.

Table 2.   The concentration trends in untargeted and targeted metabolomics and determination results of 
average content of 12 target biomarkers in serum samples of HUA patients and normal people (n = 20).

Target biomarkers

The average content of target 
substance (ng/mL)

P-value
FDR (false discovery 
rate)

Trend

Control group HUA group
Untargeted 
metabolomics

Targeted 
metabolomics

l-Tyrosine 147.60 120.61 0.015784 0.015757 ↓ ↓

l-Phenylalanine 266.80 216.85 0.000148 0.008595 ↓ ↓

l-Valine 605.25 760.05 0.000000 0.000000 ↓ ↑

l-Lactic acid 54.125 92.06 0.000790 0.011459 ↓ ↑

Arachidonic acid 102.35 65.86 0.000046 0.007162 ↓ ↓

Linoleic acid 690.35 499.25 0.000009 0.004297 ↓ ↓

Oleic acid 735.80 486.30 0.000000 0.000000 ↓ ↓

Stearic acid 1157.45 904.90 0.002432 0.014324 ↓ ↓

Palmitic acid 1116.10 1333.55 0.017189 0.017189 ↓ ↑

LysoPC (18:0) 505.65 379.20 0.000315 0.010027 ↓ ↓

LysoPC (18:1(9Z)) 337.25 260.50 0.000891 0.012892 ↓ ↓

LysoPC(16:0) 1138.60 880.05 0.000038 0.005757 ↓ ↓
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Discussion
In this research-based on the previous research method 20, MeOH/MeCN (1:9, v/v) was used to extract serum 
samples of HUA patients. The extraction effect was not only better than that of pure solvent but also more 
complete non-targeted metabolic information could be obtained. 70 differential metabolites were identified by 
UPLC-Q-TOF/MS analysis platform. Seven metabolic pathways with the most significant changes in differential 
metabolites were obtained, and 12 biomarkers were screened. Further targeted metabolomics analysis, based on 
the UPLC-TQ-MS analysis platform, serum targeted polar metabolite and serum targeted lipid metabolite were 
established respectively, which verified the experimental results of untargeted metabolomics and made them 

Figure 4.   Determination results of serum samples of patients with HUA and normal people (n = 20) [(A) polar 
biomarkers; (B) lipid biomarkers] (note: compared with the normal group, *P < 0.01).
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more scientific and reliable. In addition, metabolic analysis of clinical samples can intuitively reflect human 
metabolism, and the selected biomarkers and metabolic pathways have more clinical guiding significance, which 
provides a reliable basis for further understanding of the development mechanism, diagnosis, and treatment 
of HUA.

Untargeted metabolomics is based on global analysis and is non-biased. In this study, metabolite groups were 
comprehensively and systematically analyzed, and a large number of metabolite data in serum samples were 
obtained, from which differential metabolites were found. Among a large number of differential metabolites, 
biomarkers with high reliability were selected. However, the identification of metabolites is complex. In order to 
avoid false-positive results, targeted metabolomics analysis was carried out for an established group of metabo-
lites, such as biomarkers for untargeted metabolomics screening, and the corresponding standard materials were 
used for precise qualitative and quantitative analysis.

50 differential metabolites were screened by untargeted metabolomics, among them 20 were significantly 
increased in HUA patients, and 30 were significantly decreased in HUA patients, which belonged to amino 
acids, fatty acids, organic acids, and lipids. Further, explore the overall metabolic changes in the development 
of HUA, and import 50 differential metabolites into the MetaboAnalyst website for metabolic pathway enrich-
ment and analysis. Based on the MetaboAnalyst platform, multiple metabolic pathways can be matched. The 
differential metabolites were mainly involving the seven metabolic pathways of glycerophospholipid metabolism, 
sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, 
phenylalanine, tyrosine and tryptophan biosynthesis, and alpha-linolenic acid metabolism. The above results 
are consistent with previous studies20,34.

The screening of candidate biomarkers should meet the following three conditions:

•	 AUC greater than 0.9 (high accuracy);
•	 It has high participation in the metabolic pathway.
•	 We refer to the frequency mentioned in previous studies35–38.

The AUC was greater than 0.9, which was closely related to HUA in literature research, and the differential 
metabolites most closely related to metabolic pathways could be identified as candidate biomarkers for further 
verification. A total of 12 biomarkers met the requirements, these target metabolites included all kinds of metabo-
lites screened by untargeted metabolomics, thus verifying the results of non-targeted metabolomics experiments.

Among the 12 biomarkers, l-Tyrosine, l-Phenylalanine, Arachidonic acid, and Linoleic acid showed the 
same trend in targeted and untargeted metabolomics experiments, and the reliability of nine biomarkers with the 
same variation trend was verified. But the contents of l-Valine, l-Lactic acid, and Palmitic acid were different, 
the difference in the results indicate that the accuracy and reliability of untargeted metabolomics for metabolite 
identification are not high, the repeatability is poor, the linear range is limited, the metabolite confirmation is 
complex, and there may be false-positive results. 12 biomarkers were validated for reliability, the AUC value of 
Oleic acid, l-Valine, and l-Lactic acid was higher than 0.9, indicating high reliability; the AUC value of Palmitic 
acid is between 0.5 and 0.7, which had low reliability; the AUC value of other substances was between 0.7 and 
0.9, which had certain reliability.

Untargeted and targeted metabolomics analysis methods are two main metabolomics analysis methods, both 
of which have their advantages and disadvantages. Untargeted metabolomics analysis focuses on the "global view" 
and has advantages in screening differential metabolites on a large scale. In this study, candidate biomarkers 
cannot be obtained without untargeted metabolomics analysis, so it is necessary to identify these compounds in 
untargeted metabolomics. But at the same time, it has disadvantages in the accuracy of metabolite identification 
and quantification. The detection target of targeted metabolomics is a group of known metabolites, and the cor-
responding standard substances are compared with the substances to be measured in the samples. Therefore, the 
results have high accuracy and repeatability, which can make up for the defects of non-targeted metabolomics 
detection. This study has a certain reference value for the confirmation of HUA biomarkers and an in-depth 
study on the occurrence and development of HUA.

The results of untargeted and targeted metabolomics studies are analyzed in depth. For the nine biomarkers 
(l-Tyrosine, l-Phenylalanine, Arachidonic acid, Linoleic acid, Oleic acid, Stearic acid, LysoPC (18:0), LysoPC 
(18:1(9Z)), and LysoPC (16:0), which means that biomarkers screened by untargeted metabolomics have been 
validated in targeted metabolomics studies, and their results are consistent with trends in clinical studies39–43. For 
the three biomarkers (l-Valine, l-Lactic acid, and Palmitic acid) with inconsistent trends in content concentra-
tion, the reasons may be the lower accuracy of untargeted metabolomics analysis, the differences in the time 
and process of sample collection, or other subjective factors. Concentration multiple refers to the concentration 
of metabolites in the pathological group/healthy people, and concentration multiple is used as a quantitative 
index for targeted metabolomics analysis. A review of the literature showed that targeted metabolomics results 
were more reliable when the concentration changes of untargeted and targeted metabolomics were inconsist-
ent. In untargeted metabolomics studies, l-Valine multiples tended to be down-regulated. However, in targeted 
metabolomics studies, l-Valine concentration multiples tended to be up-regulated (accurate quantitative analysis 
results showed statistical significance), and literature44,45 showed that the results of targeted metabolomics experi-
ments were more accurate and reliable than those of non-targeted metabolomics experiments. In untargeted 
metabolomics studies, the concentration multiples of l-Lactic acid tended to be down-regulated. In the follow-
up studies of targeted metabolomics, the concentration multiples of l-Lactic acid tended to be up-regulated 
(accurate quantitative analysis results showed statistical significance), and the results of targeted metabolomics 
were consistent with those of some clinical studies, indicating its reliability46,47. The multiples of Palmitic acid 
concentrations were down-regulated in untargeted metabolomics studies. In targeted metabolomics studies, 
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concentration multiples tended to be upregulated (accurate quantitative analysis results showed statistical sig-
nificance). Studies showed that HUA interacted with cardiovascular disease, and palmitic acid was closely related 
to the progression of cardiovascular disease, suggesting that the upregulation of palmitic acid was reliable48–51.

According to the screening results of candidate biomarkers, the metabolic characteristics of each substance 
were analyzed. l-Lactic acid is the product of the metabolism of hypoxic cells. When tissues and organs are 
filled with low blood flow or cells are starved of oxygen, anaerobic glycolysis accelerates, exceeding the liver’s 
ability to clear it, leading to increased l-Lactic acid levels. HUA patients have a higher risk of cardiovascular 
disease49,52. HUA and cardiovascular disease interact, and studies have shown that palmitic acid is closely related 
to the progression of cardiovascular disease. l-Valine repairs tissue regulates blood sugar and provides needed 
energy. Studies have shown that it significantly affects the activities of ALT and AST in serum44,46. In this study, 
ALT and AST levels were significantly increased in HUA patients, suggesting that up-regulation of l-Valine 
stimulated ALT and AST production. As an important amino acid, l-Tyrosine is involved in various physi-
ological activities in vivo. The synthesis of dopamine, an important neurotransmitter in the human body, and 
thyroid hormone require the participation of tyrosine, which can also be converted into fumaric acid and acetyl 
acetate to participate in metabolic activities such as the TCA cycle of the body and provide the energy for the 
body53. l-Phenylalanine is an essential amino acid that is normally metabolized by Phenylalanine 4-hydroxylase 
to form l-Tyrosine. l-Phenylalanine is a metabolite upstream of l-Tyrosine, and its content change is closely 
related to l-Tyrosine. The decrease of l-Phenylalanine content most directly affects the synthesis of l-Tyrosine 
in the body, leading to the decrease of thyroid hormone level and its metabolic activity. In HUA patients, the 
levels of l-Tyrosine and l-Phenylalanine were down-regulated, indicating that the synthesis of thyroid hor-
mone was affected, leading to decreased immune levels and metabolic disorders in the body. The decrease of 
Arachidonic acid content will affect the regulation of lipid levels in the body, suggesting that HUA patients have 
higher risks of cardiovascular and cerebrovascular diseases, diabetes, skin diseases, atherosclerosis, and other 
diseases. Metabolites of Arachidonic acid are inflammatory mediators of HUA54–57. The down-regulation of 
Arachidonic acid content also suggests that it may be transformed into various inflammatory mediators and 
cause inflammatory reactions in the body. The downregulation of Linoleic acid and Oleic acid content in HUA 
patients suggests high risks of hyperlipidemia, atherosclerosis, autoimmune diseases, and inflammation. Stearic 
acid is at the intersection of metabolic changes and joint inflammation before gout attack58. Down-regulation 
of Stearic acid content in the serum of HUA patients may indicate that the inflammatory mechanism of HUA is 
different from that of gout. When Stearic acid content is upregulated in HUA patients, there may be a tendency 
to develop gout59. The downregulation of Oleic acid content suggests that HUA patients have a higher risk of 
hyperlipidemia and cardiovascular and cerebrovascular diseases. Related to the occurrence of inflammation, may 
cause reduced immunity, and autoimmune diseases, it is also associated with metabolic disorders of HUA. The 
down-regulation of Linoleic acid content in the serum of HUA patients suggests higher risks of hypertension, 
angina pectoris, cardiovascular and cerebrovascular diseases, atherosclerosis, hyperlipidemia, and so on. In addi-
tion, Linoleic acid deficiency is related to obesity, and it has been reported that obese people have a higher risk 
of HUA60–64. LPCs (Lyso-phosphatidylcholine) are closely related to diabetes65, atherosclerosis66, dyslipidemia, 
and cardiovascular diseases67, and are mainly metabolized in the liver. The decrease of LPCs content predicts 
the increased probability of liver diseases such as cirrhosis68, fatty liver69, and viral hepatitis70 in HUA patients.

These biomarkers screened in this study play an important role in human metabolites, and their metabolic 
disorders suggest that HUA patients have a higher risk of cardiovascular and cerebrovascular diseases, diabetes, 
and hyperlipidemia. Therefore, it is essential to detect the blood uric acid in the prevention of these diseases, it 
also makes a positive contribution to preventing and treating hyperuricemia.

Methods
Reagents and instruments.  LC–MS grade MeOH, MeCN, and formic acid were purchased from Fisher 
Scientific (Loughborough, UK). Ultra-pure water was purified by a Milli-Q water system (Millipore, Milford, 
MA, USA). Bovine serum albumin (BSA) was purchased from Sigma-Aldrich (St. Louis, USA), physiological 
saline (0.9% sodium chloride solution).

l-Lactic acid (CAS: 79-33-4, purity ≥ 98%), l-Valine (CAS: 72-18-4, purity ≥ 9%), l-Phenylalanine (CAS: 
63-91-2, purity ≥ 98%), Arachidonic acid (CAS: 506-32-1, purity ≥ 98%), Stearic acid (CAS: 57-11-4, purity ≥ 
98%), Linoleic acid(CAS: 60-33-3, purity ≥ 98%), Palmitic acid (CAS: 57-10-3, purity ≥ 98%), Oleic acid (CAS: 
112-80-1, purity ≥ 98%), LysoPC (18:0) (CAS: 19420-57-6, purity ≥ 98%), LysoPC(16:0) (CAS: 17364-16-8, purity 
≥ 98%), LysoPC (18:1(9Z)) (CAS: 19420-56-5, purity ≥ 98%), Heptadecanoic acid (IS, CAS: 506-12-7, purity ≥ 
98%) and 19:0 LysoPC (IS, CAS: 108273-88-7, purity ≥ 98%) were purchased from Shanghai Yuan-ye Biological 
Technology Co., Ltd. (Shanghai, China).

Instruments used in this study include a vortex mixer (Haimen Kylin-Bell Lab Instruments Co., Ltd., Jiangsu, 
China), cryogenic super-centrifuge (Thermo Fisher Scientific, USA), nitrogen evaporator (Beijing Chengmeng 
Weiye Technology Co., Ltd., Beijing, China), UPLC-Q-TOF/MS (Waters Corp., Milford, MA, USA), UPLC-TQ-
MS (Waters Corp., Milford, MA, USA).

Participants.  Participants were randomly collected from the rheumatology clinic and physical examina-
tion center of Beijing University of Chinese Medicine Affiliated DongZhiMen Hospital (Beijing, China), HUA 
patients (n = 20) and healthy volunteers (n = 20) were enrolled in this study. Clinical information related to gen-
der, age, and serum biochemical indicators of participants in the control group and HUA group was collected, as 
shown in Table 3. Inclusion criteria were: (1) serum uric acid level was ≥ 420μmol/L in males and ≥ 360 μmol/L 
in females; and (2) aged between 20 and 65 years. Exclusion criteria were: (1) pregnant or lactating women; (2) 
suffering from the disease of the cardiovascular, kidney, or other diseases that will affect the clinical observa-
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tions and biological indicators, or having metabolic diseases, tumors, and mental disease; (3) patients with HUA 
caused using the following drugs: thiazide diuretics, furosemide, pyrazinamide, aspirin, and other drugs. These 
participants had not teak medicines or supplements before they collected serum samples. All serum samples 
were stored at −80 °C before analysis.

Statement.  (1) This study was approved by the Research Ethics Committees of Beijing University of Chi-
nese Medicine Affiliated DongZhiMen Hospital. (2) Informed consent was obtained from all subjects. (3) All 
Methods Were Conducted According to the Declaration of Helsinki Principles.

Untargeted metabolomics.  Sample preparation.  If a serum precipitation solvent suitable for HUA me-
tabolomics analysis must be recommended, then MeOH/MeCN (1:9, v/v) can be used for analysis20. Frozen 
serum samples were thawed at 4 °C. Then, 300 µL of the MeOH/MeCN (1:9, v/v) was added to 100-µl serum, 
vortexed for 5 min, and incubated for 10 min on ice; it was then centrifuged at 12,000 r/min for 10 min at 4 °C. 
All supernatant was evaporated to dryness. Afterward, the residues were reconstituted in 100 µL of 80% MeOH 
aqueous, vortexed for 5 min, and incubated for 10 min on ice 20; then, they were centrifuged at 12,000 r/min for 
10 min at 4 °C. The supernatant was analyzed by UPLC-Q-TOF/MS.

UPLC‑Q‑TOF/MS conditions.  The chromatographic separation was achieved on an Acquity UPLCTM System 
coupled to a Xevo G2 Q-TOF/MS with a Waters UPLC BEH C18 column (2.1 × 100 mm I.D., 1.7 µm; Waters 
Corp., Milford, MA, USA) at a column temperature of 45 °C. The mobile phase was composed of 0.2% formic 
acid aqueous solution (A) and MeOH (B) with the gradient set as follows: 0–1.0 min, 95–95% B; 1.0–2.0 min, 
95–2% B; 2.0–13.0 min, 2–2% B; 13–13.5 min, 2–95% B; 13.5–15 min, 95–95% B. The flow rate was 0.40 mL/min, 
and the injection volume was 2 μL. The autosampler temperature was conditioned at 4 °C. Electrospray ioniza-
tion (ESI) in positive ion (ESI+) mode and negative ion (ESI−) mode was applied for high-resolution MS detec-
tion. The mass range was set at m/z 50–1200 Da. The optimized operating parameters were set as follows: ion 
spray voltage of 3.0 kV, cone voltage of 25 V, cone gas flow of 50 L/h, source temperature of 120 °C, dry gas (N2) 
flow of 10 mL/min, atomization temperature of 450 °C, and 400 °C for ESI+ and ESI−. MS data were recorded in 
MSE mode. The accurate mass and composition of the relative target ions were calculated with MassLynx V4.0 
software (Waters Corp., Milford, MA/USA).

Data processing and multivariate data analysis.  Raw data were processed by Progenesis QI software (Nonlin-
ear Dynamics, Newcastle upon Tyne, UK) for peak detection, peak alignment and other operations. The peak 
area of each sample was extracted as a variable, and all samples were normalized by retention time and m/z. 
Finally, two-dimensional data matrices were generated. These two-dimensional data matrices were respectively 
imported into SIMCA-P 14.1 software (Umetrics AB, Umea, Sweden) for pattern recognition, and zero value was 
removed according to the 80% principle for subsequent statistical analysis. Principal component analysis (PCA) 
revealed the distribution of metabolites in human serum samples. Orthogonal partial least squares discriminant 
analysis (OPLS-DA) models were constructed to distinguish sample differences and my differential metabolites 
in massive data. Model evaluation was generally divided into three types: K-fold cross Validation, a permutation 
test and CV-ANOVA. In this paper, the commonly used permutation test was used to verify the validity of the 
OPLS-DA model. The contribution rate of a variable is often described by the variable importance of the projec-
tion (VIP) value. The greater the contribution rate is, the larger the VIP value is. The VIP values were generated 
by the OPLS-DA model. Metabolites with VIP > 1, P values of t-test (P) < 0.05, and a fold change (log2FC) of > 
2.0 or log2FC < 0.5 were selected as differential metabolites.

Table 3.   Basic characteristics and biochemical indexes of participants in the control group and HUA group 
(n = 20). *P < 0.05, there were significant differences compared with the control group. **P < 0.01, there were 
significant differences compared with the control group. a The continuous variable is described as the mean 
(standard deviation) and the categorical variable as the count (ratio).

Parameter Control group HUA group

Age (years) 41.1 ± 12.6 40.3 ± 11.6

Gender (female/male) 55% 55%

Fasting blood glucose (mmol/L) 4.9 ± 0.4 5.8 ± 0.6*

Blood uric acid (µmol/L) 320.4 ± 40.3 481.6 ± 51.0**

Triglyceride (mmol/L) 1.52 ± 0.5 3.3 ± 1.2**

Alanine aminotransferase (U/L) 23.6 ± 10.3 40.7 ± 15.9**

Aspartate aminotransferase (U/L) 20.5 ± 5.7 27.7 ± 12.8*

High density lipoprotein cholesterol (mmol/L) 1.5 ± 0.4 1.2 ± 0.2*

Low-density lipoprotein cholesterin (mmol/L) 2.7 ± 0.6 3.6 ± 0.8**

Creatinine (µmol/L) 79.5 ± 8.7 83.2 ± 14.7*
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Metabolites identification and metabolic pathway.  The chemical information of differential metabolites was 
searched through the human metabolome database (HMDB; http://​www.​hmdb.​ca/) and METLIN (http://​met-
lin.​Scrip​ps.​edu). Input the precise molecular mass, ionization method, and addition ion information of dif-
ferential metabolites into HMDB and METLIN, in accordance with the rule that the deviation of the m/z value 
does not exceed 0.02. The identification results are proved by combining the exact number of charges and the 
ionization method that meets the experimental conditions. Compare the primary and secondary mass spectra 
information of the differential metabolites with the theoretical fragments of the HMDB search results, then infer 
the structure of the compound and the attribution of the fragments to obtain the HUA differential metabolites.

Moreover, for exploring how the major metabolic pathways related to the differential metabolites were 
affected, metabolic pathway analysis was performed by MetaboAnalyst 5.0 71 platform (http://​www.​metab​oanal​
yst.​ca). All metabolic pathways found displayed their impact values and P-values in the form of bubbles. The 
metabolic pathways with a pathway impact of > 0.2 and P < 0.05 were considered the most significant.

Screening of candidate biomarkers.  The data of the normal and HUA groups were imported into GraphPad 
Prism 8.0 software to draw ROC curves, according to the movement of cutoff point/cutoff value, multiple pairs 
of sensitivity and specificity were obtained, with the sensitivity as the vertical axis and the misdetection rate as 
the horizontal axis Draw ROC Curve at each point, and then calculate the area under the curve, namely AUC. 
AUC value indicating the ability of a biomarker group to distinguish between two groups (such as experimental 
and control groups, disease and healthy groups), is usually between 0.5 and 1.0, and the larger the area is, the bet-
ter the prediction effect is. When AUC > 0.9, the metabolite is considered to have a very high prediction effect on 
disease and can be used as a potential biomarker for further study. At the same time, differential metabolites that 
meet AUC > 0.9 and are closely related to HUA and the most relevant metabolic pathway in literature research 
can be identified as candidate biomarkers for further verification.

Targeted metabolomics.  Preparation of calibration solution and quality control (QC) samples.  The stock 
solutions of l-Lactic acid, l-Valine, and l-Phenylalanine were separately weighed and dissolved in Ultra-pure 
water to obtain final concentrations of 2.5 mg/mL, respectively. And the stock solutions of l-Tyrosine were 
weighed and dissolved in Ultra-pure water to obtain final concentrations of 0.5 mg/mL.

Ultra-pure water was used to dilute the stock solution to obtain the series of standard solutions at differ-
ent concentration levels. The l-Lactic Acid, l-Valine, l-Phenylalanine, and l-Tyrosine standard solution was 
prepared by diluting 80 µL and 400 µL of stock solution with Ultra-pure water to 4 mL at a concentration of 50 
µg/mL.

Simulated serum samples: The 500 mg BSA powder was accurately weighed and placed in a 50 mL volumetric 
flask, diluted with 10 mg/mL BSA saline solution, and fixed to scale. Diluting the corresponding standard solu-
tions with BSA to prepare plasma calibration solutions at final concentrations of 25–1000 ng/mL for l-Lactic 
acid, l-Valine, l-Phenylalanine, and l-Tyrosine, respectively. The QC plasma samples containing l-Lactic acid, 
l-Valine, l-Phenylalanine, and l-Tyrosine (50, 200, and 500ng/mL), were prepared in the same manner.

The stock solutions of Arachidonic acid, Stearic acid, Linoleic acid, Palmitic acid, Oleic acid, LysoPC (18:0), 
LysoPC (16:0), Heptadecanoic acid (IS), LysoPC (19:0) (IS) and LysoPC (18:1(9Z)) were separately weighed and 
dissolved in methanol to obtain final concentrations of 0.5 and 0.25 mg/mL, respectively. Methanol was used to 
dilute the stock solution to obtain the series of standard solutions at different concentration levels. The Linoleic 
acid, Oleic acid, and LysoPC (18:0) standard solutions were prepared by diluting 200 µL of stock solution with 
methanol to 2 mL at a concentration of 50 µg/mL.

And the Arachidonic acid and LysoPC (18:1(9Z)) standard solution was prepared by diluting 100 µL and 400 
µL of stock solution with methanol to 2 mL at a concentration of 25 and 50 µg/mL. Diluting the correspond-
ing standard solutions with BSA to prepare plasma calibration solutions at final concentrations of 25–750 and 
50–2000 ng/mL for Stearic acid, Palmitic acid, LysoPC (16:0), and Arachidonic acid, respectively. Diluting the 
corresponding standard solutions with BSA to prepare plasma calibration solutions at final concentrations of 
50–1500 ng/mL for Linoleic acid, Oleic acid, LysoPC (18:0), and LysoPC (18:1(9Z)). The QC plasma samples 
contain Stearic acid, Palmitic acid, LysoPC (16:0), Arachidonic acid, Oleic acid, LysoPC (18:0), and LysoPC 
(18:1(9Z)) (100, 250, 500, 625, 1000 and 1250 ng/mL), were prepared in the same manner.

Sample preparation.  The 60 μL of MeOH/MeCN (1:9, v/v) was added to a 20 µL serum sample, vortexed for 2 
min, and then centrifuged at 13,000 r/min for 10 min at 4 °C. All of the supernatants were evaporated to dryness. 
Afterward, the residues were redissolved in 200 μL of Ultra-pure water, then, they were centrifuged at 13,000 r/
min for 10 min at 4 °C. The supernatant was analyzed by UPLC-TQ/MS.

The 30 μL of methanol and 10 μL of IS solution were added to a 10 µL serum sample, vortexed for 5 min, 
and then centrifuged at 13,000 r/min for 10 min at 4 °C. All of the supernatants were evaporated to dryness. 
Afterward, the residues were redissolved in 100 μl of methanol aqueous, then, they were centrifuged at 13,000 
r/min for 10 min at 4 °C. The supernatant was analyzed by UPLC-TQ/MS.

Analytical conditions.  UPLC-TQ/MS condition 1: The chromatographic separation was achieved on UPLC-
TQ/MS with a Waters Acquity UPLC CSH C18 column (2.1 × 100 mm I.D., 1.7 µm; Waters Corp., Milford, MA, 
USA) at a column temperature of 40 °C. The mobile phase was composed of 0.1% formic acid aqueous solution 
(A) and 0.1% formic acid acetonitrile (B) with the isocratic elution set as follows: 95% A (0–6 min). The flow rate 
was 0.30 mL/min, and the injection volume was 2 μL.

Mass spectrometer (MS) was operated in the positive ion (ESI+) mode by multiple reaction monitoring 
(MRM) of the transition of l-Lactic acid, l-Valine, l-Tyrosine, and l-Phenylalanine (internal standard, IS). 

http://www.hmdb.ca/
http://metlin.Scripps.edu
http://metlin.Scripps.edu
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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MRM ion pair selection is shown in Table 4. The optimal MS parameters were as follows: capillary voltage 3.48 
kV; desolvation gas with the flow rate at 1000 L/h; and temperature of the desolvation set at 498 °C, respectively. 
The optimized cone voltage and collision energy were 6 V, respectively. Data acquiring and processing were 
conducted through the MassLynx 4.1 software (Waters Corp., Milford, MA, USA).

UPLC-TQ/MS condition 2: The chromatographic separation was achieved on UPLC-TQ/MS with a Waters 
Acquity UPLC CSH C18 column (2.1 × 100 mm I.D., 1.7 µm; Waters Corp., Milford, MA, USA) at a column 
temperature of 40 °C. The mobile phase was composed of methanol with the isocratic elution set as follows: 100% 
methanol (0–5 min). The flow rate was 0.30 mL/min, and the injection volume was 2 μL.

Mass spectrometer (MS) was operated in the positive ion (ESI+) mode by multiple reaction monitoring 
(MRM) of the transition of Arachidonic acid, Linoleic acid, Oleic acid, Stearic acid, Palmitic acid, LysoPC (18:0), 
LysoPC(18:1(9Z)), LysoPC (16:0), Heptadecanoic acid (internal standard, IS 1) and LysoPC (19:0) (internal 
standard, IS 2). MRM ion pair selection is shown in Table 5. The optimal MS parameters were as follows: capillary 
voltage 2.49 kV; desolvation gas with the flow rate at 1000 L/h; and temperature of the desolvation set at 498 °C, 
respectively. The optimized cone voltage was 7 V, respectively. Data acquisition and processing were conducted 
through the MassLynx 4.1 software (Waters Corp., Milford, MA, USA), and the content of each metabolite is 
calculated by the standard curve method.

Method validation.  The methods of specificity, precision and accuracy, extraction recovery and matrix effect, 
stability are shown in supplementary materials.

Data processing.  Data acquiring and processing were conducted through the MassLynx 4.1 software (Waters 
Corp., Milford, MA, USA).

Statistical analysis.  Statistical significance was determined using Student’s t-test (FDR adjusted), with the levels 
of threshold set at *P < 0.05. And the plot of data was performed using Graph-Pad Prism (GraphPad Prism ver-
sion 8.00 for Windows, GraphPad Software, La Jolla California USA, https://​www.​graph​pad.​com).

Conclusion
In recent years, HUA has become a high prevalence of metabolic diseases in the general population worldwide, 
but it has not yet attracted enough attention. In this study, 12 candidate biomarkers were screened by untargeted 
metabolomics and verified by targeted metabolomics. Combined with the results of non-targeted and targeted 
metabolomics, the selectively, linearity, precision, accuracy, LLOQ, matrix effect, and stability of 12 biomarkers 
were fitted well. l-tyrosine, l-phenylalanine, Arachidonic acid, Linoleic acid, Oleic acid, Stearic acid, LysoPC 
(18:0), LysoPC (18:1 (9Z)), and LysoPC (16: 0) all showed downregulation trend, which verified the reliability 
of the same trend of content and concentration of nine biomarkers in untargeted and targeted metabolomics, 
and analyzed their metabolic characteristics and activities in vivo. Targeted for the targeted and metabolomics is 
inconsistent with the content and the concentration change trend of three kinds of biomarkers (l-valine, l-lactic 
acid, and Palmitic acid), in a targeted metabolomics showed a trend of cut, and present a trend of increase in the 

Table 4.   Targeted metabolomics analysis MRM ion pairs for polar metabolites detection.

Target biomarkers Molecular formula Parent ion (m/z) Daughter ion (m/z) Cone (V) Collision (V)

l-Lactic acid C3H6O3 90.9 90.9 70 8

l-Valine C5H11NO2 118.0 72.1 10 10

l-Tyrosine C9H11NO3 181.9 135.9 4 10

l-Phenylalanine C9H11NO2 165.9 119.9 4 8

Table 5.   Targeted metabolomics analysis MRM ion pairs for lipid metabolites detection.

Target biomarkers Molecular formula Parent ion (m/z) Daughter ion (m/z) Cone (V) Collision (V)

Arachidonic acid C20H32O2 303.2 259.2 40 10

Stearic acid C18H36O2 283.3 265.3 40 10

Linoleic acid C18H32O2 279.0 261.0 40 10

Palmitic acid C16H32O2 255.2 237.2 40 10

Oleic acid C18H34O2 281.2 263.2 40 10

LysoPC (18:0) C26H54NO7P 568.3 508.3 24 14

LysoPC (16:0) C24H50NO7P 540.4 480.3 20 16

LysoPC (18:1(9Z)) C26H52NO7P 566.3 506.3 16 16

Heptadecanoic acid (IS1) C17H34O2 269.0 250.9 40 10

LysoPC (19:0) (IS2) C27H56NO7P 582.4 522.4 24 16

https://www.graphpad.com


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13980  | https://doi.org/10.1038/s41598-022-18361-y

www.nature.com/scientificreports/

targeted metabolomics, combined with some literature suggests that targeted metabolomics results more accurate. 
Therefore, 12 biomarkers played a decisive role in the metabolism of HUA, not only significantly affecting the 
metabolic activity of HUA, but to a certain extent for HUA biomarkers of metabolomics research provides the 
reference value, and discusses the change of HUA inside the occurrence and development mechanism, and the 
possible It provides the research basis for clinical treatment. HUA is involved in the occurrence and develop-
ment of various diseases, posing a great threat to human life and health. However, due to the limited number 
of biomarkers studied, the interpretation of the HUA process and mechanism are not comprehensive enough. 
Subsequent studies can verify more biomarkers by increasing the amount of clinical samples and the screening 
range of biomarkers, and revealing the relevant molecular biological mechanism combined with other experi-
mental studies.

Data availability
The datasets generated during or analyzed during the current study are not publicly available due to this paper 
involves the confidentiality of the research project, and the research fund is a confidential project, so it will not 
be disclosed, but are available from the corresponding author on reasonable request.
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