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A B S T R A C T   

Background: Accumulating small unruptured intracranial aneurysms are detected due to the improved quality and higher frequency of cranial 
imaging, but treatment remains controversial. While surgery or endovascular treatment is effective for small aneurysms with a high risk of rupture, 
such interventions are unnecessary for aneurysms with a low risk of rupture. Consequently, it is imperative to accurately identify small aneurysms 
with a low risk of rupture. The purpose of this study was to develop a clinically practical model to predict small aneurysm ruptures based on a 
radiomics signature and clinical risk factors. 
Methods: A total of 293 patients having an aneurysm with a diameter of less than 5 mm, including 199 patients (67.9 %) with a ruptured aneurysm 
and 94 patients (32.1 %) without a ruptured aneurysm, were included in this study. Digital subtraction angiography or surgical treatment was 
required in all cases. Data on the clinical risk factors and the features on computed tomography angiography images associated with the aneurysm 
rupture status were collected simultaneously. We developed a clinical–radiomics model to predict aneurysm rupture status using multivariate lo-
gistic regression analysis. The combined clinical–radiomics model was constructed by nomogram analysis. The diagnostic performance, clinical 
utility, and model calibration were evaluated by operating characteristic curve analysis, decision curve analysis, and calibration analysis. 
Results: A combined clinical–radiomics model (Area Under Curve [AUC], 0.85; 95 % confidence interval [CI], 0.757–0.947) showed effective 
performance in the operating characteristic curve analysis. In the validation cohort, the performance of the combined model was better than that of 
the radiomics model (AUC, 0.75; 95 % CI, 0.645–0.865; Delong’s test p-value = 0.01) and the clinical model (AUC, 0.74; 95 % CI, 0.625–0.851; 
Delong’s test p-value <0.01) alone. The results of the decision curve, nomogram, and calibration analyses demonstrated the clinical utility and good 
fitness of the combined model. 
Conclusion: Our study demonstrated the effectiveness of a clinical–radiomics model for predicting rupture status in small aneurysms.   

1. Introduction 

Intracranial aneurysm refers to the localized and pathological dilation of intracranial artery walls, leading to a risk of rupture. 
Aneurysm rupture is the main cause of spontaneous subarachnoid hemorrhage [1]. Aneurysmal subarachnoid hemorrhage is a ce-
rebrovascular disease that seriously endangers human health due to its large number, wide range, and poor prognosis. The overall 
incidence of intracranial aneurysms in adults worldwide is 3.2 % [2]. Nearly 50 % of the detected intracranial aneurysms are less than 
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5 mm in diameter [3]. Some studies identified aneurysm size as the most critical factor to predict aneurysm stability [4], with a low 
probability of enlargement for small aneurysms [5,6]. Greving et al. [7] also showed that the risk of rupture was much lower than the 
risk of surgical complications for many small intracranial aneurysms. However, Lai et al. [8] showed that 64 % of ruptured aneurysms 
were small aneurysms. Meanwhile, another study also showed that ruptured small intracranial aneurysms was a common cause of 
aneurysmal subarachnoid hemorrhage, who should be actively managed [9]. However, the treatment of patients with unruptured 
small aneurysms (diameter <5 mm) has been controversial, and there are no unified standard recommendations. Therefore, predicting 
the risk of small aneurysm rupture is crucial for determining patient prognosis and designing personalized treatment strategies. 

Researchers recommend the use of various rupture risk factors (such as clinical and epidemiological factors) [7,10–13]for con-
structing scoring systems. To date, PHASES(based on population, hypertension, age, size of aneurysm, earlier subarachnoid hemor-
rhage, and site) is the scoring system most commonly applied in the clinic. However, the research methods and data sources used for 
designing PHASES have limited its wider application [12]. Morphology has also been identified as a biomarker of aneurysm status in 
previous studies. However, these morphological parameters were only measured in a two-dimensional projection and measurement 
variability may be introduced by different readers, raters, and projections, which may undermine the comparability of results [14–16]. 
Small aneurysms, in particular, must be specifically modeled due to their unique histological features. Therefore, new methods are 
needed to model the rupture risk of small aneurysms to facilitate clinical decision-making. 

Radiomics can be used to extract a large number of quantitative features from medical images to construct a prediction model for 
disease through high-throughput analysis and feature selection [17]. Previous studies have confirmed that the radiomics features 
extracted from the computed tomography angiography (CTA) images of aneurysms can be used to evaluate their rupture risk [18]. 
Several studies have focused on establishing radiomics diagnostic models to predict intracranial aneurysm rupture [18–20]. However, 
few studies have attempted to predict the rupture risk of aneurysms with a diameter <5 mm. Therefore, we propose to use CTA 
radiomics data in conjunction with clinical factors to develop and validate a clinically practical nomogram to predict the rupture status 
of small intracranial aneurysms (<5 mm). 

2. Materials and methods 

2.1. Study population 

The inclusion criteria for this study were all patients who underwent CTA examination from January 2018 to March 2021. An-
eurysms were confirmed by Digital subtraction angiography (DSA) or surgery, and the time interval between CTA and DSA or surgery 
was not longer than one month (n = 632). The exclusion criteria were the following: (1) no aneurysms (n = 395); (2) patients with 
arteriovenous malformation (n = 20), Moyamoya disease (n = 43), or incomplete image/clinical aneurysms data (n = 24); (3) patients 

Fig. 1. Flowchart of patient inclusion and exclusion process.  
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with intracranial aneurysms ≥5 mm (n = 35); and (4) features unextractable (n = 6). Finally, a total of 293 aneurysms with diameter 
<5 mm were included. The aneurysm data were randomly divided into training cohorts (n = 206) and test cohorts (n = 88) in a ratio of 
7:3.This study was a retrospective study, which was approved by the Huangshi Central Hospital. The patient’s right to informed 
consent was waived. 

The flowchart in Fig. 1 illustrates the process of inclusion and exclusion of patients. The study workflow is shown in Fig. 2. 

2.2. Clinical and imaging data 

The clinical data was collected from the patients’ hospitalization history. Basic clinical information included gender and age. 
Medical history included smoking, drinking, hypertension, diabetes, heart disease, thyroid disease, stroke, cancer, aspirin use, uric 
acid abnormality, hyperlipidemia, family history. CTA imaging findings included the number, size, and location of intracranial an-
eurysms (including internal carotid artery, anterior cerebral artery, middle cerebral artery, posterior cerebral artery, anterior 
communicating artery, vertebral artery, basilar artery, and anterior choroidal artery) [7,10–13]. The patients were divided into the 
ruptured aneurysm group and the unruptured aneurysm group as follows: 1) When SAH patients had only one aneurysm found by CTA 
and it was consistent with the bleeding location, it was identified as a ruptured aneurysm; 2) When CTA found one aneurysm and it was 
inconsistent with the bleeding location, DSA was used for identifying the rupture state; 3) When CTA found two or more aneurysms, 
the ruptured state of the respective aneurysms was confirmed intraoperatively [21]. Among all the participants, 94 cases had no 
clinical symptoms. The aneurysms were found due to physical examination or other ruptured intracranial aneurysms, and were thus 
defined as unruptured aneurysms. 

2.3. Imaging techniques 

GE (Light Speed) 64-slice CT was used to collect raw imaging data. The patient was in the supine position. The scanning baseline 
was set to be parallel to the auditory canthal line and the scanning range was from the base of the skull to the top of the skull. The 
scanning parameters were the following: tube voltage, 120 kV; tube current, 350 mA; and pitch, 1; layer thickness, 0.625. The contrast 
agent was iodixanol containing 320 mg/ml iodine (US General Pharmaceutical Industry), which was injected with normal saline using 
an automatic double-barrel high-pressure syringe (MADRAD, US). The contrast agent injection dose (mL) was calculated as the body 
weight (kg) × 0.9 (ml/kg), and the injection flow rate was 4.5 ml/s. After the contrast agent was injected, 40 ml of normal saline was 
injected at a flow rate of 4.5 ml/s. 

2.4. Image segmentation, pre-processing, and feature extraction 

Two radiologists with 7 and 10 years of experience in the imaging diagnosis of the central nervous system independently used the 
blind method (without knowing the patient’s clinical information and aneurysm rupture status) to manually delineate the region of 
interest around the intracranial aneurysms in three directions with 3D slicer 4.10.1 (https://www.slicer.org/), using a window width 

Fig. 2. Study flowchart.  
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of 800 and a window level of 240. Then, the two radiologists visually compared the sketching results. If there were differences, the final 
sketching results of the region of interest were obtained after discussion. 

2.5. Feature extraction 

First, the CT images were resampled using a spline interpolation algorithm to ensure radiographic consistency between images 
acquired from different scanners. Second, we extracted radiomics features from the data with the PyRadiomics software (https:// 
pyradiomics.readthedocs.io/). For each patient, 1211 radiomics features were extracted from the CTA images. There were seven 
different radiomics features: shape features; first order features; gray level co-occurrence matrix (GLCM) features; gray level depen-
dence matrix (GLDM) features; gray level run length matrix (GLRLM) features; gray level size zone matrix (GLSZM) features; and 
neighborhood gray-tone difference matrix (NGTDM) features. The quantitative radiomics features were derived from three types of 
images: the original image, the Laplacian of Gaussian (LoG) image, and the wavelet image, which was obtained through eight de-
compositions after wavelet filtering. In three dimensions, applying a high- or low-pass filter yielded eight combinations. The LoG 
image was generated using a LoG filter along with a sequence of sigma values. During this study, the sigma values 2, 3, and 4 were used, 
respectively. 

2.6. Feature selection, and development and validation of radiomics signature 

The dimensionality of radiomics features was reduced in three steps. The first step involved selecting radiomics features with a 
variance greater than 1.0. Next, the analysis of variance (ANOVA) method was used to determine the statistical influence feature for 
rupture status in intracranial aneurysms. Last, radiomics features were retrieved from the training cohort by using the least absolute 
shrinkage and selection operation (LASSO) regression method, which was used to select features associated with the classification that 
had non-zero coefficients. In the LASSO regression, the radiomics score (rad score) was computed using an algorithm that combined 
the selected features and weighted them by their coefficients. The radiomics signature development and feature selection were both 
carried out in the training cohort. Accordingly, the performance of the obtained radiomics signature was evaluated using an inter- 
validation cohort, which was not used for the model development. 

2.7. Clinical and combined models 

We extracted the clinical features from the training cohort that were proven significant by chi-squared tests (categorical variables) 
or Student’s t-tests and Wilcoxon tests (continuous variables). Subsequent investigation was undertaken using backward stepwise 
multivariate logistic analysis to find a discriminative clinical feature and build a clinical and radiology (CR) model. 

2.8. Model construction, calibration, and validation 

Patients were randomly assigned to a training and validation cohorts in a ratio of 7:3. Within the training cohort, three models were 
established: (1) a radiomics model (based on rad-scores); (2) a clinical model (based on clinical factors); and (3) a hybrid model (based 
on clinical–radiomics scores). Analysis of discrimination ability, model calibration, and clinical utility all confirmed the models’ 
diagnostic performance and their fitness as diagnostic models. 

2.9. Discrimination ability 

We evaluated the discrimination ability of the rupture status models by using receiver operating curves (ROCs). The discrimination 
performance is presented via bar charts. Furthermore, the constructed models were evaluated for accuracy, precision, sensitivity, and 
specificity. 

2.10. Model calibration 

Both the training test and independent validation cohorts were calibrated to determine whether the observed outcome and the 
predicted probabilities agreed. A p-value greater than 0.05 was considered to indicate a well-calibrated model using the Hosmer- 
Lemeshow test. 

2.11. Clinical utility 

A decision curve analysis was used to evaluate the clinical utility of the built models at different threshold probabilities in the three 
cohorts. Multivariable logistic regression was used to formulate a nomogram based on radiomics and clinical factors. 

2.12. Statistical analysis 

R software (version 4.1.1) and Python 3.7 (version 3.7) were used to conduct all statistical analyses. The clinical factors were 
analyzed using the Chi-square test, independent-samples t-test, or Mann-Whitney U test according to the distribution of variables with 
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scipy (version 1.7.0). The Shapiro-Wilk test was used to test for normality. To compare the AUC values of the three models, we 
performed Delong’s non-parametric test. To assess the fitness of the three models, the Hosmer-Lemeshow test was used.Statistical 
significance was defined as p < 0.05 in all analyses. 

3. Results 

3.1. Patients and aneurysm characteristics 

A total of 248 patients (155 women [62.5 %] and 93 men [37.5 %]), and 293 intracranial aneurysms were included. Thirty-six 
patients (14.5 %) had multiple aneurysms. A total of 199 aneurysms (67.9 %) were ruptured aneurysms with subarachnoid hemor-
rhage, and 94 aneurysms (32.1 %) were unruptured aneurysms. The aneurysm data were randomly divided into training cohorts (n =
205) and test cohorts (n = 88) in a ratio of 7:3. The comparison results of the clinical data of patients in the ruptured and unruptured 
groups in the training and test cohorts are shown in Table 1. The training and test cohorts showed statistically significant differences in 
age and aneurysm location (P < 0.05). 

Univariate analysis of the ruptured versus the unruptured group found significant statistical differences in age, stroke, and 
abnormal uric acid levels (P < 0.05). Multivariate analysis showed that age, hypertension, stroke, abnormal uric acid, and aneurysm 
location (anterior cerebral artery [ACA], middle cerebral artery [MCA], anterior communicating artery [ACoA], basilar artery [BA], or 
internal carotid artery [ICA]) were independent clinical risk factors (P < 0.05). Univariate and multivariate analyses are presented in 
Table 2. 

3.2. Radiomics model construction 

A total of 1211 features were included in the intra-group correlation coefficient test. 420 features were excluded due to the 
intraclass correlation coefficient (ICC) < 0.8. Finally, ten radiomics features were selected after using a variance filter with a threshold 
of 1.0, ANOVA, and LASSO with 10-fold cross-validation algorithms. The overall consistency of the features among readers was good 
(average ICC = 0.86, range 0.80–0.92). Moreover, the ten selected features showed a significant difference between the ruptured and 
unruptured status of aneurysms (Fig. 3A–B). In LASSO, each case’s radiomics score was derived by weighting the ten radiomic features 
and their coefficients (Fig. 3C–D). 

Table 1 
Clinical risk factors for aneurysm rupture in the study population.  

Variable Training cohort (n = 205) P-value Testing cohort (n = 88) P-value 

rupture (n = 139) unrupture (n = 66) rupture (n = 60) unrupture (n = 28) 

Age, years (mean ± SD) 58.47 ± 10.26 62.21 ± 10.69 0.017 56.28 ± 11.58 61.61 ± 11.19 0.046 
Sex   0.495   0.949 

Male 50 (35.97 %) 27 (40.91 %)  24 (40.00 %) 11 (39.29 %)  
Female 89 (64.03 %) 39 (59.09 %)  36 (60.00 %) 17 (60.71 %)  

Smoking 26 (18.71 %) 10 (15.15 %) 0.532 9 (15.00 %) 6 (21.43 %) 0.658 
Drinking 24 (17.27 %) 8 (12.12 %) 0.343 4 (6.67 %) 6 (21.43 %) 0.095 
Hypertension 100 (71.94 %) 43 (65.15 %) 0.323 37 (61.67 %) 18 (64.29 %) 0.813 
Diabetes mellitus 73 (54.68 %) 30 (45.45 %) 0.217 37 (61.67 %) 6 (21.43 %) <0.001 
Heart disease 11 (7.91 %) 7 (10.61 %) 0.525 3 (5.00 %) 1 (3.57 %) 1.000 
Thyroid disease 8 (5.76 %) 4 (6.06 %) 1.000 6 (10.00 %) 1 (3.57 %) 0.538 
Stroke 2 (1.44 %) 8 (12.12 %) 0.003 2 (3.33 %) 3 (10.71 %) 0.369 
Tumor 3 (2.16 %) 1 (1.52 %) 1.000 0 (0.00 %) 0 (0.00 %) 1.000 
Aspirin use 2 (1.44 %) 3 (4.55 %) 0.388 1 (1.67 %) 2 (7.14 %) 0.237 
Uric acid abnormal 32 (23.02 %) 5 (7.58 %) 0.007 11 (18.33 %) 4 (14.29 %) 0.868 
Hyperlipidemia 15 (10.79 %) 9 (13.64 %) 0.554 5 (8.33 %) 4 (14.29 %) 0.631 
Family history of intracranial aneurysm 0 (0.00 %) 0 (0.00 %) 1.000 0 (0.00 %) 1 (3.57 %) 0.318 
Aneurysm location   0.007   <0.001 

ICA 60 (43.17 %) 38 (57.58 %)  18 (30.00 %) 22 (78.57 %)  
ACA 7 (5.04 %) 0 (0.00 %)  7 (11.67 %) 0 (0.00 %)  
MCA 27 (19.42 %) 8 (12.12 %)  6 (10.00 %) 2 (7.14 %)  
PCA 2 (1.44 %) 4 (6.06 %)  1 (1.67 %) 0 (0.00 %)  
ACoA 38 (27.34 %) 10 (15.15 %)  26 (43.33 %) 2 (7.14 %)  
AChA 2 (1.44 %) 4 (6.06 %)  1 (1.67 %) 1 (3.57 %)  
BA 3 (2.16 %) 2 (3.03 %)  1 (1.67 %) 0 (0.00 %)  
VA 0 (0.00 %) 0 (0.00 %)  0 (0.00 %) 1 (3.57 %)  

Abbreviations: ACA, Anterior cerebral artery; ACoA, Anterior communicating artery; AChA, anterior choroidal artery; BA, Basilar artery; ICA, Internal 
carotid artery; MCA, Middle cerebral artery; PCA, Posterior cerebral artery; VA, Vertebral artery. 
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3.3. Predictive performance of the clinical, rad-score, and combined models 

3.3.1. Discrimination ability 
The performance of the models is shown in Table 3 and Fig. 4 A-B. For the assessment of small intracranial aneurysm rupture, the 

combined clinical–radiomics model achieved a discrimination performance with a AUC of 0.87 (95 % CI, 0.8222–0.919) and 0.85 (95 
% CI, 0.757–0.947) in the training and the test cohort, respectively. This performance was better than that of the radiomics model with 
a AUC of 0.79 (95 % CI, 0.727–0.859, DeLong Test p-value <0.01) and 0.75 (95 % CI, 0.645–0.865, DeLong’s test p-value = 0.015) and 
that of the clinical factor model with a AUC of 0.75 (95 % CI, 0.683–0.818, DeLong’s test p-value <0.01) and 0.74 (95 % CI, 
0.625–0.851, DeLong’s test p-value <0.01) in the training and the test cohort, respectively. Furthermore, sensitivity, specificity, ac-
curacy, precision, and rad-score bar charts were used to assess and compare the discrimination ability in the training and test cohorts 
between the three models. 

3.3.2. Model calibration 
Calibration curves were presented in Fig. 4 C-D. In the training and validation cohorts, there were no significant differences (p >

0.05), indicating that the radiomics, clinical, and combined models were well-fit. 

3.3.3. Clinical utility 
The decision curve analysis and nomogram were constructed to determine clinical utility. The decision curve analysis curves are 

shown in Fig. 5 A-B, which indicated that a model combining the rad-score and clinical factors had a higher net benefit and little 
overlap within a range from 0.1 to 1.0. Finally, the constructed nomogram shows the multivariable logistic regression weights in Fig. 5 
C. 

4. Discussion 

In our study, we developed and validated a classification model based on radiomics and clinical features to discriminate between 
ruptured and unruptured intracranial small aneurysms. The proposed model enabled the prediction of intracranial small aneurysm 
rupture status with a AUC of 0.87 and 0.85 in the training and test cohorts, respectively. 

To determine the optimal signature for small ruptured aneurysms classification in the radiomics analysis, four first-orders, two 
shapes, three GLDMS, and one GLSZM features were screened out in our study, consistently with previous studies [21–23]. GLN 
features describe the uneven gray distribution in the aneurysm area. The difference in texture features in the CTA images is caused by 
the uneven distribution of the contrast medium in the aneurysm caused by local blood turbulence. Therefore, these texture features can 
indirectly reflect the local hemodynamic changes of the aneurysm, and the hemodynamic parameters play an important role in the 
formation, enlargement, rupture, and recurrence of intracranial aneurysms [22]. Moreover, shape features can reflect the diameter and 

Table 2 
Clinical risk factors for aneurysm rupture in the study population.  

Variable Ruptured (n = 199) Unruptured (n = 94) Univariate analysis (P-value) Multivariate analysis (P-value) 

Age, years 57.81 ± 10.70 62.03 ± 10.79 0.016 0.036 
Sex   0.497 NA 

Male 74 (37.2 %) 38 (40.4 %)   
Female 125 (62.8 %) 56 (59.6 %)   

Smoking 35 16 0.534 NA 
Drinking 28 14 0.344 NA 
Hypertension 137 61 0.324 0.022 
Diabetes mellitus 113 36 0.218 NA 
Heart disease 14 8 0.526 NA 
Thyroid disease 14 5 0.931 NA 
Stroke 4 11 0.001 0.004 
Tumor 3 1 0.757 NA 
Aspirin use 3 5 0.178 NA 
Uric acid abnormal 43 9 0.006 0.003 
Hyperlipidemia 20 13 0.555 NA 
Family history of intracranial aneurysm 0 1 NA NA 
Aneurysm location 

ICA 78 (39.2 %) 60 (63.8 %) 0.053 0.009 
ACA 14 (7.0 %) 0 (0.0 %) 0.063 <0.001 
MCA 33 (16.6 %) 10 (10.6 %) 0.194 0.002 
PCA 3 (1.5 %) 4 (4.3 %) 0.066 NA 
ACoA 64 (32.2 %) 12 (12.8 %) 0.053 <0.001 
AChA 3 (1.5 %) 5 (5.3 %) 0.066 NA 
BA 4 (2.0 %) 2 (2.1 %) 0.707 0.034 
VA 0 (0.0 %) 1 (1.1 %) NA NA 

Abbreviations: ACA, Anterior cerebral artery; ACoA, Anterior communicating artery; AChA, anterior choroidal artery; BA, Basilar artery; ICA, Internal 
carotid artery; MCA, Middle cerebral artery; NA, not available; PCA, Posterior cerebral artery; VA, Vertebral artery. 
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aspect ratio in aneurysm morphology [23]. Although aneurysm morphological parameters are widely used to predict the risk of 
rupture, there are some deficiencies in their acquisition as the morphological parameters of aneurysms will change with the different 
projection positions selected by the measurer. However, the computer automatically extracts the radiomics parameters, which 
significantly reduces human error. Thus, the radiomics features in the aneurysm region based on CTA images can truly and objectively 
reflect the morphological features of the aneurysm and changes in the hemodynamics within the aneurysm. 

We further investigated the predictive model with the clinical factors while adding the clinical factors to the radiomics model for 
the multivariate logistic analysis. By comparing the C-model, R-model, and CR-model, we found that the CR-model significantly 

Fig. 3. Radiomics signature score (rad-score) calculation. Top ten features and feature coefficients (feature importance) between the ruptured status 
of aneurysms (A–B). The radiomics scores (rad-scores) of each patient in the training (C) and test cohorts (D) showed the association of a high rad- 
score with the risk of aneurysm rupture. 
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Table 3 
Performance of the clinical, radiomics, and clinical-radiomics models.  

Datasets Models AUC (95 % CI) ACC Precision SEN SPE 

Training cohorts C-model 0.75 (0.683–0.818) 0.649 0.807 0.633 0.751 
R-model 0.79 (0.727–0.859) 0.732 0.850 0.734 0.727 
CR-model 0.87 (0.822–0.919) 0.761 0.875 0.755 0.773 

Test cohorts C-model 0.74 (0.625–0.851) 0.705 0.870 0.667 0.786 
R-model 0.75 (0.645–0.865) 0.614 0.825 0.550 0.750 
CR-model 0.85 (0.757–0.947) 0.773 0.917 0.733 0.857 

Abbreviations: R-model, radiomics model; C-model, clinical model; CR-model, clinical radiomics model. 
ACC, accuracy; SEN, sensitivity; SPE, specificity. 

Fig. 4. Receiver operating characteristic (ROC) curves and calibration curve of the radiomics model (R model), clinical model (C model), and 
clinical radiomics model (CR model). The operating characteristic curves of the three models in the training (A) and test cohorts (B). Calibration 
curve of the three models in the training (C) and test cohorts (D). 
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improved predictive performance. The CR-model had a AUC of 0.87 and 0.85 in the training and the test cohort, respectively, 
compared to the R-model with a AUC of 0.79 (p < 0.01) and 0.75 (p = 0.015) and the C-model with a AUC of 0.75 (p < 0.01) and 0.74 
(p < 0.01) in the training and the test cohort, respectively. Various clinical factors and aneurysm morphological parameters have been 
suggested to be related to rupture, including age, diabetes history, stroke, abnormal uric acid, and location of aneurysms (ACA, ACoA, 
PCA) in our study, consistently with previous studies [5,12,13,24] While aneurysm rupture risk has been controversially linked to age, 
age plays an important role in the treatment decision-making [10]. Previous studies have suggested that the blood vessel walls become 
more fragile and more prone to cause aneurysm rupture with age [7]. But the univariate and multivariate logistic analyses in our study 
showed that younger patients had a greater risk of aneurysm rupture than older patients, which was consistent with findings from 
Erdem et al. [25].This is probably due to the fact that middle-aged patients have a low awareness of or pay little attention to their 

Fig. 5. Decision curve analysis and comprehensive nomogram for small aneurysms in all patients. (A) Training and test cohorts (B) decision curve 
analysis of the clinical model, radiomics model, and clinical–radiomics model with the threshold probability on the x-axis and the net benefit on the 
y-axis. Nomogram for the prediction of small aneurysm ruptures (C). 
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cerebrovascular diseases and do not adequately engage in secondary prevention of acute stroke. It is widely accepted that the location 
of aneurysms affects aneurysm rupture [5].The origin of the posterior communicating artery, including ACA, MCA, and PCA confer a 
higher risk of rupture, because the aneurysm near the circle of Willis or the bifurcation of vessels may be related to weak tissue support 
and local imbalance of blood flow [12].In our nomogram analysis, aneurysms located in the ACA, ACoA, and PCA were risk factors for 
intracranial aneurysm rupture, which was consistent with findings from Thompson et al. [10]. However, the location of aneurysms in 
the MCA was not a risk factor. MCA aneurysms are generally larger in diameter, and only small aneurysms were included in our study. 

Zhu et al. [26]conducted a stability study based on clinical and imaging data of intracranial aneurysms and showed that a machine 
learning model had significant advantages in the stability analysis of intracranial unruptured aneurysms. Thus, they found a AUC of 
0.867, specificity of 92.9 %, and an accuracy of 82.4 %. Our work differs from previous studies in two main ways. First, patients with 
aneurysms (diameter <5 mm) were enrolled to construct the nomogram in our study, which differed from previous studies. Due to the 
limited ability of CTA to detect small aneurysms, there are relatively few studies on small aneurysms. Second, the CR model established 
by adding radiomics features to the traditional clinical model can better predict and classify the risk of rupture of intracranial small 
aneurysms. 

There are, however, some limitations to our study. First, the study was a single-center study with a relatively small population, and 
it was not validated in the external validation cohort. Our next study will involve several centers and a larger number of patients in 
order to validate our model. Second, this study involved post-aneurysm rupture imaging, which may have been amplified by the 
accuracy of the radiomics shape features and first-order features extraction. Third, to extract radiomics features from CTA images, 
manual segmentation was used. The agreement on manual segmentation was validated, but it was a time-consuming process likely to 
cause small inconsistencies between radiologists. Meanwhile, manual segmentation based on small aneurysms <5 mm may lead to 
local data bias. To solve the repeatability, reliability, and accuracy problems, an automatic aneurysm segmentation system could be 
designed. Furthermore, deep learning algorithms [27,28] can further improve the performance of the diagnostic model. Last, the 
model did not include all aneurysm morphological and hemodynamics parameters [29]. Should these parameters be added to the 
model, they may improve the accuracy of the model evaluation, but also increase the complexity of the model and limit its application 
in clinical practice [30]. 

In conclusion, we evaluated and analyzed the rupture status classification of small intracranial aneurysms through clinical, 
radiomics, and combined clinical–radiomics models. Combining radiomics models with clinical models can provide additional net 
benefits for the rupture classification of small intracranial aneurysms and generate a simple and visual rupture risk score nomogram for 
small aneurysms. These new developments could be helpful in guiding clinical rational intervention in small aneurysms (<5 mm). 
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