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Arsenic trioxide sensitivity is associated with low level
of glutathione in cancer cells

C-H Yang1,2, M-L Kuo 3, J-C Chen 1 and Y-C Chen 4

1Department of Oncology, 2Graduate Institute of Medicine, 3Institute of Toxicology and 4Department of Laboratory Medicine, National Taiwan University Hospital
and Medical College, National Taiwan University, Taipei, Taiwan

Summary Arsenic trioxide (As2O3) is a novel anticancer agent, which has been found to induce remission in acute promyelocytic leukaemic
patients following daily intravenous administration. The therapeutic value of As2O3 in other cancers is still largely unknown. Cytotoxic tests in
a panel of cancer cell lines showed that bladder cancer, acute promyelocytic leukaemic and gastrointestinal cancer cells were the most
sensitive to As2O3 among 17 cell lines tested. Cellular glutathione (GSH) system plays an important role in arsenic detoxification in
mammalian cells. Cancer cells that were intrinsically sensitive to As2O3 contained lower levels of GSH, whereas resistant cancer cells
contained higher levels of GSH. On the other hand, there was no association of glutathione-S-transferase-π or multidrug resistance-
associated protein 1 levels with arsenic sensitivity in these cancer cells. Multidrug-resistant cancer cells that were cross-resistant to arsenic
contained higher levels of GSH or multidrug-resistance-associated protein 1 than their drug-sensitive parental cells. Cancer cells become
more sensitive to arsenic after depletion of cellular GSH with L-buthionine sulphoximine. We concluded that cellular GSH level is the most
important determinant of arsenic sensitivity in cancer cells. Cellular GSH level and its modulation by buthionine sulphoximine should be
considered in designing clinical trials using arsenic in solid tumours.
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Arsenic trioxide (As2O3) is a novel anticancer agent. Daily intr
venous infusion of 10 mg As2O3 induced complete remission i
acute promyelocytic leukaemia patients who were refractor
conventional chemotherapy and/or all-trans retinoic acid (She
al, 1997; Soignet et al, 1998). The role of arsenic in the treatm
of this unique form of leukaemia is still under investigatio
Arsenic compounds have been tested in other haematolo
malignancies in vitro (Konig et al, 1997). It is not known at pres
whether these compounds will prove useful in the treatmen
solid tumours. In order to investigate whether arsenic is as c
toxic in acute promyelocytic leukaemia cells as in other s
tumour cells, we screened a panel of cancer cell lines with As2O3.

Multiple mechanisms of arsenic resistance in either bacter
mammalian cells have been described in the literature. On
the most important arsenic detoxification mechanisms is 
glutathione (GSH) system. Trivalent arsenic was shown to bin
GSH in a cell free system (Scott et al, 1993). Overexpressio
glutathione-S-transferase-π(GST-π) (Lo et al, 1992), GSH (Huang
et al, 1993) or multidrug resistance-associated protein (MR
(Cole et al, 1994) has been shown to confer arsenic resistanc
investigate the correlation of the GSH detoxification system w
arsenic resistance, we examined GSH content, MRP1 and Gπ
expression in a panel of cancer cells and in multidrug-resis
cancer cells that were cross-resistant to arsenic. L-buthionine
sulphoximine (BSO) was used to modulate cellular GSH con
and to enhance arsenic sensitivity of cancer cells.
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MATERIALS AND METHODS

Cell lines

Seventeen cell lines were examined. Three cell lines were de
oped from patients living in an arsenic-polluted area (blackf
disease area). NTU-B1 was developed from a transitional bla
carcinoma patient (Yu et al, 1992). BFTC-905 was derived fro
bladder papillary transitional cell carcinoma and BFTC-909 fr
a renal pelvis transitional cell carcinoma patient (Tzeng et
1996). BFTC-905 and BFTC-909 were obtained from the Cult
Collection Research Center, Food Industry Research 
Development Institute, Taiwan. NB4 cells were kindly provid
by Dr H-C Hsu (Veterans General Hospital, Taipei, Taiwa
A2780, SW620, MCF7, A172, HepG2 were kindly provided 
Dr KH Cowan (National Cancer Institute, Bethesda, MD, USA
TSGH8302 was kindly provided by Dr Y-S Chen (Institute 
Biomedical Science, Academia Sinica, Taiwan). CL-1 cells w
provided by Dr P-C Yang (National Taiwan University Hospit
Taiwan). NTU-B1/P14 is a cisplatin-resistant variant of NTU-B
cells and was a gift from Dr Y-S Pu, MCF7/VP is a VP-16-res
tant MCF7 cells (Schneider et al, 1994) and was a gift from D
Schneider (Wadworth, NY, USA). All other cell lines we
purchased from American Tissue Culture Collection (Rockvi
MD, USA).

Cytotoxicity assay

Cells were distributed in 96-well culture plates. Various concen
tions of As2O3 (Sigma, St Louis, MO, USA) were added to th
cells growing at 37°C in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal calf serum in triplicate. After 96
the survival fraction was measured by the sulphorhodamin
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Figure 1 Western blot of MRP (upper lane) and GST-π (lower lane) in cancer cells. MRP (190 kDa) was expressed in measurable amount only in MCF7/VP,
BFTC909 and H460 cells. GST-π (26 kDa) was expressed in almost all cancer cells except for Hep3B cells
method as described previously (Skehan et al, 1990).

Cellular GSH content

Cellular GSH content was determined by Bioxytech GSH-
colourimetric assay kit (Oxis International, Portland, OR, US
Cells (106–107) were trypsinized, centrifuged and washed w
phosphate-buffered solution. Cells were then re-suspended
500 µl of ice-cold metaphosphoric acid. After homogenization, 
solution was centrifuged at 3000 g, 4°C for 10 min. The clear
supernatant was collected at 4°C for further assay. Reagent R1 and
sodium hydroxide were added to the solution. After incubatio
25°C for 10 min in the dark, the absorbance of the solution w
measured at 400 nm. GSH concentrations in the solution we
calculated from the absorbance. Cellular GSH content is expre
as µg of GSH mg–1 of protein.

Western blot of GS T-πand MRP1

Total protein of the cells was separated by sodium dod
sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to polyvinylidine difluoride (PVDF) membrane. T
membrane was blocked in 5% skim milk in Tris-buffered saline,
containing 0.15% Tween for 1 h before washing three times in th
same solution containing 0.01% Tween. The membrane was the
incubated with a 1:1000 dilution of polyclonal antibody agai
human GST-π (Medical and Biological Laboratory, Nagoya,
Japan) for 1 h. Membrane was washed and incubated with HR
conjugated secondary antibody. The immunolabelled protein wa
detected using a chemiluminescence kit (NEN Life Scien
Boston, MA, USA).

Membrane protein was isolated from cancer cells. MRP1 le
were measured by Western blot using 1:200 dilution of mono
clonal antibody MRPm6 (Sanbio, Uden, The Netherlands)
described previously (Flens et al, 1994). The immunolabe
protein was visualized with a chemiluminescence kit (NEN L
Science, Boston, MA, USA).

RESULTS

Cytotoxicity of As 2O3 in cancer cells

Concentrations of As2O3 that inhibit 50% of cell growth (IC50s) are
listed in Table 1. Several bladder cancer (NTUB1, BFTC905, T
and HTB-9) and gastrointestinal cancer cell lines (SW620 
© 1999 Cancer Research Campaign
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AGS) were relatively sensitive to As2O3 in addition to acute
promyelocytic leukaemic cells (NB4).

GSH content in cancer cells

GSH contents in cancer cells are shown in Table 1. To correlate
GSH contents to IC50s of nine tested cell lines, Spearman’s rho
correlative coefficient was 0.661 (P = 0.026, one-tail). Five cell
lines that were intrinsically sensitive to arsenic (IC50s < 1.5 µM)
all contained a low level of GSH (GSH < 10 µg mg–1 protein),
whereas four cell lines that were intrinsically resistant 
arsenic (IC50s > 1.5 µM) all contained a high level of GSH (GSH
> 10 µg mg–1 protein).

GST-πprotein expression in cancer cells

Overexpression of GST-π may facilitate conjugation of trivalen
arsenic to GSH. GST-π protein expression in the cancer cells w
measured by Western blot as shown in Figure 1. Arsenic-sensit
NB4 cells contained very low levels of GST-π protein. However,
several arsenic-sensitive cells, such as BFTC905 and SW620 
expressed high levels of GST-π protein, whereas arsenic-resista
H460, Hep3B and BFTC909 cells expressed low levels of GST-π
protein. There was no correlation of GST-π levels to As2O3 IC50s in
cancer cells. Multidrug-resistant NTU-B1/P14 cells overexpres
GST-πcompared to their drug-sensitive parental NTU-B1 cells

MRP1 expression in cancer cells

MRP1 may facilitate export of conjugated GSH out of the ce
(Rappa et al, 1997) and thus, may affect arsenic resistance in
cancer cells. MRP1 expression in the membrane protein of ca
cells was measured by Western blot as shown in Figure 1. H46
BFTC909 and one multidrug-resistant MCF7/VP cell contain
measurable levels of MRP1, whereas MRP1 expression was 
low in other cancer cells. MRP1 seemed to confer resistanc
arsenic; however, not all arsenic-resistant cancer cells expres
high levels of MRP1.

Cross-resistance of arsenic in multidrug-resistant
cancer cells

IC50s of two multidrug-resistant cancer cells are listed in Table 1.
Cisplatin-resistant NTU-B1/P14 was 5.5-fold resistant to arse
Etoposide-resistant MCF7/VP cells were 4.8-fold resistant
British Journal of Cancer (1999) 81(5), 796–799
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Table 1 Fifty per cent growth inhibitory concentrations (IC50s) of arsenic
trioxide on human cancer cells after 96 h of treatment

Cell lines Organ origin As 2O3IC50s
a GSH content b

BFTC-905 Bladder 0.34 ± 0.03 6.03 ± 1.35
NTU-B1 Bladder 0.47 ± 0.08 7.59 ± 1.16
NTU-B1/P14 Bladder 2.59 ± 0.41 50.9 ± 10.9
NB4 Leukaemia 0.64 ± 0.11 6.12 ± 0.96
T24 Bladder 0.93 ± 0.20 ND
A2780 Ovary 1.12 ± 0.33 ND
SW620 Colon 1.16 ± 0.15 4.91 ± 0.17
AGS Stomach 1.16 ± 0.20 7.30 ± 0.84
HTB-9 Bladder 1.38 ± 0.04 ND
MCF-7 Breast 2.08 ± 0.40 28.6 ± 2.3
MCF7/VP Breast 9.89 ± 1.74 20.1 ± 0.8
TSGH8302 Cervix 2.50 ± 0.69 ND
BFTC-909 Kidney 2.84 ± 0.79 17.03 ± 2.88
H460 Lung 3.27 ± 0.49 21.84 ± 2.89
ES-2 Ovary 3.30 ± 1.36 ND
A172 Glioblastoma 3.40 ± 0.40 ND
CL-1 Lung 4.17 ± 0.50 ND
Hep3B Liver 5.17 ± 1.02 17.02 ± 1.37
HepG2 Liver 7.17 ± 1.20 ND
Co-incubation with

10 µM BSO
NTU-B1 Bladder 0.19 ± 0.04 2.28 ± 0.64
NTU-B1/P14 Bladder 0.14 ± 0.01 14.20 ± 1.59
MCF-7 Breast 0.40 ± 0.12 3.65 ± 0.23
MCF7/VP Breast 0.20 ± 0.02 2.10 ± 0.12

Shown in the Table are the means and standard errors of at least three
independent experiments. aµM, bµg GSH mg–1 protein, ND: not done.
arsenic. Glutathione content of NTU-B1/P14 was 6.7-fold hig
than that of NTU-B1 cells. On the other hand, there was no dif
ence of GSH content between MCF7/WT and MCF7/VP ce
MCF7/VP expressed high levels of MRP1, which may account
its arsenic resistance, whereas NTU-B1/P14 expressed no me
able level of MRP1 (Figure 1).

Modulation of GSH content in cancer cells by BSO

BSO is known to deplete cellular GSH via inhibition of γ-glutamyl-
cysteine synthetase, which is required for GSH biosynthe
British Journal of Cancer (1999) 81(5), 796–799
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Figure 2 Representative cytotoxicity curves of As2O3 in NTU-B1 cells (A) and N
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NTU-B1, NTU-B1/P14, MCF7/WT and MCF7/VP cells wer
incubated with various concentrations of As2O3 and 10µM of BSO
for 4 days. Ten micromolars of BSO were not toxic to these ca
cells (IC10s of BSO in NTU-B1, NTU-B1/P14, MCF7/WT and
MCF7/VP cells were 37µM, > 50µM, 27µM and 24µM respec-
tively). The representative cytotoxicity curves of NTU-B1 a
NTU-B1/P14 cells in As2O3 with or without co-incubation with
10µM of BSO are shown in Figure 2. IC50s of As2O3 and GSH
contents in BSO-treated treated GSH-depleted cells (drug-sens
and -resistant NTU-B1 and MCF7/WT cells) are shown in Table
All four cancer cells became very sensitive to arsenic (IC50s 0.1µM

to 0.4µM) when GSH was depleted by BSO.

DISCUSSION

Arsenic has been used widely for a long time in both Western
Chinese medicine. The definitive role of arsenic as an antica
agent was not clear until a recent report for treatment of a
promyelocytic leukaemia (Shen et al, 1997). As2O3, given as a
daily 10 mg intravenous infusion seemed to be an effective 
tolerable regimen for refractory acute promyelocytic leukaem
patients.

Induction of partial differentiation or induction of apoptos
have been proposed as the primary mechanism of cytotoxicit
arsenic to acute promyelocytic leukaemic cells (Chen et al, 19
Due to the unique mechanism of action of arsenic to cancer c
the attempt to use arsenic in malignancies other than a
promyelocytic leukaemic patients is clearly warranted (Gallag
1998).

In this study, bladder cancer cells NTU-B1 and BFTC905 w
most susceptible to As2O3. Apoptosis can be induced in NTU-B
cells at 1µM As2O3 (data not shown). IC50s of the bladder cance
cell lines was substantially lower than reported in As2O3 peak
plasma levels (4–6µM) in patients (Shen et al, 1997). Thus, it 
conceivable that As2O3 may be effective in the treatment o
bladder cancer and other solid tumours that show similar se
tivity to arsenic.

Multiple mechanisms account for arsenic resistance in bac
and mammalian cells. Trivalent arsenic was shown to dire
react to reduced GSH in solution (Scott et al, 1993). The cell
© 1999 Cancer Research Campaign

1

0.1

0.01
0.1 1 10 100

F
ra

ct
io

n 
of

 s
ur

vi
va

l

B

As2O3 (µM)

TU-B1/P14 cells (B). Cells were incubated in the presence (–■–) or absence
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arsenic content was reduced by GSH pretreatment and increa
BSO-treated Chinese hamster ovary cells (Huang et al, 1993)
conceivable that cellular GSH content affects sensitivity of can
cells to As2O3. In this study, we have shown clearly that can
cells that contained low levels of GSH were all sensitive to ars
exposure, whereas resistant cancer cells such as lung and
cancer cells contained the highest amounts of GSH. Furtherm
sensitivity of NTU-B1 and MCF7 cells to arsenic can be increa
when GSH was depleted by pretreatment with 10µM BSO.
Cisplatin-resistant NTU-B1/P14 cells were cross-resistant
arsenic, the GSH content of these cells was higher than in ste
state parental cells. When GSH was depleted by BSO, res
cells became sensitive to arsenic treatment. BSO may also en
arsenic toxicity in wild-type MCF7 cells and multidrug-resista
and MCF7/VP cells. When cellular GSH was depleted, all dr
sensitive and multidrug-resistant cancer cells became very s
tive to arsenic.

GST-π overexpression was noted in a Chinese hamster o
cells resistant to As2O3 (CHO/SA7) (Lo et al, 1992). It is conceiv
able that GST-πprotein levels may also affect intrinsic sensitivity 
arsenic. The GST-π level seems to play very little role, however, 
the determination of arsenic sensitivity of cancer cells in this stu

MRP1-transfected HeLa cells were resistant to several h
metal anions, including trivalent arsenic (Cole et al, 1994). In 
study, multidrug-resistant cancer cells such as MCF7/VP 
NTU-B1/P14 cells were cross-resistant to As2O3. MRP1 was over-
expressed in several arsenic-resistant cancer cells suc
BFTC909, H460 and MCF7/VP cells. However, MRP1 was 
expressed in meaningful amounts in intrinsically resistant MC
HepB3 cells or acquired resistant NTU-B1/P14 cells. We dem
strated complete reversal of arsenic resistance in MRP1-o
expressing MCF7/VP cells when GSH was depleted by BSO.
result suggests that MRP1 overexpression may not pro
cancer cells from arsenic toxicity when GSH was deple
Overexpression of MRP1 may contribute to arsenic resistance
MRP1 expression is not the main determinant of arsenic s
tivity in cancer cells.

Use of As2O3 in solid tumour clinical trials is clearly warrante
Our study suggests that GSH content in tumour cells may be
main determinant of arsenic sensitivity. Attempts should be m
to measure tumour GSH content and correlate to arsenic res
in clinical trials. BSO was used to deplete GSH and enha
chemosensitivity of alkylating agents (Bailey et al, 1994). T
peak plasma level of BSO in patients (4–6 mM) was much higher
than levels needed to enhance arsenic toxicity in arsenic res
cancer cells (10µM). Therefore, adding BSO to arsenic treatm
may potentially be useful to reverse acquired arsenic resistan
acute promyelocytic leukaemic patients or to treat tumours tha
intrinsically resistant to arsenic.

In conclusion, GSH content correlates well with arsenic re
tance in cancer cells. Depletion of cellular GSH by BSO enhan
arsenic toxicity in both arsenic-sensitive and -resistant ca
cells. Further animal studies and human trials evaluating arsen
an anticancer drug are warranted. Our study suggests that A2O3

should be tested in solid cancers, especially patients with bla
and gastrointestinal cancer. This study suggests that measur
and modulation of cellular GSH content in cancer cells shoul
deployed in designing future clinical trials.
© 1999 Cancer Research Campaign
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