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Abstract: N-enriched porous carbons have played an important part in CO2 adsorption application
thanks to their abundant porosity, high stability and tailorable surface properties while still suffering
from a non-efficient and high-cost synthesis method. Herein, a series of N-doped porous carbons
were prepared by a facile one-pot KOH activating strategy from commercial urea formaldehyde resin
(UF). The textural properties and nitrogen content of the N-doped carbons were carefully controlled
by the activating temperature and KOH/UF mass ratios. As-prepared N-doped carbons show 3D
block-shaped morphology, the BET surface area of up to 980 m2/g together with a pore volume of
0.52 cm3/g and N content of 23.51 wt%. The optimal adsorbent (UFK-600-0.2) presents a high CO2

uptake capacity of 4.03 mmol/g at 0 ◦C and 1 bar. Moreover, as-prepared N-doped carbon adsorbents
show moderate isosteric heat of adsorption (43–53 kJ/mol), acceptable ideal adsorption solution
theory (IAST) selectivity of 35 and outstanding recycling performance. It has been pointed out that
while the CO2 uptake was mostly dependent on the textural feature, the N content of carbon also
plays a critical role to define the CO2 adsorption performance. The present study delivers favorable
N-doped carbon for CO2 uptake and provides a promising strategy for the design and synthesis of
the carbon adsorbents.

Keywords: porous carbon; CO2 adsorption; one-pot KOH activation; N-doped

1. Introduction

Burning fossil fuels for electricity, heat and transportation is the primary reason for
greenhouse gas emissions from human and industrial activities. These gases hold heat in the
atmosphere and cause global warming, especially CO2 contributes more than 60–70% [1].
It is one of the most disastrous environmental problems and great interest to strip as much
as CO2 from industrial waste gases or the atmosphere for the serenity of global warming.
Carbon capture and sequestration/storage technologies are considered to play a key role in
reducing the emission [2–4]. Current post-combustion CO2 capture technologies that have
high repeatability and selectivity include the chemical absorption techniques like amine
scrubbing [5], ionic liquid absorption [6] and the adsorption techniques that use physical
adsorbents [7,8] or amine-, lithium- or calcium-based chemical adsorbents [9,10].

Various physical adsorbents such as carbonaceous material [11–21], zeolite [22], or-
dered mesoporous silica [23], metal-organic frameworks (MOFs) [24–26], porous poly-
mers [27–29] and membrane-based systems [30] have been investigated to capture CO2.
Among these, porous carbons have been receiving significant attention for their wide-scale
availability, ease of regeneration, low cost, high chemical/thermal stability, large surface
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area and capability of being tuned for applications not only for adsorbents but also for
supercapacitors, battery electrodes and catalyst supports [31–36]. Moreover, the process
of using porous materials for CO2 adsorption has been reported to have less energy re-
quirements thanks to the lower adsorption energy needed relative to absorption processes.
Typically, low-temperature ranges (<473 K) were reported for adsorbents such as MOFs,
zeolites, silica and carbons; while intermediate range (473–673 K) for metal oxides and high-
temperature range (>673 K) for lithium zirconate [37]. The interaction between the CO2
and the wide pore surface of porous carbon is found to be the parameter of the adsorption
feature, called isotherm, which is improved by controlling the synthetic conditions and the
kind of precursor. Using heteroatoms like nitrogen (N) and oxygen to dope porous carbon is
also found to improve a surface property, selectivity and adsorption capability due to the en-
hanced acid-base, quadrupolar and/or hydrogen bonding interactions [15,18,33,35,38–42].
Besides conventional solid adsorbents, 3D printed polymer composites have also been
studied that enable high CO2 capture using a direct ink writing method to intricate specified
properties like porosity [43]. Previous studies have pointed out the importance of narrow
micropores (<1 nm) that allow higher CO2 adsorption and CO2/N2 selectivity [44,45]. The
minimum CO2 capture capacity of 2 mmol/g and >100 CO2/N2 selectivity are reported to
be desirable for an adsorbent to be satisfactory [37].

Current research has been focusing on improving selectivity and the adsorption
capacity of CO2 by using different precursors or by making different structures [46–48].
A recent paper concluded that porous carbon is cost-efficient material, but additional
research is needed to investigate its full potential by modifying experiments to optimize
such textural properties and CO2-philic heteroatom doping (like N, S) [37]. However, the
synthetic routes of heteroatom-doped porous carbons usually involve multiple steps such
as pre-carbonization, post heteroatom-doping and chemical activation [15,16,49]. This
multiple-step synthesis method is considered not only highly energy consuming but also
low production yield. Therefore, in the present study, we are aimed to produce N-doped
porous carbon with one step approach, which is the main novelty part of the present work.

In this work, a commercial UF resin is used as the precursor to synthesize nitrogen-
doped porous carbonaceous CO2 adsorbent via a facile one-step KOH carbonizing method
under various conditions. The effect of the KOH/UF mass ratios on elemental, textural
and surface properties has been characterized and reported along with the CO2 capture
performance, CO2/N2 selectivity, dynamic CO2 capture capacity.

2. Results and Discussion
2.1. Morphological, Phase Structural, and Surface Chemical Properties

The scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
analyses were employed to explore the morphology of the representative UFK-600-0.2 sam-
ple. Figure 1a,b depict the 3D continuous block-shaped morphology that contains microp-
ores with different pore sizes aligned with the interconnected channels. Figure 1c shows
the TEM image of UFK-600-0.2 further revealing the porous structure with the random
worm-like micropores on the carbon with pore sizes from a few dozen nanometers to a
micrometer. A similar structural network was reported previously to be significant for CO2
gas uptake. The X-ray diffraction (XRD) pattern of the UFK-600-0.2 given in Figure 1d
shows the typical diffraction peaks at around 2θ = 25 and 43◦ that are ascribed to the
diffraction of the (002) and (100) crystal planes of the graphitic carbon [50].

Based on the elemental analysis results, these urea formaldehyde resin-derived N-
doped porous carbons possess exceptional high N content ranging from 16.85 wt% to
23.51 wt%, as listed in Table 1. With the increasing of activation temperature and KOH/UF
ratio, the N content of the as-synthesized carbons decreased, which is consistent with
previous studies. To further study the nature of N present on the carbon surface, X-ray
photoelectron spectroscopy (XPS) analysis was employed on the selected representative
UFK-600-0.2, UFK-600-0.3 and UFK-650-0.3 adsorbents. From the survey plot in Figure 2a,
all selected adsorbents are mostly composed of C, N, and O elements. In the case of N1s
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deconvolution spectra (Figure 2b–d), two main peaks representing pyridinic N (N-6) and
pyrrolic N (N-5) were found for these samples. Those binding energies for pyridinic N
and pyrrolic N groups were located at 398.4 and 400.2 eV, respectively [51]. Quantitative
analysis found that the amount of N-5 is higher than that of N-6 for these samples (Table S1).
Previous studies have suggested that pyrrolic nitrogen was possibly the highest beneficial
anchor site for CO2 adsorption [52,53]. Thus, there UFK-T-m carbons are appropriate
adsorbents for CO2 adsorption applications.
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Figure 1. SEM images (a,b), TEM image (c) and XRD pattern (d) of UFK-600-0.2.

Table 1. Porous textural, elemental compositions, and CO2 uptakes of adsorbents derived from Urea
formaldehyde resin under different conditions.

Sample
SBET

a

(m2/g)
V0

b

(cm3/g)
Vt

c

(cm3/g)
N

(wt%)
C

(wt%)
H

(wt%)

CO2 Uptake
(mmol/g)

25 ◦C 0 ◦C
UFK-550-0.1 8 0.03 - 23.51 57.43 2.72 1.67 1.83
UFK-550-0.2 474 0.25 0.17 22.42 58.09 3.41 2.31 2.50
UFK-550-0.3 688 0.31 0.26 20.34 56.03 3.25 2.64 3.16
UFK-600-0.1 388 0.18 0.14 21.32 58.23 3.01 2.31 2.81
UFK-600-0.2 865 0.44 0.33 19.69 59.62 3.90 2.82 4.03
UFK-600-0.3 895 0.44 0.32 18.32 55.13 3.56 2.78 3.95
UFK-650-0.1 662 0.33 0.25 19.34 57.82 3.29 2.70 2.95
UFK-650-0.2 980 0.52 0.41 18.20 59.63 3.71 2.67 3.71
UFK-650-0.3 950 0.49 0.37 16.85 58.67 3.52 2.71 3.52

a Surface area was calculated using the BET method at P/P0 = 0.005–0.05. b Total pore volume at P/P0 = 0.99.
c Evaluated by the t-plot method.

2.2. Porous Textual Properties

The detailed textural parameters derived from N2 sorption at 77 K including the
Brunner−Emmet−Teller (BET) surface area (SBET), total pore volume (V0) and microp-
ore volume (Vt) were listed in Table 1. The N2 adsorption and desorption isotherms of
as-prepared porous carbons under different conditions are shown in Figure 3. For all
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adsorbents, the high amount of N2 adsorption observed at the low relative pressure re-
gion (P/P0 < 0.01) except for UFK-550-0.1 indicate the typical type-I curve according to
the IUPAC classification, which refers to the numerous existence of micropores structure.
It is worth noting that a wide knee curvature was observed for the UFK-650-0.1, UFK-
650-0.2, UFK-600-0.2, UFK-600-0.3 and UFK-650-0.3 adsorbents signifying the existing of
small mesopores or macropores. As seen from the pore size distribution (PSD) in Figure 4,
multi-mode pore sizes were presented where most pores were less than 2.0 nm and a small
percentage of pores in the 2–10 nm range also formed, further support existing of micro and
meso porosities within the carbon matrix [54]. Almost all UFK-T-m adsorbents (expect UFK-
550-0.1) depicted well-developed pore structure, where the surface areas and pore volumes
were found in the range of 388–950 m2/g and 0.18–0.49 cm3/g, respectively. To explore
the effect of the KOH amount on the pore formation, we investigated three KOH/UF mass
ratios i.e., 0.1, 0.2 and 0.3 and the trend was found that as the KOH/UF mass ratio increased,
the pore-development of carbon enhanced. To our curiosity, we also examine the effect
of activating temperature on the development of textural properties of carbon. Generally
speaking, as the activating temperature rise from the 550 to 650 ◦C, all textural properties
including the BET surface area and total pore volume were significantly increased owing to
the lower activating temperature was unfavorable for pore development since the thermal
energy is not sufficient to etching of the carbon matrix at relatively low temperature. In
short, the optimal sample was found as UFK-650-0.3 considering the textural feature of
as-prepared carbons. However, it is critical to note that the highest textural performance is
not a single parameter to determine optimal CO2 adsorption capacity as discussed in the
next section [55,56].
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2.3. CO2 Adsorption Analysis for the Porous Carbons

As indicated above, having advanced textural properties, 3D block-shaped morphol-
ogy and highly rich nitrogen functionality, as-prepared UFK-T-m materials are remarkable
to investigate CO2 capture performance. The CO2 adsorption isotherms of UFK-T-m adsor-
bents at 0 and 25 ◦C were shown in Figure 5. It has been noticed that the CO2 adsorption
capacity was not level off even at a pressure of 1 bar, signifying excess CO2 uptake capac-
ity could be obtained at higher pressures, which indicates of physisorption mechanism.
The CO2 capture capacities of the adsorbents were given in Table 1. At 0 ◦C, consider-
ing the KOH/UF mass ratios i.e., 0.1, 0.2 and 0.3, it is significant that the CO2 uptake
capacity reached the highest number when the KOH/UF mass ratios of 2 in all activat-
ing temperatures. Moreover, we further explore the effect of the activating temperature
on the CO2 uptake capacities and found that the carbon capture capacity was increased
from 2.50 to 4.03 mmol/g as the activating temperature rise from 550 to 600 ◦C but the
capacity dropped from the 4.03 to 3.71 mmol/g. The same trend has been found when
the adsorption temperature was set to 25 ◦C. In short, based on the 9 trial analysis, the
UFK-600-0.2 sample (activated at 600 ◦C with the KOH/UF mass ratios of 2) was found to
be an optimal adsorbent taking considering into the CO2 capture performance. Please note
that we fully analyzed SBET, V0, Vt and nitrogen content versus CO2 uptake performance
and shown in Figure 6. To our curiosity, we speculate the scientific reasons behind the
optimal sample. It is hard to understand that the optimal UFK-600-0.2 adsorbent has
not either the highest BET surface area or nitrogen content. It means that the textural
feature and nitrogen functionality content have both decided the CO2 capture activity of
the N-doped carbons. What is more, the UFK-650-0.2 with the highest BET surface area
along with the largest pore volume did not depict the largest adsorption capacity while the
UFK-550-0.1 sample presented poor CO2 uptake capacity though it has the largest nitrogen
content of 23.51 wt%, signifying that neither the total porosity or nitrogen content is a
single factor in defining the CO2 uptake performance. Thus, the overall results show that
the combination of textural features in particular micro/mesopores and suitable nitrogen
functionality of optimal UFK-600-0.2 sample contribute a positive effect on CO2 uptake
capacity. A similar phenomenon was previously reported in the literature [57–59]. It is
worth pointing out that the optimal adsorbent UFK-600-0.2 in this study possesses fair CO2
capture performance compared to many typical adsorbents such as porous carbons [60,61],
MOFs [24], COFs [62], porous aromatic frameworks (PAFs) [63] and porous polymers [27].
A comparison of the CO2 adsorption capacity among different adsorbents can be found in
Table S2 (Supplementary materials).

The CO2 and N2 adsorption isotherms of UFK-600-0.2 at 25 ◦C and 1 bar were shown
in Figure 7a. Applying the ideal adsorption solution theory (IAST) [64], the selectivity of
CO2 over N2 was calculated in a mixture of CO2 (0.10 bar) and N2 (0.90 bar). The IAST
selectivity of CO2/N2 was found to be 35 for the optimal UFK-600-0.2 sample owing to high
micropore volume and the presence of high nitrogen functionality on the carbon surface.

As a promising CO2 adsorbent, apart from high CO2 capture capacity and selectivity,
the kinetics of adsorption must be rapid. To define the CO2 capture kinetic feature, the
kinetic performance of the optimal UFK-600-0.2 was inspected at 25 ◦C. As shown in
Figure 7b, 90% of the CO2 adsorption saturated was observed, signifying its quick CO2
uptake rate [65].

Isosteric heat of adsorption (Qst) is another critical parameter to determine the interac-
tion strength between the CO2 molecules and solids adsorbents [66]. As shown in Figure 7c,
the selected adsorbents depict the initial Qst values in the range of 43–53 kJ/mol, which
refer to relatively strong physisorption progress, most probably owing to a large amount
of nitrogen functionality within the carbon framework. This is further supported by the
declining Qst values with the increasing CO2 loading, which signifies the chemistry surface
of the N-doped adsorbents and the surface heterogeneity [67].
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Figure 5. CO2 adsorption isotherms at 25 ◦C (filled) and 0 ◦C (empty) for urea formaldehyde
resin-derived N-doped carbons prepared under KOH/UF mass ratio of (a) 0.1, (b) 0.2 and (c) 0.3.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 6. Plot of each porous properties characteristics (a) SBET, (b) V0, (c) Vt and (d) nitrogen con-

tent versus CO2 uptake at 25 °C and 1 bar. 

The CO2 and N2 adsorption isotherms of UFK-600-0.2 at 25 °C and 1 bar were shown 

in Figure 7a. Applying the ideal adsorption solution theory (IAST) [64], the selectivity of 

CO2 over N2 was calculated in a mixture of CO2 (0.10 bar) and N2 (0.90 bar). The IAST 

selectivity of CO2/N2 was found to be 35 for the optimal UFK-600-0.2 sample owing to 

high micropore volume and the presence of high nitrogen functionality on the carbon 

surface. 

As a promising CO2 adsorbent, apart from high CO2 capture capacity and selectivity, 

the kinetics of adsorption must be rapid. To define the CO2 capture kinetic feature, the 

kinetic performance of the optimal UFK-600-0.2 was inspected at 25 °C. As shown in 

Figure 7b, 90% of the CO2 adsorption saturated was observed, signifying its quick CO2 

uptake rate [65]. 

Isosteric heat of adsorption (Qst) is another critical parameter to determine the in-

teraction strength between the CO2 molecules and solids adsorbents [66]. As shown in 

Figure 7c, the selected adsorbents depict the initial Qst values in the range of 43–53 

kJ/mol, which refer to relatively strong physisorption progress, most probably owing to a 

large amount of nitrogen functionality within the carbon framework. This is further 

supported by the declining Qst values with the increasing CO2 loading, which signifies 

the chemistry surface of the N-doped adsorbents and the surface heterogeneity [67]. 

To assess the realistic separation performance of CO2 over N2, a breakthrough ex-

periment was conducted for the optimal UFK-600-0.2, where the adsorption conditions 

were the gas mixture CO2/N2 (10:90) with a flow rate of 10 mL min-1 at 25 °C. Based on 

the breakthrough curves of UFK-600-0.2 in Figure 7d, the CO2 dynamic capture capacity 

was found to be 0.85 mmol/g signifying an outstanding perspective in CO2 adsorption 

from the flue gas. 

To further prove the practical usage of the as-prepared adsorbent, we examined the 

reversibility of CO2 adsorption on the optimal UFK-600-0.2 sample over five consecutive 

cycles at 25 °C and 1 bar. Before each test, the sorbent was heated at 200 °C for 6 h in a 

0 200 400 600 800 1000
1.0

1.5

2.0

2.5

3.0

C
O

2
 u

p
ta

k
e 

(m
m

o
l/

g
)

BET surface area (m
2
/g)

a

0.0 0.2 0.4 0.6
1.0

1.5

2.0

2.5

3.0

b

C
O

2
 u

p
ta

k
e 

(m
m

o
l/

g
)

Total pore volume (cm
3
/g)

0.0 0.1 0.2 0.3 0.4 0.5
1.0

1.5

2.0

2.5

3.0
c

C
O

2
 u

p
ta

k
e 

(m
m

o
l/

g
)

V
t
 (cm

3
/g)

16 18 20 22 24 26
1.0

1.5

2.0

2.5

3.0
d

C
O

2
 u

p
ta

k
e 

(m
m

o
l/

g
)

N (wt%)

Figure 6. Plot of each porous properties characteristics (a) SBET, (b) V0, (c) Vt and (d) nitrogen content
versus CO2 uptake at 25 ◦C and 1 bar.
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Figure 7. (a) CO2 and N2 adsorption isotherms of UFK-600-0.2 at 25 ◦C and 1 bar, (b) CO2 adsorption
kinetics at 25 ◦C for UFK-600-0.2, (c) Qst on selected sorbents and (d) breakthrough curves of UFK-
600-0.2. Adsorption conditions: gas pressure 1 bar, adsorption temperature 25 ◦C, gas flow rate
10 mL/min, inlet CO2 concentration 10 vol.%.

To assess the realistic separation performance of CO2 over N2, a breakthrough experi-
ment was conducted for the optimal UFK-600-0.2, where the adsorption conditions were
the gas mixture CO2/N2 (10:90) with a flow rate of 10 mL min-1 at 25 ◦C. Based on the
breakthrough curves of UFK-600-0.2 in Figure 7d, the CO2 dynamic capture capacity was
found to be 0.85 mmol/g signifying an outstanding perspective in CO2 adsorption from
the flue gas.

To further prove the practical usage of the as-prepared adsorbent, we examined the
reversibility of CO2 adsorption on the optimal UFK-600-0.2 sample over five consecutive
cycles at 25 ◦C and 1 bar. Before each test, the sorbent was heated at 200 ◦C for 6 h in a
vacuum. As seen in Figure 8, 97% of initial CO2 uptake was maintained after 5 cycles,
claiming facile recyclability, which could be recognized as a promising adsorbent for CO2
uptake performance.
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Figure 8. Cyclic study of CO2 adsorption for UFK-600-0.2 at 25 ◦C and 1 bar.
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3. Synthesis and Characterization

Commercial urea formaldehyde resin (UF) was used as the precursor, direct KOH
activation of UF via a single step reaction was performed to obtained N-doped porous
carbons. During activation process, three KOH/UF mass ratios i.e., 0.1, 0.2 and 0.3 and three
activation temperatures i.e., 550, 600 and 650 ◦C were chosen. The as-achieved sorbents
were assigned as UFK-T-m, of which T and m mean activation temperature and KOH/UF
ratio, respectively. The yield of these N-doped porous carbons is in the range of 25–6%. The
details about preparation, characterization of sorbents and CO2 adsorption performance
measurement are recorded in the Supplementary Materials.

4. Conclusions

In conclusion, N-doped porous carbons were prepared by a facile one-pot KOH acti-
vating strategy from commercial urea formaldehyde resin (UF). The textural properties and
nitrogen content of the N-doped carbos were carefully tuned by the activating temperature
and KOH/UF mass ratios. As-prepared N-doped carbons show advanced porosity together
with high N content. The optimal adsorbent presents a high CO2 adsorption capacity of
4.03 mmol/g at 0 ◦C and 1 bar. Moreover, as-prepared N-doped carbon adsorbents show
multiple merits such as moderate isosteric heat of adsorption, high CO2/N2 selectivity,
quick adsorption kinetics, good dynamic CO2 capture capacity and outstanding recycling
performance. It has been pointed out that the CO2 uptake for these urea formaldehyde
resin-derived N-enriched porous carbons was mainly determined by the textural feature
of adsorbents, while the N content of carbons also plays a critical role to define the CO2
adsorption performance. The current study provides a facile and cost-effective way to
obtain N-doped carbon for CO2 capture application.
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//www.mdpi.com/article/10.3390/molecules27206816/s1, Table S1: N-species contributions in total
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and 1 bar) for different sorbents. References [24,60–62,68–76] are cited in the supplementary materials.
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