
RESEARCH ARTICLE

Naturally Occurring Differences in CENH3
Affect Chromosome Segregation in Zygotic
Mitosis of Hybrids
Shamoni Maheshwari1, Ek Han Tan1, AllanWest2, F. Chris H. Franklin2, Luca Comai1*,
SimonW. L. Chan3,4†

1 Department of Plant Biology and Genome Center, University of California, Davis, Davis, California, United
States of America, 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United
Kingdom, 3 Department of Plant Biology, University of California, Davis, Davis, California, United States of
America, 4 Howard-Hughes Medical Institute and the Gordon and Betty Moore Foundation, University of
California, Davis, Davis, California, United States of America

†Deceased.
* lcomai@ucdavis.edu

Abstract
The point of attachment of spindle microtubules to metaphase chromosomes is known

as the centromere. Plant and animal centromeres are epigenetically specified by a centro-

mere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones

that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate.

This diversification of CENH3 is a conundrum since its role as the key determinant of centro-

mere identity remains a constant across species. Here, we ask whether naturally occurring

divergence in CENH3 has functional consequences. We performed functional complemen-

tation assays on cenh3-1, a null mutation in Arabidopsis thaliana, using untagged CENH3s

from increasingly distant relatives. Contrary to previous results using GFP-tagged CENH3,

we find that the essential functions of CENH3 are conserved across a broad evolutionary

landscape. CENH3 from a species as distant as the monocot Zea mays can functionally

replace A. thaliana CENH3. Plants expressing variant CENH3s that are fertile when selfed

show dramatic segregation errors when crossed to a wild-type individual. The progeny of

this cross include hybrid diploids, aneuploids with novel genetic rearrangements and hap-

loids that inherit only the genome of the wild-type parent. Importantly, it is always chromo-

somes from the plant expressing the divergent CENH3 that missegregate. Using chimeras,

we show that it is divergence in the fast-evolving N-terminal tail of CENH3 that is causing

segregation errors and genome elimination. Furthermore, we analyzed N-terminal tail se-

quences from plant CENH3s and discovered a modular pattern of sequence conservation.

From this we hypothesize that while the essential functions of CENH3 are largely con-

served, the N-terminal tail is evolving to adapt to lineage-specific centromeric constraints.

Our results demonstrate that this lineage-specific evolution of CENH3 causes inviability

and sterility of progeny in crosses, at the same time producing karyotypic variation. Thus,

CENH3 evolution can contribute to postzygotic reproductive barriers.

PLOS Genetics | DOI:10.1371/journal.pgen.1004970 January 26, 2015 1 / 20

OPEN ACCESS

Citation: Maheshwari S, Tan EH, West A, Franklin
FCH, Comai L, Chan SWL (2015) Naturally Occurring
Differences in CENH3 Affect Chromosome
Segregation in Zygotic Mitosis of Hybrids. PLoS
Genet 11(2): e1004970. doi:10.1371/journal.
pgen.1004970

Editor: Kirsten Bomblies, Harvard University,
UNITED STATES

Received: September 13, 2014

Accepted: December 20, 2014

Published: January 26, 2015

Copyright: © 2015 Maheshwari et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Most relevant data are
within the paper and its Supporting Information files.
Sequence files are available via NCBI under the
following numbers: Bioproject ID: PRJNA261254;
SRA ID: SRP048570; Genbank: KP202363.

Funding: This work was funded by the Howard
Hughes Medical Institute and the Gordon and Betty
Moore Foundation through grant GBMF3068 (to LC)
and the Gordon and Betty Moore Foundation through
Grant GBMF 2550.03 to the Life Sciences Research
Foundation (to SM) and Biotechnology and Biological
Sciences Research Council, UK (to AW and FCHF).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004970&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Author Summary

As populations evolve into new species they acquire mutations that are compatible with
their own genetic background, but often lead to defects when crossed to others. Here, we
show that naturally evolved differences in the centromere-specific histone H3 (CENH3)
can contribute to this process. Unlike canonical histones, CENH3 differentiates rapidly
even between closely related species. To better understand the functional role of natural
CENH3 variation, we complemented a null allele of Arabidopsis with progressively more
distant orthologs. Contrary to previous findings, we discovered that all tested variants,
even the highly diverged maize CENH3, could restore normal growth and reproduction in
selfing individuals. However, when crossed to the wild type, hybrid progeny suffered from
extensive mis-segregation. Genotypes include simple aneuploids, novel genetic rearrange-
ments, and in extreme cases haploids where all the chromosomes from one parent are lost.
This indicates that while wide variation in CENH3 is compatible with its essential func-
tion, epigenetically different centromeres do not function well when brought together in a
hybrid embryo. A better understanding of haploid generation would have profound effects
on plant breeding and our results suggest that the natural variation of CENH3 could offer
a cache of testable variation.

Introduction
Centromeres are the site where spindle microtubules attach to chromosomes during cell
division. This attachment is mediated via a multi-protein complex called the kinetochore, a
structure essential for the stable inheritance of genetic information. Contrary to expectation,
the centromere is not a genetic locus in the traditional sense of being defined by its DNA
sequence [1,2]. The DNA sequence underlying the centromere is not evolutionarily conserved
and in most species, is composed of megabases of rapidly evolving tandem repeats [3]. Howev-
er, these repeats are not essential to centromere formation since neocentromeres or the gain of
new centromeric activity has been observed over unique DNA sequences as well [4–6]. The
common denominator to all centromeres, old and new, is the presence of a centromere specific
histone variant of H3 called CENH3 (or CENP-A) [7]. This and other evidence [8–10] indicate
that in both plants and animals, the location of centromeres is specified epigenetically by the
presence of CENH3.

Despite this ancient and conserved role of CENH3 in maintaining genetic integrity, the
CENH3 protein sequence is not evolving under purifying selection. In contrast to the nearly
invariant histone H3, CENH3 homologs are highly divergent. For example, CENH3 from
Arabidopsis thaliana and Arabidopsis arenosa, sister species that shared a common ancestor
approximately 5 MYA, differ at 23 of 178 amino acid positions while canonical Histone H3 has
accumulated only 4 substitutions out of 136 amino acid positions since the divergence of plants
and animals. In the Brassicaceae and in Drosophila, the diversification of CENH3 at both the
Histone Fold Domain (HFD) and the N-terminal tail appears to be driven by adaptive evolu-
tion under natural selection [11,12]. This accelerated evolution is especially pronounced at the
N-terminal tail of CENH3, which is hyper-variable both in its length and sequence. Why a
structure essential for stable inheritance of genetic material is composed of genetically unstable
units is a fundamental unsolved question in the field of chromosome biology.

The “centromere drive” hypothesis proposed by Henikoff and Malik puts forward genetic
conflict as the source of this striking diversification [13]. This model supposes that DNA
sequence can influence centromere function. Female meiosis in animals and plants is
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asymmetric, in that only one product survives to become the egg cell. If a sequence variant
evolves that can preferentially segregate into the surviving egg cell, it will rapidly sweep through
the population [14,15]. However, such driving chromosomes would be associated with fitness
costs including fixation of linked deleterious mutations, sterility due to non-disjunction and in
the case of sex chromosomes, skewed sex ratios. This in turn is expected to set off the evolution
of centromere-associated proteins to suppress the selfish transmission of this centromere.
Cycles of centromere drive and suppression could result in the rapid diversification of centro-
meres and associated factors. One outcome of divergence in centromere components, DNA
and/or proteins, could be the evolution of incompatibilities in the segregation machinery,
leading to the reproductive isolation of populations.

While there is strong evidence attributing expansion of centromeric repeats to meiotic drive
[16], whether CENH3 or other centromeric proteins are co-evolving with DNA sequences to
suppress instances of drive remains speculative. The functional consequences of CENH3 diver-
gence are difficult to address because CENH3 is an essential gene and most model systems
cannot tolerate the segregation errors caused by mutations or modification to its function. In
D.melanogaster and mammalian cells, RNAi has been used to down-regulate CENH3 levels
[17,18]. However, the interpretation of any loss-of-function phenotypes is confounded by the
persistence of CENH3 through multiple rounds of cell division. In contrast, a cenh3 null mu-
tant in A. thaliana allows us to completely replace the endogenous protein with transgenic vari-
ants. In addition, A. thaliana has high-copy centromeric repeats similar in organization to
most plants and animals [19], making it an attractive system for testing general principles of
centromere function.

Also unique to A. thaliana is the CENH3-mediated genome elimination system [20], which
we have leveraged as a sensitive genetic assay for centromere function in this study. This genet-
ic assay is based on the discovery that when a cenh3 null mutant expressing a GFP-tagged chi-
meric CENH3 (GFP-tailswap) is crossed to a wild type, missegregation of chromosomes from
the GFP-tailswap parent is observed [20]. Since A. thaliana has a high tolerance to aneuploidy,
the F1 progeny capture a wide range of segregation errors. In the most extreme cases, all the
chromosomes from the GFP-tailswap parent are lost (genome elimination) yielding haploid
offspring that inherit chromosomes only from the wild-type parent. Importantly, segregation
errors are only observed in crosses to wild type and not during normal vegetative growth or
when GFP-tailswap plants are selfed. This implies that chromosome missegregation in the F1
zygote is the result of competition between wild-type centromeres and defective centromeres
built on the artificial chimeric CENH3. Thus, the frequency of segregation errors and genome
elimination can be used as a sensitive assay for centromere function. We were interested in ask-
ing what would happen if instead of using an artificial chimeric construct we simply replaced
the endogenous CENH3 with natural variants from related species.

Previous studies using GFP-tagged versions of CENH3 orthologs had found a very narrow
evolutionary window of functional complementation [21]. This leads to the conclusion that plant
CENH3s are evolving under unique and highly dissimilar lineage-specific functional constraints
[21]. Here, using untagged natural variants of CENH3 we observed the following: 1) Despite
extensive sequence divergence, the essential functions of CENH3 are conserved across a much
broader evolutionary time-scale than previously thought; 2) Naturally evolved divergence in
CENH3 can contribute to genetic instability by causing chromosome missegregation, generating
not only aneuploids and haploids, but also novel genetic rearrangements; 3) It is the divergence
in the fast evolving N-terminal tail domain that is responsible for segregation defects and 4) The
N-terminal tail appears to be evolving in a modular fashion. With these results, we argue that the
core functions of CENH3 have remained unchanged over long evolutionary periods while the
N-terminal tail of CENH3 is evolving as a species-specific optimized platform for centromere
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organization. Finally, our study presents the first direct evidence for the role of CENH3 diver-
gence in speciation.

Results

Mustard family CENH3s complement Arabidopsis cenh3–1 null mutation
A. thaliana is a member of the mustard family (Brassicaceae), known for its agriculturally
important Brassica crops. Analysis of CENH3 homologs from several species within the mus-
tard family revealed that it is adaptively evolving, both at the Histone Fold Domain (HFD) and
the N-terminal tail (NTT) [11]. Ravi et al. (2010) [21] had assayed CENH3s from species
within the Brassicaceae and beyond for functional complementation of cenh3–1, a CENH3 null
mutation in A. thaliana. They found that GFP-tagged CENH3 from Brassica rapa and Zea
mays localized at A. thaliana centromeres, but only GFP-tagged CENH3 from the closely relat-
ed species A. arenosa rescued embryo lethality of the cenh3–1. A caveat to these experiments
was the presence of the GFP-tag. GFP-tagged A. thaliana CENH3 largely complemented the
functions of the A. thaliana cenh3–1mutation, but when crossed to wild type segregation er-
rors were observed at a low frequency. This hinted that the GFP-tag is not entirely neutral.
Thus, to assay only the effects of naturally evolved variation on CENH3 function, we decided
to test complementation of the cenh3 null mutant using native untagged proteins.

We chose CENH3 from B. rapa and Lepidium oleraceum, two species nested within the
Brassicaceae family. L. oleraceum is more closely related to A. thaliana than B. rapa, but more
distantly than A. arenosa [22]. To test for complementation, we transformed cenh3–1/CENH3
heterozygotes with constructs expressing genomic sequence encoding L. oleraceum CENH3
(LoCENH3) and B. rapa CENH3 (BrCENH3) under the endogenous A. thaliana CENH3 pro-
moter. We recovered transformants that were homozygous for the cenh3–1mutation for both
variants in the T1 generation. This result is revealing in two ways: firstly it shows that the GFP-
tag interferes with CENH3 function and secondly, it indicates that the previously defined
boundary of functional complementation is incorrect.

We further characterized the extent of mitotic and meiotic complementation in the T2
generation. A. thaliana plants homozygous for cenh3 null mutation expressing transgenic L.
oleraceum CENH3 or B. rapa CENH3 were phenotypically indistinguishable from wild type
(Fig. 1A). We therefore conclude that B. rapa and L. oleraceum CENH3 can fully complement
A. thaliana CENH3 mitotic functions required for vegetative growth. Transgenic lines for both
CENH3 variants in a cenh3–1 homozygous background were also self-fertile.

To assay meiotic complementation, we wanted to identify plants that were homozygous for
both the cenh3 null mutation and variant CENH3 transgene. Following segregation ratios of
the transgene is not informative in a cenh3–1 homozygous mutant background, since individu-
als without transgenic CENH3 cannot survive. Therefore, we decided to use frequency of seed
death in selfed siliques of T2 plants to infer the zygosity of the CENH3 transgene. Individuals
that are cenh3 -/- and heterozygous for the transgene are expected to produce 25% seed death
upon selfing. Assuming that the transgene is inserted at a single locus, individuals homozygous
for the transgene are expected to produce 0 to less than 25% seed death if fully or partially
complementing the meiotic functions of the endogenous A. thaliana CENH3.

Using this criterion to infer the zygosity of the transgene, we measured fertility of A.
thaliana plants in which the endogenous CENH3 is replaced by L. oleraceum CENH3 or B.
rapa CENH3. We measured seed set and frequency of abnormal seeds in selfed siliques from
three independent transformation events for each construct (Fig. 1C). The complemented lines
were comparable to wild type for both measures of fertility. Furthermore, viability-stained
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Figure 1. Vegetative and reproductive phenotypes of CENH3 complemented lines. (A) Plants at rosette stage from different complemented lines
compared to wild-type Columbia (WT) and GFP-tailswap, a high frequency haploid inducer [20]. The genotype of the endogenous CENH3 locus is indicated
in parentheses. LoCENH3 is L. oleraceum CENH3 and BrCENH3 is B. rapaCENH3. AtNTT-LoHFD and LoNTT-AtHFD are chimeric CENH3s described in
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anthers from the same complemented lines showed live pollen numbers and appearance indis-
tinguishable from wild type (Fig. 1B).

For L. oleraceum CENH3 complemented lines we further analysed meiosis cytologically
with DAPI stained chromosome spreads from pollen mother cells (PMCs) in two T1 families,
2 and 19. Prophase I of meiosis in both lines was indistinguishable from wild type (S1A Fig.).
Chromosome segregation in PMCs at both meiotic divisions was checked for segregation er-
rors. In the T1 = 19 family, metaphase I (n = 26), anaphase I (n = 7), metaphase II (n = 40),
anaphase II (n = 5) and telophase II (n = 21) PMCs were scored, none of which displayed segre-
gation errors (Fig. 2). Careful inspection of all post-prophase I PMCs sampled revealed some

the key. (B) Anthers stained for viability with Alexander stain. Viable pollen granules stain purple. (C) Measures of fertility based on number of seeds per
silique and seed appearance. Bars in different shades of grey represent counts from different T1 lines. For each measurement, seeds from 5 siliques were
pooled and counted.

doi:10.1371/journal.pgen.1004970.g001

Figure 2. L. oleraceumCENH3 complements meiosis in A. thaliana.Male meiotic chromosome spreads
stained with DAPI for WT Col-0 (A-D, I-L) and L. oleraceumCENH3 cenh3–1/cenh3–1 (T1 family = 19) (E-H,
M-P). Scale bar = 10μm.

doi:10.1371/journal.pgen.1004970.g002
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limited chromosome fragmentation in one anaphase II cell (S1B Fig.). Although, the origin of
this cannot be ascertained at present, its low frequency is unlikely to compromise fertility.
Thus, we conclude that CENH3 orthologs can complement the essential mitotic and meiotic
functions of A. thaliana CENH3 under standard growing conditions.

Naturally evolved divergence in CENH3 can cause genome elimination
Next, we wanted to test how A. thaliana centromeres built on CENH3 variants functioned in
comparison to those built on the native A. thaliana CENH3. To do so, we crossed them as fe-
males with pollen from wild-type (CENH3 +/+) Landsberg erecta (Ler) homozygous for the
gl1–1 glabrous mutation, which confers a trichomeless phenotype. We chose Ler as the CENH3
wild-type parent because the complemented lines were generated in the Col-0 accession. This
allows us to use polymorphisms between Col-0 and Ler to determine the parent of origin for
all the chromosomes in the F1. In a standard cross we expect only F1 diploid hybrids with tri-
chomes. However, if replacing the endogenous CENH3 with natural variants creates weak cen-
tromeres, then we can expect mitotic missegregation in the F1 zygote.

The first indication of abnormal segregation in these crosses was the observation that 14–47%
seeds aborted during development (Table 1). In contrast to the uniformly tan-colored plump
seeds generated when the complemented lines are selfed, dark nearly black shriveled seeds were
seen in crosses to wild type. Upon germination of F1 seeds from L. oleraceum CENH3 and B.
rapa CENH3 crosses, we recovered diploid, aneuploid and haploid progeny. All haploids were
sterile and paternal on the basis of having a trichomeless appearance, an expression of the reces-
sive gl1–1mutation. We confirmed the haploid genome content of 11 phenotypically selected
haploids by flow cytometry (S2 Fig.).

Crosses were between cenh3–1/cenh3–1 + CENH3 transgene females and pollen from wild
type Landsberg CENH3 +/+ strain homozygous for the gl1–1 glabrous mutation. Sterile off-
spring expressing the recessive gl1–1 trichomeless phenotype were scored as paternal haploid.
Offspring with developmental defects were scored as aneuploid. Fertile wild-type offspring
were scored as diploid.

Table 1. Natural variation in CENH3, specifically in the N-terminal tail, causes genome elimination.

Transgene T1 family name % normal seed Total No. of Plants Analysed Haploids (%) Diploids (%) Aneuploids (%)

GFP-tailswap 11 20 (n = 1187) 606 240 (40) 167 (28) 199 (32)

L. oleraceum CENH3 2 58 (n = 464) 552 18 (3) 480 (87) 54 (10)

19 53 (n = 167) 133 15 (11) 93 (70) 25 (19)

21 86 (n = 294) 529 10 (2) 490 (93) 29 (5)

B. rapa CENH3 1 70 (n = 180) 283 5 (2) 243 (86) 35 (12)

3 65 (n = 200) 246 2 (1) 219 (89) 25 (10)

9 84 (n = 304) 464 4 (1) 445 (96) 15 (3)

AtNTT-LoHFD 4 83 (n = 138) 38 0 (0) 35 (92) 3 (8)

8 97 (n = 393) 249 0 (0) 230 (92) 19 (8)

9 92 (n = 364) 117 0 (0) 113 (97) 4 (3)

24 97 (n = 385) 150 0 (0) 150 (100) 0 (0)

LoNTT-AtHFD 1 10 (n = 403) 119 2 (2) 94 (79) 23 (19)

3 0 (n = 236) 0 N. A. N. A. N. A.

6 1 (n = 152) 5 0 (0) 4 (80) 1 (20)

19 2 (n = 334) 0 N. A. N. A. N. A.

doi:10.1371/journal.pgen.1004970.t001
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For each CENH3 construct we tested two individuals from each of the three independent
transformation events (T1 families) in crosses to wild-type Ler gl1–1. Substantial variation in
the frequency of haploids was observed between the different T1 families (Table 1). While the
source of this variability is unclear, it is consistent with the variable haploid induction rates
observed when GFP-tailswap is crossed to wild type. In cases where cenh3–1 is complemented
with L. oleraceum CENH3, the frequency of genome elimination ranged from 2 to 11%. For B.
rapa CENH3 complemented cenh3–1, the range was 1 to 2%. Although, L. oleraceum is more
closely related to A. thaliana than B. rapa, substituting endogenous A. thaliana CENH3 with
the L. oleraceum ortholog in an A. thaliana plant appeared to have a greater destabilizing effect
on A. thaliana centromere as inferred from the larger frequency of genome elimination on av-
erage (6 ± 2.4% vs. 1 ± 0.2%).

We have not observed any instances of aneuploidy and haploidy in the selfed progeny of the
complemented lines (S3 Fig.). In addition meiosis in L. oleraceum T1 families 2 and 19, which
generated the highest frequency of haploids and aneuploids, is wild type in appearance (Fig. 2).
From the absence of meiotic defects during selfing, we infer that the segregation errors and ge-
nome elimination observed in the crosses to wild type (CENH3 +/+) are not the byproduct of
meiotic dysfunction in the inducer parent, but rather the consequences of postzygotic interac-
tions in the hybrid embryo. From this we conclude that natural variation in CENH3 can cause
centromere-mediated genome elimination and contribute to genetic instability through
changes in ploidy.

Crosses between plants expressing CENH3 variants and the wild type
generate novel genetic rearrangements
One of the hallmarks of centromere-mediated genome elimination is the generation of aneu-
ploid progeny at a relatively high frequency (~30% for GFP-tailswap) [20]. Aneuploids have
imbalanced karyotypes that perturb gene dosage, with large and variable phenotypic conse-
quences. A. thaliana aneuploids exhibit morphological phenotypes in a wide variety of traits
including abnormal leaf morphology, irregular branching patterns and infertility [23]. Using
these criteria, we estimated that in crosses of Ler gl1–1 (as the wild-type pollen parent) to L.
oleraceum CENH3 and B. rapa CENH3 complemented lines, the incidence of aneuploidy is
11.3% and 8.3% respectively (Table 1). We selected 48 phenotypically aneuploid progeny from
each cross for whole genome sequencing to determine the relative dosage of each chromosome
using a bioinformatics approach. Chromosomes and subchromosomal regions that vary from
the expected number of 2 can be readily identified by increased or decreased read count relative
to the rest of the genome [23]. We identified chromosomal imbalances in 73 of the 96 individu-
als selected for sequencing (S4 Fig., S5 Fig. and S1 Table). In this dataset we found three classes
of aneuploid chromosome types and an example of each is shown in Fig. 3 (B–D). As a com-
parison diploid Col/Ler individual with 2 copies of each of the five A. thaliana chromosome is
shown in Fig. 3A. The first class contains numerical aneuploids where whole chromosomes are
duplicated, as exemplified by an individual trisomic for Chr3 (Fig. 3B). The second class con-
tains aneuploids with truncated chromosomes, such as, for example, an extra copy of Chr5
with a truncated left arm (Fig. 3C). Lastly, the third class displays dosage variation consistent
with chromosomes that shattered and have gained or lost DNA segments multiple times across
the entire length of the chromosome. An example for a shattered Chr2 is shown in Fig. 3D.
Based on our low pass sequencing analysis we cannot infer the chromosomal organization of
these dosage variants presented here.

Using SNPs between the parental lines, we were able to infer the origins of the copy variant
regions (SNP plots in Fig. 3A–D). In all three classes of dosage variants, the DNA contributing
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to the increased copy number originated from the transgenic Col-0 parent, in which the
endogenous CENH3 had been replaced by an evolutionary variant. We even observed the loss
of heterozygosity in the shattered Chr2 (Fig. 3D), as a result of the complete loss of the Col-0
chromosomal regions. The largest fractions of aneuploids from these crosses were products of
whole chromosome missegregation events (Fig. 3E and F). However, there were also a consid-
erable number of aneuploids with sub-chromosomal changes in copy number. This variation
in dosage implies the creation of novel genetic karyotypes.

In summary, centromeres built on CENH3 variants appear to missegregate in crosses to
wild type. One consequence of which is aneuploidy and segmental dosage variants and with
that the introduction of a broad range of phenotypic diversity [24].

Essential functions of CENH3 are conserved between monocots and
dicots
Since our results negated the previously identified limits of CENH3 functional complementa-
tion, we decided to sample a larger evolutionary space. Flowering plants are divided into two
major groups: monocots and dicots that diverged from each other 146–161 MYA. Rosids are
the largest clade within the dicots, comprising of around 70,000 species including the model
plant A. thaliana [25]. To better understand the extent of variation in CENH3 across the plant

Figure 3. Characterization of aneuploid genotypes using whole-genome sequencing. Shown here are pictures of an individual plant alongside its 100kb
bin dosage plot and 1 Mb bin SNP analysis across all five chromosomes. The red boxes indicate their relative centromere positions. (A) A diploid Col-0/Ler hybrid
individual from a genome elimination cross mediated by LoCENH3. (B–D) The threemajor aneuploid types represented by examples of each: an individual with a
numerical aneuploid chromosome (B), a truncated aneuploid chromosome (C) and a shattered aneuploid chromosome (D). (E–F) Percentage of each type of
chromosomal variants of the aneuploids derived from a LoCENH3 (E) and BrCENH3 (F) genome elimination cross.

doi:10.1371/journal.pgen.1004970.g003
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kingdom, we collated 67 CENH3 sequences from public databases that included homologs
from green algae, mosses, monocots and dicots (S2 Table). Using protein sequence from the
HFD we generated a multiple sequence alignment and constructed a phylogeny of CENH3 in
the plant kingdom (Fig. 4A). This CENH3-HFD based gene tree was largely congruent with
the accepted evolutionary relationships between these species (Fig. 4A). The most striking
feature of the tree is the size of its branches and the variation in their lengths, illustrating the
rapid and variable rates of CENH3 evolution. We chose to test CENH3 from two additional
species at increasing degrees of evolutionary distance from A. thaliana: grapevine (Vitis vinif-
era), one of the earliest diverging rosid species considered a basal rosid, and corn (Zea mays),
a monocot.

To test the functional complementation of these distant species, we made constructs
expressing V. vinifera CENH3 and Z.mays CENH3 cDNA under control of the endogenous
A. thaliana CENH3 promoter. These transgenes were transformed into cenh3–1/CENH3 het-
erozygotes. We recovered both V. vinifera CENH3 and Z.mays CENH3 transformants in a
cenh3–1 homozygous background in the T1 generation (Fig. 4B and S6 Fig.). V. vinifera and
Z.mays CENH3 have 21 and 38 amino acid substitutions respectively, relative to the 97 amino
acid positions in the HFD of A. thaliana CENH3 (S7 Fig.). Hence, it was surprising that both

Figure 4. Analysis of evolutionary divergence in plant CENH3 Histone Fold Domains. (A) Phylogenetic tree inferred by using theMaximum Likelihood
method based on the JTT matrix-basedmodel [52]. The tree with the highest log likelihood (-3935.2849) is shown. The tree is drawn to scale, with branch
lengths measured in the number of substitutions per site. (B) Summary of complementation tests ofA. thaliana cenh3–1mutation with CENH3 from increasingly
distant plant species.

doi:10.1371/journal.pgen.1004970.g004
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V. vinifera CENH3 and Z.mays CENH3 were able to complement the embryo lethality of the
cenh3–1 resulting in plants undistinguishable from the wild type. To the extent that the com-
plemented lines were self-fertile, we can say that both variants also fulfilled the essential meiotic
functions of A. thaliana CENH3 (Fig. 4B and S6 Fig.).

Divergence in the N-terminal tail of CENH3 causes missegregation
The L. oleraceum CENH3 gene has 12 amino acid substitutions in its HFD relative to A. thali-
ana and 31 in its N-terminal tail. We generated chimeric proteins in which the N-terminal tail
of L. oleraceum CENH3 was fused to the HFD of A. thaliana CENH3, and vice versa (Fig. 1A).
We assayed complementation of cenh3–1 and found that both chimeras complemented the
embryo lethality of the cenh3–1mutation in the T1 generation. The chimeric CENH3s were
also similar to wild type with respect to pollen viability as determined by viability staining and
in number and appearance of developing seeds within siliques (Fig. 1B and 1C).

We then tested the functionality of centromeres built on these chimeric CENH3 transgenes
by making crosses to wild type. It was immediately apparent by visual inspection of the result-
ing F1 seeds that the two chimeras had entirely different effects. The F1 seeds from the chimera
with A. thaliana N-terminal tail fused to L. oleraceumHFD (AtNTT-LoHFD) crossed to wild
type appeared largely normal while most of the F1 seeds from the L. oleraceum N-terminal tail
fused to A. thalianaHFD (LoNTT-AtHFD) were abnormal in appearance (Table 1). We failed
to obtain F1 seed germination from crosses of LoNTT-AtHFD to the wild type except from a
single T1 family. In this respect, the function of the chimera, LoNTT-AtHFD, is reduced com-
pared to the full-length L. oleraceum CENH3. We only recovered 124 F1 progeny from the
LoNTT-AtHFD cross, of which 2 were haploids and 23 were phenotypically aneuploid. In con-
trast, we recovered a large number of F1 progeny from the crosses with AtNTT-LoHFD. How-
ever, out of a total of 554 F1’s none were haploids. This indicates that restoring the N-terminal
tail to the endogenous sequence is sufficient to restore activity to a level similar to wild-type.

Evidence for modular evolution of the N-terminal tail within the plant
kingdom
Since our genetic assays highlight a critical role of the N-terminal tail sequence in segregation
and genome elimination, we were interested in identifying patterns in its sequence evolution.
N-terminal tails of CENH3 proteins are hyper-variable both in their amino acid sequence and
length, ranging from 23 amino acids (Pisum sativum) to 194 amino acids (Brachypodium dis-
tachyon). Thus, reconstructing the evolutionary history of N-terminal tails from alignments of
distant CENH3 lineages is not possible. Instead, we decided to use an alignment free approach
and used the motif search programMEME to identify short conserved blocks of sequence
homology in the otherwise unstructured N-terminal tail. A similar approach investigating N-
terminal tail evolution in Drosophila species identified three conserved blocks of homology
shared by all CENH3 alleles in that clade [26]. Our analysis of N-terminal tails includes varia-
tion from a significantly broader evolutionary timescale, with CENH3 sequences ranging from
green algae to flowering plants. We identified seven stretches of conserved protein sequences,
which we have termed Blocks 1–7 (Fig. 5A, S3 Table). The over-representation of Brassicaceae-
clade specific motifs (4 of 7 Blocks) is a reflection of our sampling bias, in which 22 of the
67 N-terminal tail sequences were from species within the Brassicaceae.

Several interesting patterns were immediately apparent: First, Block 1 and Block 2 were
identified in nearly all plant CENH3s and in canonical Histone H3 (Fig. 5A). It appears that
while the intervening sequence is highly variable in both length and content, the N- and C-
terminus of N-terminal tails are evolving under strict constraint. These Blocks were not
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identified inH. sapiens CENH3. Second, in several instances where a species’ genome carries
two copies of CENH3, there was differential retention of Blocks between the two copies, a situ-
ation analogous to sub-functionalization post gene duplication. For example, copy A of
CENH3 in Arabidopsis lyrata is missing Block 6 but retained Block 3, while copy B is missing
Block 3 but has retained Block 6. InHordeum vulgare, the monocot-specific Block 7 is retained
in copy A, but lost in copy B. Third, isolated Blocks were identified across long evolutionary
distances (Fig. 5B). For example, Brassicaceae-specific Block 4 was absent in all other lineages
but present in V. vinifera, a basal rosid. Similarly, Block 6 that is present in most, but not all,
Brassicaceae species, was also identified in two distant rosid species, Phaseolus vulgaris and
Glycine max. The most parsimonious explanation for this pattern is that sequences homolo-
gous to Block 4 and Block 6 were present in the N-terminal tail of the ancestral CENH3 and
were selectively retained or lost in the different rosid species. These observations suggest a
modular evolutionary pattern where the constraints on individual Blocks are independent of
one another. An outcome of this might be that the N-terminal tails acquire lineage-specific
configuration of Blocks, thereby generating combinatorial sequence diversity.

Discussion
The results obtained in this study provide new and dramatically different information about
CENH3 function and evolution from that previously available [21]. We observed wide comple-
mentation of a CENH3 loss-of-function mutation, while previous studies failed to obtain

Figure 5. Identification of sequence motifs in plant CENH3 N-terminal tails. (A) Schematic representation of CENH3 N-terminal tails from a subset of
plant species, in the context of their known phylogenetic relationships. Motifs identified by MEME [51] are represented as different colored blocks. N-terminal
tails are drawn to scale with the relative locations of each motif identified. The height of the motif block is proportional to-log(p-value). (B) Motif blocks 4 and 6
in Logos format. All instances where the motifs were identified are included below for comparison.

doi:10.1371/journal.pgen.1004970.g005
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complementation except in the case of CENH3 from a very close relative. The difference lies
quite simply in the use of untagged versus GFP-tagged CENH3 proteins in functional comple-
mentation assays. Furthermore, a recent study of CENH3CSE4 dynamics in yeast found that
fusion of the GFP-tag to the CENH3CSE4 protein altered its function [27]. Taken together, it is
apparent that presence of the GFP-tag significantly interferes with centromere function and
protein modified with this fusion has limited use as a proxy for wild-type CENH3 activity.

The role of CENH3 in centromere determination is thought to have originated in an early
eukaryotic ancestor [28]. Functional homologs of CENH3 have been identified in plants, ani-
mals, fungi and protists [29,30]. This essential gene exists as a single copy in nearly all species.
Given the absence of gene duplicates and opportunities for sub-functionalization, this diversity
in CENH3 protein sequences is puzzling and begs the question: how conserved are the func-
tional requirements for making a centromere? This question has been asked in at least four
different model organisms using primarily two assays: localization of evolutionarily distant
CENH3s to the endogenous centromere and functional complementation of the endogenous
CENH3 with evolutionary variants [18,21,31–33].

Two contrasting patterns of CENH3 functional conservation are apparent from the litera-
ture and this study. The first pattern is one of shared constraint over long evolutionary dis-
tances and the second is that of extreme lineage-specificity. In mammalian cells, GFP-tagged
CENH3s from C. elegans and S. cerevisiae localized to centromeres. In addition, S. cerevisiae
CENH3 rescued mammalian cells from mitotic arrest induced by depletion of the endogenous
CENH3 [18]. In Arabidopsis, centromeric localization of complementing CENH3 does not ex-
tend as far as yeast [21] but CENH3 from Z.mays, a distant monocot species, can functionally
substitute for the endogenous CENH3 (Fig. 4B and S6). In contrast, in D.melanogaster, GFP-
tagged CENH3 from a species within the same genus failed to localize to centromeres [31]. In
budding yeast, functional complementation of CENH3 is limited to the closely related hemias-
comycetes [33]. Hemiascomycetes are unique in having ‘point centromeres’ that are genetically
defined by a 125-bp sequence. Point centromeres are a derived evolutionary characteristic
[28,34] and a plausible argument is that this specialized centromeric structure places severe
lineage-specific constraints on CENH3 function, thereby restricting the limits of functional
complementation. The results presented here argue that functional conservation despite se-
quence divergence is the norm, while stringent functional constraints might be symptomatic of
a derived idiosyncratic centromere.

In this study we have asked not only whether a divergent CENH3 can functionally comple-
ment the endogenous A. thaliana allele, but also how well it complements those functions by
providing a quantitative measure of the effect of CENH3 divergence on segregation fidelity.
This measure has been possible because A. thaliana, like most plants, has a high tolerance for
genomic dosage imbalance [35–37], thereby allowing recovery of the products of missegrega-
tion. Strikingly, complemented lines that had no fertility issues when fertilized by pollen of the
same genotype, displayed large-scale segregation errors when crossed to wild type. Significant
fractions of the recovered F1 progeny were either aneuploid or haploid (Table 1). In all cases
the missegregated chromosomes originated from the parent expressing the divergent CENH3
(Fig. 3, S4 and S5). This clearly implies that centromeres built on the divergent CENH3, while
able to complement essential functions, are deficient in comparison to the endogenous A. thali-
ana CENH3. What is the molecular basis of this functional deficiency? Answering this question
constitutes an exciting next challenge since it will uncover species-specific adaptations to cen-
tromere function and shed light on what is driving the rapid evolution of this ancient biological
structure.

Genome elimination as a barrier to interspecies hybridization has been observed in several
taxa [38]. It had been previously shown that engineering modifications to CENH3, namely
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fusing an N-terminal GFP-tag and swapping the N-terminal domain with one from Histone
H3.3 (GFP-tailswap), causes segregation errors and genome elimination. Our results now show
that naturally occurring divergence in CENH3 has the same effect. The most parsimonious
explanation is that the underlying mechanistic basis of genome elimination in these different
systems is shared while differing quantitatively in its outcome. In contrast to the male-sterile
GFP-tailswap construct, CENH3 evolutionary variants are perfectly fertile when selfed, impos-
ing no obvious fitness cost per se (Fig. 1 and 2). This highlights the fact that unlike the artificial
GFP-tailswap construct, the naturally occurring mutations in CENH3 have evolved under
functional constraint and can fulfill the conserved, essential functions even in the context of a
non-native centromere, at least under standard growth conditions. However, in crosses to gam-
etes with wild-type centromeres, the difference in parental CENH3s produces inviable (aborted
seeds) and sterile (aneuploid and haploid) F1 progeny. In addition to these fitness penalties,
the cross creates genetic novelty including instances of chromosomal breakage and shuffling of
the resulting segments (Fig. 3B-D).

Aneuploidy and elimination of the haploid inducer genome are likely a linked phenomenon.
Interestingly, fragmented chromosomes have been observed in other systems where genome
elimination follows from an interspecific hybridization event [39,40]. In the natural barley
wide crosses and in wheat and pearl millet hybrids, micronuclei formation is observed during
the process of genome elimination [39,41]. Chromosomes within micronuclei could be tar-
geted for elimination or be rescued by the cell, resulting in potential aneuploid progeny. While
most aneuploid karyotypes have a deleterious fitness effect, recent studies have shown that an-
euploidy is able to confer adaptive phenotypes under various stress conditions [42,43]. In sum-
mary, our data strongly supports a role for CENH3 divergence in speciation, not only as a
means for creating a postzygotic reproductive barrier but also as a driver of genetic novelty.

A major finding from our work is that it is divergence in the L. oleraceum N-terminal tail
that is critical for the missegregation phenotype. Fusing A. thaliana N-terminal tail to a diver-
gent HFD improved its function, while fusing a divergent N-terminal tail to the A. thaliana
HFD corrupts its function. In fact this second chimera showed a more severe missegregation
phenotype than the full-length divergent CENH3 (Table 1). This suggests that the two domains
of CENH3 might be co-evolving with one another, thus in some cases a chimera between two
non-adapted domains could create an allele that is worse than the sum of its individual parts.
Nevertheless, our results show that, despite sequence divergence, the HFD of CENH3 from a
distant species can be functionally interchanged. Domain-swap experiments have revealed that
regions within the HFD are required for centromere localization [31,44]. A plausible hypothe-
sis is that the structural and functional constraints on the HFD are essentially unchanging,
while the N-terminal tail is evolving to accommodate lineage-specific differences in centromer-
ic environment.

Our examination of N-terminal tail sequences across the plant kingdom suggests a pattern
where blocks of sequence homology are being lost and gained in a lineage-specific manner
(Fig. 5A). A tempting conjecture is that these blocks of homology represent functional modules,
such as interactions with other centromere-associated proteins. If this was the case we could ex-
pect lineage-specific diversity in centromeric machinery, with the integration (or subtraction) of
lineage-specific interactions into the ancestral centromere network. Consistent with this expecta-
tion, a recent study recently delineated the evolutionary trajectory of Umbrea, a neogene that has
gained essential centromeric functions in specific Drosophila lineages [45]. While this is in no
way conclusive, we propose that the idiosyncratic rewiring of centromeric chromatin constitutes
a potential driving force for the evolution of the N-terminal tail of CENH3.

In summary, our results argue that while CENH3 from all species perform conserved func-
tions, each CENH3 is adapted to its own unique cellular, most likely centromeric, environment.

Effects of CENH3 Variation

PLOS Genetics | DOI:10.1371/journal.pgen.1004970 January 26, 2015 14 / 20



Why there should exist so many diverse solutions to the problem of packaging centromeric
chromatin remains enigmatic. However, we demonstrate that this lineage-specific diversifica-
tion of CENH3 has the potential to contribute to the genetic diversification and reproductive
isolation of populations.

Materials and Methods

Plant materials and crossing procedure
Plants were transformed by the Agrobacterium floral dip method using standard protocols.
Plants were grown under 16 hr of light/8 hr of dark at 20°C. For each cross, at least five flowers
from an early inflorescence were emasculated and pollinated one day later with wild type pol-
len. F1 seeds were first sown in 0.5X MS plates containing 1% sucrose to maximize germination
efficiency and then transplanted to soil.

Cloning of CENH3 transgenes
The L. oleracem CENH3 coding region including introns was PCR amplified from genomic
DNA with the addition of SalI and XbaI sites at the ends. This PCR product was then cloned
using standard restriction enzyme cloning into CP225, a cassette vector generated by Ravi et al.
(2010) [21]. This vector is based on pCAMBIA1300 and carries the endogenous A. thaliana
CENH3 promoter region i.e. 1489 bp upstream of the ATG, followed by a small linker region
containing SalI and XbaI sites and finally the CENH3 transcriptional terminator i.e. 585 bp
downstream of the STOP codon.

All other constructs were cloned into a new Gateway-compatible cassette vector SM2 that
was derived from the above CP225. To construct this vector, we used three-fragment multi-site
gateway technology (Life technologies, cat# 12537–023) that allows simultaneous assembly of
three DNA fragments in a defined order into a destination vector. The first and third fragments
are the endogenous A. thaliana CENH3 promoter and terminator respectively, while the sec-
ond fragment can be any CENH3 variant being tested. We PCR amplified the promoter and
terminator sequences from CP225 flanked by the appropriate attB sites and recombined them
via the BP reaction into pDONR 221 P1-P4 and pDONR 221 P3-P2 respectively, generating
the following entry clones: pENTR L1-promoter-L4 and pENTR L3-terminator-L2. Next, we
integrated these two along with pENTR R4-pLac-Spec-R3, the control entry clone for the sec-
ond fragment, into the destination vector through a single LR reaction. The destination vector
was a generous gift from the Pikaard Lab and was a modified pEARLEYGATE302 binary vec-
tor that has an additional ampicillin resistance gene for bacterial selection. We then did a re-
verse BP reaction with this intermediate expression plasmid and pDONR 221 P4r-P3r to
replace the placeholder in the second fragment with the Gateway negative selection cassette
[CmR-ccdB] generating the final cassette vector, SM2 = CENH3 promoter-attL4-CmR-ccdB-
attL3-terminator in pEARLEYGATE302.

The B. rapa CENH3 genomic sequence was PCR amplified from the GFP-tagged B. rapa
CENH3 plasmid generated in Ravi et al (2010) [21]. A chimeric transgene combining the A.
thalianaN-terminal tail domain with L. oleraceumHFD was constructed by overlapping PCR.
The N-terminal domain included genomic sequence coding for CENH3 starting from the “ATG”
up to but not including the “PGTVAL”motif and the HFD extended from the “PGTVAL”motif
to the STOP codon. The reciprocal construct with L. oleraceumN-terminal tail domain and A.
thalianaHFDwas similarly constructed. Transgenic variants outside the Brassicaceae were gen-
erated using CENH3 cDNA. Z.mays CENH3 was PCR amplified from plasmid generated in
Ravi et al (2010) [21]. CENH3 cDNA from V. viniferawas synthesized by GenScript USA Inc.
Piscataway, NJ based on the Genbank sequence, 225454488.
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DNA extraction and genotyping
Genomic DNA preparation and PCR genotyping were performed using standard methods.
cenh3–1 was genotyped with dCAPS primers. To genotype the cenh3–1mutation in lines with
the construct A. thaliana N-terminal tail domain fused to L. oleraceumHFD, we first per-
formed a PCR reaction with one primer outside the CENH3 promoter genomic DNA fragment
present in the transgene. This PCR product was then used as the template in the dCAPS geno-
typing reaction. For each construct transgene-specific PCR primers were designed and used to
confirm the genotype of each transgenic line. Primer sequences are available on request.

Vegetative growth and fertility assays
Representative images of rosettes were taken 25 to 30 days after germination. The percentage
of normal seeds was determined by visual inspection using a dissecting microscope. On aver-
age, seeds from five individual siliques were pooled and counted for one individual from each
T1 family identified as CENH3 transgene +/+ cenh3 -/-. Alexander staining of anthers was
done according to published protocols [46].

Meiotic chromosome spreads
DAPI stained male meiotic chromosome spreads were prepared as described in Ross et al. [47],
and imaged using an Olympus BX61 epifluorescence microscope and Digital Scientific Smart-
Capture 3 software

Characterization of haploids and aneuploids
Flow cytometric determination of genome content was performed on floral buds using pub-
lished protocols [48]. 0.1g leaf tissue from aneuploid plants were collected and purified using
DNA Phytopure Kit (GE). Genomic DNA libraries were prepared using the standard NEB
Next DNA Library Prep with NEXTFlex-96 Adapters from BIOO Scientific, pooled and se-
quenced on Illumina HiSeq 2000 for 50bp single reads. The resulting reads were mapped to
TAIR10 using BWA followed by chromosome dosage analysis using the protocol described in
Henry et al (2010) [23]. All the individuals that were sequenced and analyzed are identified
with a unique FRAG identifier and are described in S2 Table.

Phylogenetic analysis
Reference IDs for all sequences used in this study are available in S1 Table. Multiple alignments
of protein sequences encoding the histone fold domain of CENH3s was generated using
MUSCLE and refined manually [49]. Evolutionary analyses were conducted in MEGA6 [50].
Phylogenetic history was inferred using the Maximum Likelihood method. The analysis in-
volved 71 protein sequences. All positions containing gaps and missing data were eliminated.
There were a total of 85 positions in the final dataset.

Motif identification
MEME [51] with default parameters was used to identify statistically significant blocks of se-
quence homology in N-terminal tails extracted from 67 plant CENH3 sequences available
from public databases.
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Supporting Information
S1 Fig. (A) Meiotic prophase I in L. oleraceum CENH3 complemented lines.Meiotic pro-
phase I is divided into 5 cytologically distinct sub-stages. Chromosomes are associated with a
proteinaceous axis during leptotene. Axes of homologous chromosomes juxtapose together dur-
ing zygotene, as a protein structure called the synaptonemal complex polymerizes between them.
Synapsis is complete at pachytene, where homologues are fully paired. Homologues begin to
separate during diplotene, but remain associated by chiasmata, marking the points of genetic
crossover generated by homologous recombination. Chromosomes are condensed further at
diakinesis, where chiasmata are more readily visible. In LoCENH3 (-/-), prophase I is cytological-
ly indistinguishable from wild type, indicating that the complementation does not affect meiotic
recombination. Scale bar = 10μm. (B) Chromosome fragmentation was observed in a single
anaphase II pollen mother cell. Chromosome fragments are indicated by arrows. Scale bar = 10μm
(PDF)

S2 Fig. Confirmation of haploid genome content in phenotypic haploids. (A) Representa-
tive haploid plant. Note absence of silique elongation and trichomeless leaves associated with
recessive gl1–1 glabrous mutation. (B) Comparison of nuclear DNA content of flower buds
from 4 wild-type diploids and 11 phenotypic haploids as determined by flow cytometry.
(TIF)

S3 Fig. Absence of phenotypic abnormalities in selfed populations of CENH3 comple-
mented lines. Selfed progeny of CENH3 complemented lines are phenotypically similar to WT
Col-0 plants, in contrast to the selfed triploid population that exhibits phenotypic diversity due
to expected aneuploidy. LoCENH3 is L. oleraceum CENH3 and BrCENH3 is B. rapa CENH3.
The genotype of the endogenous CENH3 locus is indicated in parentheses.
(TIF)

S4 Fig. Dosage plots and SNP analysis using whole genome sequencing of diploids and
aneuploids from L. oleraceum CENH3 genome elimination crosses. (A) Dosage plots with
100kb bins across all five chromosomes. (B) Percent Col-0 SNPs across a 1Mb region across all
five chromosomes.
(TIF)

S5 Fig. Dosage plots and SNP analysis using whole genome sequencing of diploids and an-
euploids from B. rapa CENH3 genome elimination crosses. (A) Dosage plots with 100kb
bins across all five chromosomes. (B) Percent Col-0 SNPs across a 1Mb region across all
five chromosomes.
(TIF)

S6 Fig. Phenotype of CENH3 complemented lines. (A) Shown here are plants of the same
age. (B) Confirmation of genotype by PCR. The genotype of the endogenous CENH3 locus is
indicated in parentheses. LoCENH3 is L. oleraceum CENH3, BrCENH3 is B. rapa CENH3,
VvCENH3 is V. vinifera CENH3 and ZmCENH3 is Z.mays CENH3. AtNTT-LoHFD is a chi-
meric CENH3 where the A. thaliana N-terminal tail is fused to the L. oleraceum HFD and
LoNTT-AtHFD is the reciprocal construct.
(TIF)

S7 Fig. Alignment of CENH3 Histone Fold Domain protein sequences. Positions identical
to A. thaliana are represented as (.) and positions different from A. thaliana are indicated by
the corresponding amino-acid substitution.
(TIFF)
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S1 Table. List of all gene sequences and their database IDs used in this study.
(DOCX)

S2 Table. Characteristics of all aneuploids analyzed by whole genome sequencing in this
study.
(XLS)

S3 Table. List of all sequences identified by MEME as motifs.
(XLSX)
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