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Abstract

Background

Epilepsy is one of the most common brain disorders worldwide. It is usually hard to be identi-

fied properly, and a third of patients are drug-resistant. Genes related to the progression

and prognosis of epilepsy are particularly needed to be identified.

Methods

In our study, we downloaded the Gene Expression Omnibus (GEO) microarray expression

profiling dataset GSE143272. Differentially expressed genes (DEGs) with a fold change

(FC) >1.2 and a P-value <0.05 were identified by GEO2R and grouped in male, female and

overlapping DEGs. Functional enrichment analysis and Protein-Protein Interaction (PPI)

network analysis were performed.

Results

In total, 183 DEGs overlapped (77 ups and 106 downs), 302 DEGs (185 ups and 117

downs) in the male dataset, and 750 DEGs (464 ups and 286 downs) in the female dataset

were obtained from the GSE143272 dataset. These DEGs were markedly enriched under

various Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) terms. 16 following hub genes were identified based on PPI network analysis:

ADCY7, C3AR1, DEGS1, CXCL1 in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT

in female-specific DEGs and FCAR, CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1,

GPR97, PLAUR in overlapping DEGs.

Conclusion

This discovery-driven study may be useful to provide a novel insight into the diagnosis and

treatment of epilepsy. However, more experiments are needed in the future to study the

functional roles of these genes in epilepsy.
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1 Introduction

Epilepsy, one of the most common brain conditions including both genetic and acquired dis-

orders, affects at least 46 million people worldwide [1]. As a complex diagnosis consisting of

multiple subtypes, it is usually hard to be identified properly. People with epilepsy have varied

symptoms such as strange sensations, emotions, and behavior or convulsions, muscle spasms,

and loss of consciousness when the brain sends out the wrong signals. Antiepileptic drugs are

the main treatment and increasing nowadays. However, there are still up to a third of people

who have drug-resistant epilepsy [2, 3]. Gender differences in epilepsy are observed in clinical

and experimental researches [4]. It is suggested that the incidence of epilepsy is slightly lower

in females than in males, and males have greater mortality [5]. Several studies show that unpro-

voked seizures and status epilepticus are more common in males as compared with females

[6–9], whereas some idiopathic generalized epilepsies are more frequent in females [10–12].

Despite a number of genes and signaling pathways in the development and progression of

epilepsy have been widely studied, the mechanisms underlying epilepsy are still being unrav-

eled. Currently, the high-throughput sequencing analysis of gene expression, coupled with bio-

informatics tools, becomes promising for investigating the novel genes in the initiation and

evolution of diseases. In the study, we researched the human peripheral blood sample microar-

ray dataset GSE143272 from the GEO to identify the DEGs between epilepsy patients and nor-

mal individuals by applying the bioinformatic method. Our results may provide potential

biomarker candidates for clinical diagnosis and therapy of epilepsy.

2 Materials and methods

2.1 Microarray data

We downloaded the microarray expression profiling dataset GSE143272 as peripheral blood

expression profiles of patients with epilepsy, deposited by Rawat C et al., from the GEO

(https://www.ncbi.nlm.nih.gov/geo/). The dataset was performed on GPL10558 Illumina

HumanHT-12 V4.0 expression beadchip platform. The array data for GSE143272 contained

142 samples, including 34 newly diagnosed, drug-free patients with epilepsy, 57 followed-up

patients receiving antiepileptic drug monotherapy, and 50 healthy subjects. We selected the

drug-free epilepsy patients and healthy control subjects, consisting of 21 male epilepsy

patients, 13 female epilepsy patients, 26 male controls, and 25 female controls. All data were

downloaded from the GEO freely. No ethics approval and patients’ informed consent were

needed for this present study.

2.2 Identification of DEGs

The online analysis tool GEO2R was using to identify the DEGs. Genes with the specific cut-

off criteria of FC >1.2 and a P-value <0.05 were considered DEGs. The epilepsy patients and

healthy controls were assigned to two groups depending on gender, male and female, accord-

ing to the annotation of the GSE143272. We conducted the analysis by comparing the male

epilepsy patients with male controls, and female epilepsy patients with female controls, respec-

tively. The intersecting and sex-specific genes were obtained by drawing a Venn diagram with

Bio-Conductor R and package. The visual hierarchical cluster analysis was also performed,

exhibiting a volcano plot of DEGs.

2.3 Functional enrichment analysis of DEGs

We used the online database webgestalt (http://www.webgestalt.org/) to reveal the functions of

DEGs, by conducting the analysis including GO annotation and KEGG pathway enrichment
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analyses. The GO analysis consisted of three divisions: biological process (BP), cellular compo-

nent (CC), and molecular function (MF). P<0.05 and an enriched gene count�5 were

selected as the criteria for statistical significance.

2.4 Protein-Protein Interaction (PPI) network analysis

We applied the online database STRING (https://string-db.org/) to perform the PPI network

analysis of evaluating the protein-protein interactions between the screened DEGs. The

STRING, a PPI database, collects and assesses evidence from many sources, such as scientific

literature, to integrate all known and predicted associations between proteins, including physi-

cal interactions and functional associations [13]. All PPI pairs with an interaction score of

>0.9 as the threshold value were extracted. Moreover, we used Cytoscape v3.7.2 software

plugin cytoHubba to calculate the degree of all nodes and construct PPI networks through dif-

ferent topological analyses. Cytoscape, an open source software project that integrates biomo-

lecular interaction networks with high-throughput expression data and other molecular states

into a unified conceptual framework, is one of the most powerful network biology analyses

and visualization tools when applied in conjunction with large databases of protein-protein,

protein-DNA, and genetic interactions [14, 15]. CytoHubba was composed by Chia-Hao Chin

et al. for ranking and exploring important nodes in biological networks by their network fea-

tures, which provides 11 topological analysis methods in one-stop shopping way [16]. The pro-

teins with higher degrees are more likely to be essential proteins, and the importance of nodes

within a biological network will be evaluated. These node ranking methods can be divided into

two categories: local and global methods. The local-based methods are considered to be the

better methods in discovering essential proteins, which only focus on the relationship between

the node and its direct neighbors. Due to the heterogeneity of biological networks, it is reason-

able to implement multiple methods for capturing essential proteins [16]. Thus, the genes with

the top 10 highest degree values were screened by the 3 topological analyses, including maxi-

mal clique centrality (MCC), maximum neighborhood component (MNC), and Degree, all of

which are local-based methods. The overlapping hub genes in the top 10 by these 3 topological

methods were identified.

3 Results

3.1 Identification of DEGs

We downloaded the dataset GSE143272 from the GEO database, using GEO2R to analyze the

DEGs between drug-free epilepsy patients and normal individuals. Epilepsy patients consisted

of idiopathic, cryptogenic, and symptomatic epilepsy. In total, 263 upregulated and 226 down-

regulated DEGs were identified between male epilepsy patients and male controls, while 544

upregulated and 393 downregulated DEGs were identified between female epilepsy patients

and female controls. By conducting Venn analysis, we examined the overlap among the two

datasets and obtained a total of 183 (77 upregulated and 106 downregulated) DEGs. Besides,

Sex-specific DEGs were screened, within which 302 (185 upregulated and 117 downregulated)

DEGs were obtained in the male dataset, while 750 (464 upregulated and 286 downregulated)

DEGs were obtained in the female dataset. The volcano plot and Venn diagram for the DEGs

are presented in Fig 1.

3.2 Functional enrichment analysis of DEGs

We carried out the functional enrichment analysis for the male-specific DEGs, female-specific

DEGs, and overlapping DEGs. The upregulated and downregulated DEGs were analyzed
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respectively. Top enriched GO terms were shown in Figs 2–4. Results indicated that the male-

specific upregulated DEGs were mostly enriched related to immune response in BP, cyto-

plasmic vesicle part in CC, and identical protein binding in MF term, while male-specific

downregulated DEGs were mostly enriched related to RNA splicing in BP, mitochondrion in

CC, and phospholipid binding in MF term; the female-specific upregulated DEGs were mostly

enriched related to vesicle-mediated transport in BP, cytoplasmic vesicle part in CC, and

enzyme activator activity in MF term, while female-specific downregulated DEGs were mostly

enriched related to rRNA metabolic process in BP, ribonucleoprotein complex in CC, and

RNA binding in MF term; the overlapping upregulated DEGs were mostly enriched in

immune response for BP, secretory granule membrane for CC, and phosphotransferase activ-

ity, alcohol group as acceptor for MF term, while overlapping downregulated DEGs were

mostly enriched in immune response for BP, T cell receptor complex for CC, and structural

constituent of ribosome for MF term, respectively.

In addition, the top KEGG pathways were presented in Table 1. The male-specific upregu-

lated and downregulated, female-specific upregulated and downregulated, overlapping upre-

gulated and downregulated DEGs were mostly significantly enriched in sphingolipid signaling

pathway, rheumatoid arthritis, leishmaniasis, natural killer cell mediated cytotoxicity, platelet

activation, and structural constituent of ribosome, respectively.

3.3 PPI network analysis of DEGs

The STRING database was applied to determine the PPI networks with interaction score> 0.9

among the male-specific, female-specific, and overlapping DEGs, which were constructed via

Cytoscape software, respectively (Figs 5–7).

Fig 1. Identification of DEGs from GSE143272. (A) Volcano plot of DEGs in the male dataset. (B) Volcano plot of

DEGs in the female dataset. Red, upregulation; green, downregulation. (C) Venn diagram of upregulated and

downregulated DEGs based on the male (G1) and female (G2) datasets.

https://doi.org/10.1371/journal.pone.0254326.g001
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Fig 2. GO analyses of the male-specific upregulated (A) and downregulated (B). The y-axis depicts the number of genes. The x-axis lists the

enriched functional terms. The color of bars corresponds to different categories of GO analysis (green represents BP, orange represents CC, and purple

represents MF).

https://doi.org/10.1371/journal.pone.0254326.g002
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Fig 3. GO analyses of the female-specific upregulated (A) and downregulated (B). The y-axis depicts the number of genes. The x-axis lists

the enriched functional terms. The color of bars corresponds to different categories of GO analysis (green represents BP, orange represents CC,

and purple represents MF).

https://doi.org/10.1371/journal.pone.0254326.g003
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Fig 4. GO analyses of the overlapping upregulated (A) and downregulated (B) DEGs. The y-axis depicts the number of genes. The x-axis lists

the enriched functional terms. The color of bars corresponds to different categories of GO analysis (green represents BP, orange represents CC,

and purple represents MF).

https://doi.org/10.1371/journal.pone.0254326.g004
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Cytohubba plugin of Cytoscape was used to rank the top 10 nodes in the above PPI net-

works according to 3 topological analysis methods, including MCC, MNC, and Degree. The

overlapping hub genes according to the three methods were ADCY7, C3AR1, DEGS1, CXCL1

in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT in female-specific DEGs, and FCAR,

CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1, GPR97, PLAUR in overlapping DEGs

(Table 2).

4 Discussion

In this study, we performed bioinformatics analysis to search for the potential key genes asso-

ciated with epilepsy. Male and female epilepsy were compared to healthy controls respectively

on the hypothesis that epilepsy in different genders had different mechanisms. The results

showed that 302 male-specific DEGs, 750 female-specific DEGs, and 183 overlapping DEGs

Table 1. KEGG pathway enrichment analyses for DEGs.

Gender Pathway description P-Value Count

Male Upregulated Sphingolipid signaling pathway 0.000462 7

Biosynthesis of amino acids 0.001856 5

Hepatocellular carcinoma 0.003485 7

Autophagy 0.003942 6

NOD-like receptor signaling pathway 0.014277 6

Downregulated Rheumatoid arthritis 0.000121 5

Chemokine signaling pathway 0.003538 5

Human cytomegalovirus infection 0.007385 5

Cytokine-cytokine receptor interaction 0.021566 5

Female Upregulated Leishmaniasis 0.000008 11

Osteoclast differentiation 0.000076 13

Chemokine signaling pathway 0.000105 16

Renal cell carcinoma 0.000148 9

Hepatitis B 0.000252 13

Systemic lupus erythematosus 0.000437 12

Kaposi sarcoma-associated herpesvirus infection 0.000937 14

Autophagy 0.001133 11

Human immunodeficiency virus 1 infection 0.001169 15

Phagosome 0.001433 12

Downregulated Natural killer cell mediated cytotoxicity 3.85E-07 13

Antigen processing and presentation 0.000366 7

Graft-versus-host disease 0.000680 5

Th1 and Th2 cell differentiation 0.001076 7

NF-kappa B signaling pathway 0.001300 7

T cell receptor signaling pathway 0.001856 7

Sphingolipid signaling pathway 0.004458 7

Hematopoietic cell lineage 0.006826 6

HIF-1 signaling pathway 0.007894 6

Overlap Upregulated Platelet activation 0.000410 5

Downregulated Structural constituent of ribosome 0.000097 6

DNA-binding transcription activator activity, RNA polymerase II-specific 0.001188 8

RNA polymerase II proximal promoter sequence-specific DNA binding 0.002694 8

proximal promoter sequence-specific DNA binding 0.003296 8

https://doi.org/10.1371/journal.pone.0254326.t001
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were successfully identified. Those DEGs were put into multi-step bioinformatic functional

annotations, including GO, KEGG, and PPI analysis.

We observed that male, female and overlapping DEGs took part in similar and overlapping

biological processes significantly. Most of the biological processes were involved in inflamma-

tion and immune system defense response, for example, immune response, leukocyte medi-

ated immunity, T cell activation, etc. In KEGG analysis, sphingolipid signaling pathway was

showed upregulated in male patients but downregulated in female patients. It is well known

that sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate, sphingomyelin,

and gangliosides, play an important role in the regulation of steroidogenesis [17]. The sex hor-

mones, such as androgens, estrogens, and progestogens, are thought to influence sex differ-

ences in epilepsy [18, 19]. For example, it is suggested that progesterone has anticonvulsant

effects, while estradiol has neuroprotective effects along with mild anticonvulsant effects [4];

and androgen can amplify sex differences in the expression of some epileptic disorders [18].

The observation in our study indicated that sphingolipid signaling pathway may have a com-

plex relationship with epilepsy in sex differences.

Based on the PPI networks, 16 hub genes were identified, which were ADCY7, C3AR1,

DEGS1, CXCL1 in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT in female-specific

DEGs and FCAR, CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1, GPR97, PLAUR in over-

lapping DEGs, respectively.

ADCY7 encodes a membrane-bound adenylate cyclase (AC), which is one of the most

ubiquitous signal transduction molecules that catalyzes the formation of cyclic adenosine

monophosphate (AMP) from adenosine triphosphate (ATP) [20, 21]. It is indicated that in

the central amygdala (CeA) AC7 plays an important role in the modulation of presynaptic

Fig 5. Male-specific PPI network in epilepsy. The PPI network included 96 nodes and 151 edges.

https://doi.org/10.1371/journal.pone.0254326.g005
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gamma-aminobutyric acid (GABA) release. When responding to ethanol and corticotropin-

releasing factor (CRF), AC7 increases cAMP signaling and activates protein kinase A cascade,

resulting in the release of presynaptic vesicular GABA [22]. GABA, formed within GABAergic

axon terminals and released into the synapse, acts on receptors GABAA and GABAB. As the

main inhibitory neurotransmitter in the cerebral cortex and hippocampus, GABA maintains

inhibitory tension to balance nerve excitation. When the balance is disrupted, seizures may

occur. Therefore, GABA agonists suppress seizures, while GABA antagonists cause seizures

[23]. As the localization of AC7 was observed in the hippocampus, cerebral cortex, cerebellum,

caudate-putamen, and nucleus accumbens [24], ADCY7 involving in regulation of GABA may

be correlated with epilepsy.

Fig 6. Female-specific PPI network in epilepsy. The PPI network included 213 nodes and 604 edges.

https://doi.org/10.1371/journal.pone.0254326.g006
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C3AR1 is a Protein Coding gene. The protein C3a Receptor 1 encoded by this gene is an

orphan G protein-coupled receptor for C3a, which is a proinflammatory mediator released

during activation of the complement system [25]. The complement pathway is critical in

innate immunity [26]. In Alzheimer’s patients, the overexpression of C3 and C3aR1 increases

with cognitive decline and Braak staging. It has been shown that loss of C3aR1 in mice causes

the rescue of tau pathology and attenuation of neuroinflammation, synaptic deficits, and neu-

rodegeneration. C3aR1 is a critical regulator in neuronal tau pathogenesis and mediating cen-

tral nervous system (CNS) immune network, as its direct target is STAT3 (signal transducers

and activators of transcription) [27]. More and more evidence reveals there are common

underlying mechanism mechanisms associated with network hyperexcitability and cognitive

decline [28, 29]. Studies have shown that in mouse models the increased abnormal tau and

amyloid-β proteins may have a synergistic effect on the occurrence of epileptic seizures [30–

32]. Hyperphosphorylation of Tau has been reported in epileptic patients with different forms

[33–37] and in a range of animal models of epilepsy [38–40]. Focus on C3AR1 mediating tau

pathology might represent a novel opportunity to research therapy for epilepsy.

Fig 7. Male and female overlapping PPI network in epilepsy. The PPI network included 53 nodes and 68 edges.

https://doi.org/10.1371/journal.pone.0254326.g007
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DEGS1 encodes Delta 4-Desaturase, Sphingolipid 1, a member of the membrane fatty acid

desaturase family which is responsible for inserting double bonds into specific positions in

fatty acids. The related pathways of DEGS1 are sphingolipid signaling pathway and sphingoli-

pid metabolism [41, 42]. In the nervous system, sphingolipids are pivotal constituents of mye-

lin formation in glial cells, which can improve the efficiency and speed of action potentials.

Perturbations of the sphingolipid metabolism can result in rearrangements in the plasma

membrane, which has been associated with the development of various neurological disorders

[43–46]. It has been reported that a variant in DEGS1 leads to a novel early-onset autosomal

recessive complex neurological disease with Intelligent disability, progressive spastic paraple-

gia, scoliosis, and epilepsy. The DEGS1 variant encodes C4-dihydroceramide desaturase,

which plays an important role in a pathway of ceramide/phospholipids synthesis [41, 47]. In

this study, the present findings also revealed that DEGS1 was correlated with epilepsy.

CXCL1 gene encodes a member of the CXC subfamily of chemokines. The CXCL1 protein

plays a pivotal role by recruiting and activating neutrophils in inflammation when signaling

through the CXCR2 receptor [48]. It is being increasingly recognized that immunity and

Table 2. Hub genes for highly differentiated expressed genes ranked in Cytohubba plugin of Cytoscape.

Gender Rank methods in CytoHubba

Male MCC MNC Degree

ADCY7 ADCY7 ADCY7
ADORA3 ADORA3 C3AR1
P2RY14 P2RY14 LYZ

C3AR1 C3AR1 POLR2J

STOM LYZ DEGS1
CLEC4D STOM RAB27A

SNAP23 CLEC4D ALDOA

DEGS1 DEGS1 CXCL1
CXCL1 CXCL1 CTSD

CXCL8 CTSD CXCL8

Female TOLLIP TOLLIP TOLLIP
PGLYRP1 ARG1 ARG1

ORM1 CREBBP CREBBP

TCN1 ORM1 ORM1
CAMP BPI BPI

TIMP2 H2AFJ H2AFJ

FOLR3 HIST1H2BK HIST1H2BK

HP HIST2H2AC HIST2H2AC

ELANE ELANE ELANE
QPCT QPCT QPCT

Overlap FCAR FCAR FCAR
CD3G CD3G CD3G

CLEC12A CLEC12A CLEC12A
MOSPD2 MOSPD2 GNAQ

MAPK14 CD3D MOSPD2
CD3D ALDH3B1 MAPK14

ALDH3B1 GPR97 CD3D
GPR97 HBA1 ALDH3B1
HBA1 PLAUR GPR97
PLAUR HBA2 PLAUR

https://doi.org/10.1371/journal.pone.0254326.t002
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inflammatory processes in the brain contribute to the pathogenesis of epilepsy [49–51]. The

study reported that CXCL1 concentrations increase significantly after seizure onset, which

results in a strong induction of chemotactic response from brain cells that recruits circulating

neutrophils to the injured brain tissues [52]. The activated neutrophils can exacerbate the ini-

tial injury by the damage to the surrounding healthy area [53]. Thus, CXCL1 may be a novel

therapeutic target for epilepsy.

TOLLIP encodes the Toll-interacting protein (Tollip), which is present in a complex with

the interleukin-1 receptor associated kinase (IRAK). With the activation of IL-1β, the Tollip–

IRAK complex is recruited and disrupted [54]. The overexpression of Tollip can impair IL-1β-

induced activation of NF-κB, indicating that Tollip is an inhibitory modulator in inflamma-

tory signaling [54, 55]. The cerebral cortex may display the highest density of Tollip protein

[56]. Therefore, Tollip may be a potential target to provide neuroprotective effects by reducing

neuroinflammation in epilepsy [57].

ORM1, accounting for 75% of plasma ORM, is an inflammatory factor with multiple activi-

ties [58]. Plasma concentration of ORM increases under the control of various regulatory

mediators, including inflammatory stimuli, such as glucocorticoids, tumor necrosis factor

(TNF)-α, interleukin (IL)-1, IL-8, IL-11, IL-6, and IL-6 related cytokines [59–61]. ORM has

been revealed to have effects on immunoregulation, such as decreasing the rolling, adhesion,

and migration of neutrophils [62–64]. In the ORM family, ORM1 is the unique member that

could be considered as an acute-phase protein. ORM1 regulates the inflammation by contrib-

uting both anti- and pro-inflammatory signals to cytokine-mediated feedback mechanisms

activated by the acute-phase response [65]. What’s more, ORM can also enhance the func-

tional integrity of the blood-brain barrier (BBB) [66]. The study showed that decreasing the

ORM1 expression may be a possible mechanism for the aggravation of BBB damage [67],

while the disruption of BBB may underlie the occurrence of seizures and epilepsy [68, 69].

This study indicated that ORM1 may play important role in epilepsy.

ELANE encodes neutrophil elastase (NE), which belongs to the family of serine proteases.

It has been reported that the mutations in the gene usually cause Cyclic neutropenia (CyN)

and severe congenital neutropenia (SCN) [70, 71]. As NE is involved in immune responses

and widely regarded as a regulatory factor in degenerative and inflammatory diseases through

proteolysis of collagen-IV and elastin [72, 73], ELANE may be also associated with epilepsy.

The QPCT gene encodes glutaminyl cyclase (QC). QC is an enzyme responsible for catalyz-

ing the posttranslational modification of N-terminal glutamate to pyroglutamate in many

neuroendocrine peptides, which renders the protein more susceptible to neurotoxic [74].

Amyloid-β (Aβ) deposits have been found to be a characteristic neuropathological feature

of Alzheimer’s disease (AD) [75]. N-terminally modified Aβ, pyroglutamate-amyloid-β
(pE3-Aβ), is a major component of Aβ deposits specific to human AD [76, 77]. pE3-Aβ is pro-

cessed by QC and/or its isoenzymes (isoQC), formed by cyclization of truncated Aβ species,

rapidly aggregates and initiates other Aβ aggregates [78–80]. The formation of large amounts

of pE3-Aβ has been shown to be QC-dependent. Reducing QC-dependent post-translational

pE3-Aβ formation rate can in turn reduce the number of neurotoxic Aβ species [81]. As it is

reported that in the pathophysiology of epilepsy Aβ may play an important role [82–84],

QPCT may also serve as a novel strategy for the treatment of epilepsy.

FCAR encodes FcαRI or CD89, which is expressed on cells of the myeloid lineage [85] and

is a bifunctional inhibitory/activating receptor for the Fc region of Immunoglobulin A (IgA)

[86]. On one hand, FcαRI plays an anti-inflammatory role when binding to monomeric IgA

and inducing inhibitory ITAMi signaling. On the other hand, when cross-linking IgA immune

complexes, FcαRI mediates pro-inflammatory function, activating immune cells and leading

to the elimination of pathogens [87, 88]. Neutrophilic activation is beneficial for infection;
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however, overabundant IgA complexes can trigger severe tissue damage causing various auto-

immune diseases. Achiron A et al. found that FCAR participates in the pathogenic pathways in

MS [89], which indicated FCAR may be involved in the various inflammatory responses in

CNS. Targeting FcαRI might serve as a novel therapeutic strategy for epilepsy.

CD3G and CD3D encode CD3γ and CD3δ, respectively. Both CD3γ and CD3δ are part of

the T-cell receptor/CD3 complex (TCR/CD3 complex) [90], which is crucial for the develop-

ment, activation, and differentiation of T cells [91]. The CD3D gene defect, which occurs early

in life, leads to severe immune deficiency, making a person susceptible to infection [92]. How-

ever, the CD3G mutation results in a milder clinical phenotype that is primarily autoimmune

[93–95]. The severe immune deficiency may cause intracranial infection, while autoimmunity

in brain may lead to autoimmune encephalitis, both of which are correlated to epilepsy [96–

99]. However, the role of CD3G and CD3D in CNS is still not clear.

CLEC12A is a C-type lectin receptor (CLR) and a Src homology region 2 domain-contain-

ing phosphatase 1 and 2 (SHP-1 and -2)-associated receptor, highly expressed on human den-

dritic cells (DCs). CLEC12A contains a single immunoreceptor tyrosine-based inhibitory

motif (ITIM) in its cytoplasmic tail. In response to chemokine CCL2, ITIM can associate with

SHP-1 and SHP-2, involved in inhibitory signaling as a key molecule to deliver immature DCs

to the CNS across the BBB [100]. It has been reported that DCs can initiate autoimmune

demyelination and inflammation in CNS by presenting antigen to autoreactive myelin-specific

T cells [101], while in the CLEC12A-KO mice the reduction of DC infiltration and demyelin-

ation was observed [102]. Thus, CLEC12A may be a promising target to inhibit seizures in

brain.

MOSPD2 (motile sperm domain-containing protein 2) is the surface protein predomi-

nantly expressed on cytoplasmic membrane of human monocytes. MOSPD2 is also found in

neutrophils, but not in lymphocytes. It is revealed that MOSPD2 is critical in regulating the

inflammatory monocyte and neutrophil migration without activating ligands [103]. The

monocyte from blood can rise macrophage in CNS, which is dominant in demyelination

[104]. More and more researches suggest that chronic demyelination in multiple sclerosis can

induce seizure [105–107]. As it has been demonstrated silencing or neutralizing MOSPD2 not

only reduced the proportion of inflammatory monocytes in the blood significantly but also

inhibited monocyte migrating into CNS [108], MOSPD2 may be a potential target for the

treatment of epilepsy.

ALDH3B1 encodes the protein that belongs to the ALDH3 protein family (Aldehyde Dehy-

drogenase Family 3) [109–111]. It has been shown that ALDH3B1 plays a critical role in the

cellular defense against oxidative stress processes and aldehyde toxicity [112, 113]. Oxidative

stress toxicity and lowered antioxidant defense are considered as contributing factors in the

genesis and progression of epilepsy [114–116], while epileptic seizures, especially recurrent sei-

zures may also increase oxidative stress, which will result in treatment resistance [117–120].

Oxidative stress can lead to the occurrence of lipid peroxidation (LPO) and resulting in plenty

of aldehydes, such as 4-hydroxy-2-nonenal (4HNE) [121]. In the CNS, dopamine is metabo-

lized to 3,4-dihydroxyphenylacetaldehyde (DOPAL), while both norepinephrine and epineph-

rine are metabolized to 3,4-dihydroxyphenylglycol aldehyde (DOPEGAL) [122]. Aldehydes,

including DOPAL, DOPEGAL, and 4HNE, are neurotoxic and involving in Parkinson’s dis-

ease (PD) and AD [123, 124]. ALDH7A1, the other member of the ALDH protein family, has

been demonstrated to be related to pyridoxine-dependent epilepsy [125–127]. Thus, it is indi-

cated that ALDH3B1 may have a protective role in various brain diseases including epilepsy.

GPR97 belongs to the G protein-coupled receptors (GPCRs), the largest receptor superfam-

ily broadly involved in the regulation of biological processes and various diseases, including

CNS disorders, such as anxiety, depression, schizophrenia, epilepsy, Alzheimer’s disease, and

PLOS ONE Bioinformatic analysis identifies potential key genes of epilepsy

PLOS ONE | https://doi.org/10.1371/journal.pone.0254326 September 23, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0254326


Parkinson’s disease [128, 129]. GPR97, expressed in immune cells and lymphatic endothelial

cells [130, 131], contributes to macrophage-associated inflammation [132]. GPR97 also regu-

lates the development of B-cell and NF-κB activity [133], which plays a critical role in encepha-

litogenic T cell activation [134]. The study reveals that the loss of GPR97 results in the increase

of constitutive expression and activation of NF-κB pathway components, in turn causing

severe inflammation and demyelination in CNS [135]. Thus, modulation of GPR97 functions

or its pathway may be a potential treatment of epilepsy.

PLAUR encodes urokinase-type plasminogen activator receptor (uPAR) [136], which is a

glycoprotein linked to the cell membrane by a glycosylphosphatidylinositol anchor [137]. The

uPAR is a key regulator in many processes involving in not only cell signaling, proliferation,

differentiation, and migration, but also tissue remodeling [137–139]. uPAR plays an important

role in the early and injured brain. The uPA-uPAR complex induces axonal growth and regen-

eration by stimulating neuronal migration and neuritogenesis via both proteolytic and non-

proteolytic events [140–142]. The dysregulation of uPA/uPAR axis is involved in various CNS

disorders [139]. In rats undergoing seizures, expression of uPAR is increased in interneurons

[143], while deficiency of both uPA and uPAR in mice increases seizure susceptibility [143–

145]. In this study, the present findings also revealed that PLAUR was correlated with epilepsy.

Summarily, using the profile dataset and bioinformatics analysis, 16 epilepsy-associated

hub genes were identified (Table 3). However, there are some limitations of this study. The

lack of experimental evidence is probably the biggest limitation. In addition, the mechanism of

these 16 hub genes in epilepsy is still unclear. Hence, more research should be carried out to

investigate the functional roles of these hub genes in epilepsy.

5 Conclusion

In conclusion, by using the integrated bioinformatics analysis for gene expression profiles in

epilepsy, we identified 16 hub genes, including sex-specific genes. These hub genes were

Table 3. Summary of functions of hub genes.

Hub genes Functions

ADCY7 Modulate the release of presynaptic GABA

C3AR1 Critical regulator in neuronal tau pathogenesis and mediating CNS immune network

DEGS1 Play an important role in sphingolipid signaling pathway and sphingolipid metabolism

CXCL1 Recruit and activate neutrophils in inflammation

TOLLIP Inhibitory modulator in inflammatory signaling

ORM1 Regulate the inflammation and enhance the functional integrity of BBB

ELANE Regulatory factor in degenerative and inflammatory diseases

QPCT Catalyze the posttranslational modification of N-terminal glutamate of proteins to pyroglutamate

in many neuroendocrine peptides

FCAR Bifunctional inhibitory/activating receptor for the Fc region of IgA

CD3G and

CD3D

Crucial for the development, activation, and differentiation of T cells

CLEC12A Deliver immature DCs to the CNS across the BBB

MOSPD2 Critical in regulating the inflammatory monocyte and neutrophil migration without activating

ligands

ALDH3B1 Play a critical role in the cellular defense against oxidative stress processes and aldehyde toxicity

GPR97 Contribute to macrophage-associated inflammation; regulate the development of B-cell and NF-

κB activity involving in encephalitogenic T cell activation

PLAUR Key regulator involving in not only cell signaling, proliferation, differentiation, and migration,

but also tissue remodeling

https://doi.org/10.1371/journal.pone.0254326.t003
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correlated with the pathogenesis and prognosis of epilepsy. This study may contribute to fur-

ther insight into epilepsy, by digging out the potential diagnostic and prognostic biomarkers,

as well as therapeutic targets. Nevertheless, in the future, more research (in vivo and in vitro

experiments) should be carried out to validate the functional roles of these genes in epilepsy.
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