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One-stop tool;

Shiny
in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune

responses and clinical features among COVID-19 patients remain largely unknown. Here, we report

a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (named

COVID-ONE-hi). COVID-ONE-hi is based on the data that contain the IgG/IgM responses to

24 full-length/truncated proteins corresponding to 20 of 28 known SARS-CoV-2 proteins and

199 spike protein peptides against 2360 serum samples collected from 783 COVID-19 patients. In

addition, 96 clinical parameters for the 2360 serum samples and basic information for the 783

patients are integrated into the database. Furthermore, COVID-ONE-hi provides a dashboard

for defining samples and a one-click analysis pipeline for a single group or paired groups. A set

of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After

the ‘‘START” button is clicked, one can readily obtain a comprehensive analysis report for further

interpretation. COVID-ONE-hi is freely available at www.COVID-ONE.cn.
Introduction

COVID-19 is an unprecedented global threat caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which has already caused 209,308,033 infections and claimed

4,393,014 lives as of August 19, 2021 (https://coronavirus.
jhu.edu/map.html) [1]. However, there is still no effective med-
icine [2,3] for COVID-19.

Most patients recover via their own immunity, including
SARS-CoV-2-specific IgG responses, especially neutralizing
antibodies [4–6]. Overall, it is of great interest to decipher
SARS-CoV-2-specific IgG/IgM responses at a system level

and to correlate antibody responses to clinical parameters.
To understand how the human immune system responds to

SARS-CoV-2, we constructed a SARS-CoV-2 proteome

microarray containing 18 of the 28 predicted proteins and
applied it to characterize IgG and IgM antibodies for the sera
of 29 convalescent patients [7]. Recently, we upgraded the

SARS-CoV-2 protein microarray, and the new microarray
contains 24 full-length/truncated proteins corresponding to
20 known SARS-CoV-2 proteins and 199 peptides fully cover-
ing the spike protein [8]. Using this microarray, we screened

2360 serum samples from 783 COVID-19 patients, covering
mild, severe, and critical cases. Thus, we compiled a dataset
with comprehensive information on SARS-CoV-2-specific

antibody responses and rich in clinical parameters.
To share the dataset efficiently, in addition to the related

research that we have already published [9–13], we built a data-

base for COVID-19-specific humoral immune responses and
clinical parameters, namely, COVID-ONE-hi (www.covid-
one.cn), using Shiny. This database contains a comprehensive

dataset of IgG and IgM responses to the 24 full-length/
truncated proteins corresponding to 20 known SARS-CoV-2
proteins and 199 spike protein peptides from a cohort of 783
COVID-19 patients. To bolster clinical relevance, 96 clinical

parameters and basic patient information are also included.
COVID-ONE-hi provides search, data analysis, and visualiza-
tion functions. In particular, COVID-ONE-hi integrates anti-

body response landscape analysis, correlation analysis,
machine learning, etc. In the data analysis module, users can
easily define sample group(s) of interest by adjusting scale

bars, and the sample group can be either one group or paired
groups. In-depth analysis is achieved by clicking a single but-
ton; optionally, the results can be saved and downloaded as

an independent package for further analysis.
To our knowledge, COVID-ONE-hi is the first database for

COVID-19-specific humoral immune responses. We believe
that COVID-19 humoral immunity will be of broad interest
and will facilitate understanding of immune responses in

COVID-19 to combat the pandemic.

Implementation

COVID-ONE-hi is a Shiny (v1.5.0)-based database. Shiny
dashboard (v0.7.1) and Shiny BS (v0.61) were used to shape
the UI, and the package DT (v0.15) was used to format data

tables. For data analysis, dplyr (v1.0.2), tidyverse (v1.3.0), ran-
domForest (v4.6–14), pROC (v1.16.2), and umap (v0.2.6.0)
were integrated into Shiny. Pheatmap (v1.0.12) and ggplot2

(v3.3.2) were used to carry out plotting. For the basic environ-
ment, the operation system is Ubuntu 20.04 LTS, and the ver-
sion of R is 3.6.3.

To calculate the rate of antibody response for each protein,
the mean plus 2 times standard deviation (SD) of the control
serum was set as the cut-off. R was used for most data analysis

and drawing, i.e., Pearson correlation coefficient, receiver
operating characteristic (ROC), T-test, cluster analysis, and
machine learning.

Database content and usage

The database framework and clinical information for the patients

In this study, we collected 2360 serum samples from 783

patients (387 males and 396 females) with an average age of
61.4 years and average onset time of 50 days. Among these
783 patients, there were 369 mild, 309 severe, and 105 critical
cases, with 723 cured and 60 dead (Figure 1A; Table 1,

Table S1).
To systematically analyze immune responses to SARS-

CoV-2 infection, we screened 2360 serum samples using

SARS-CoV-2 protein microarray that contains 24 full-length/
truncated proteins corresponding to 20 known SARS-CoV-2
proteins and 199 peptides fully covering the spike protein.

Additionally, we analyzed 89 blood parameters for the 2360
serum samples (including complete blood count, blood chem-
istry study, and blood enzyme tests). Hence, we obtained a

comprehensive dataset that contains COVID-19-specific
humoral immune responses and clinical parameters.

By combining clinical information, IgG/IgM immune
responses, and blood parameters, we established a database

(COVID-ONE-hi) that provides a one-stop analysis pipeline
for COVID-19-specific humoral immune responses and clinical

http://www.COVID-ONE.cn
https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
http://www.covid-one.cn
http://www.covid-one.cn


Figure 1 Overview of data resources and functional modules of COVID-ONE-hi

A. Patient information of the study cohort showing the distribution of gender, outcome, severity type, etc. B. The framework of COVID-

ONE-hi. The COVID-ONE-hi, a one-stop database for COVID-19-specific humoral immune responses and clinical parameters, includes

223 protein/peptide antibody responses and 96 clinical parameters from 2360 serum samples collected from 783 COVID-19 patients. Using

the Shiny package, COVID-ONE-hi provides single-group or paired-group analysis based on the dataset.
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Table 1 The clinical information of involved patients

Group COVID-19

Number of patients 783

Number of serum samples 2360

Age (year) 61.4 ± 14.5

Gender Male

Female

387

396

Severity/outcome Mild

Severe

Critical

369

309

105

Outcome Cured

Death

723

60

Source Tongji Hospital, Wuhan, China

Table 2 Serum sample information of Case I

Group COVID-19

Number of patients 60

Number of serum samples 392

Age (year) 69.6 ± 10.3

Gender Male

Female

38

22

Severity Mild

Severe

Critial

0

2

58

Outcome Cured

Death

0

60

Source Tongji Hospital, Wuhan, China
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parameters (Figure 1B). To help users obtain more COVID-19
serum profiling data, we set up a page on the COVID-ONE-hi

website, named ‘‘More studies”, to archive other highly related
data of COVID-19 serum profiling (protein/peptide microar-
ray/phage display) [14–19]. In addition, a healthy control data-

set was added to the ‘‘HELP” page, which contains the IgG
and IgM responses for 528 healthy people against the 24
full-length/truncated proteins and 199 spike protein peptides

(Table S2).
The following three steps are included in the analysis mod-

ule: users select a set of samples in the panel of patient infor-
mation and click ‘‘START”; COVID-ONE-hi filters

candidate samples according to the given parameters; and
COVID-ONE-hi conducts analysis and provides results on
the webpage.

To demonstrate how to use COVID-ONE-hi for analysis,
we provide two cases for single group and paired groups as
examples.

Case I: antibody responses and clinical parameters of dead

COVID-19 patients

To study the features of dead COVID-19 patients, we selected
the ‘‘death” parameter of outcome in a single-group analysis
module. This cohort contained 392 serum samples from 60
patients (38 male vs. 22 female), with an average age of

69.6 years (Table 2). The IgG response landscape analysis of
SARS-CoV-2 proteins showed that the positive rates of S1
subunit of spike protein (S1 protein), N protein, and ORF3b

were 95%, 93%, and 87%, respectively, which are consistent
with previous studies [20,21] (Figure 2A). Interestingly, NSP7
had a IgG-positive rate of 88%, suggesting that NSP7 may

play an important role in COVID-19 (Figure 2A). In addition,
the spike peptide S1-45 had the highest positive rate (87%) for
the IgM response, indicating that the region including S1-45
may play an important role in IgM immunity (Figure S1).

Correlation analysis of clinical parameters showed that the
neutrophil count had negative correlations with the monocyte
count and the lymphocyte ratio (Figure 2B). In addition,

correlation analysis of IgG responses showed high correlations
between S1 IgG response and IgG responses of full-length/
truncated N proteins, with S1 IgG response and N-Cter IgG

response showing the highest correlation (Figure 2C and D).
To study influencing factors of S1 antibody production, we
analyzed the correlation between the S1 IgG response and clin-

ical parameters, and found that S1 IgG response correlated
with globulin (Figure 2D).
Case II: differences in IgG/IgM immune responses and clinical

parameters associated with gender

Previous studies have shown that gender has considerable

effect on the severity and outcome of COVID-19 [22,23] and
is associated with underlying differences in immune responses
to infection [24]. To study differences in IgG/IgM immune

responses and clinical parameters between the genders, we
defined males as Group 1 and females as Group 2 for severe
and critical patients, with 231 males at average age of 64.3
and 183 females at average age of 68.1. Consistent with previ-

ous studies [25], males had a higher risk of severe/critical
COVID-19 than females (231/387 vs. 183/396, P < 0.001)
(Tables 3 and 4).

UMAP analysis showed no overall difference in IgG immu-
nity between 387 males and 396 females (Figure 3A). To
explore the disease mechanism in the genders, we performed

in-depth analyses for antibody responses and blood parame-
ters using COVID-ONE-hi. The antibody response landscape
showed that male patients had higher IgG-positive rates than

females for ORF9b, RdRp, and NSP1 (Figure 3B). Moreover,
longitudinal antibody dynamic analysis showed that males had
a stronger ORF9b IgG response during the whole period of
symptom onset, with a stronger NSP1 IgG response during

the early stage of symptom onset, but had no significant differ-
ence in RdRp IgG response compared with females (Fig-
ure 3C). ORF9b has been considered a drug target for the

treatment of COVID-19 because it suppresses type I interferon
responses [26–28]. To explore the relevance between ORF9b
antibody responses and COVID-19 severity, we compared

ORF9b IgG responses between mild and severe/critical cases
in different genders, and the results showed that higher
ORF9b IgG response was observed in severe/critical cases than
in mild cases in males, whereas no significant difference was

observed between mild and severe/critical cases in females
(Figure 3D).

To further decipher differences between female and male

patients of COVID-19, we employed random forest for
machine learning. The results showed creatinine, which is an
acute kidney injury marker, to be the most significant factor

between males and females (Figure 4A). To explore the rele-
vance between creatinine and gender in COVID-19, we com-
pared the median and dynamic creatinine levels between

males and females, and observed that both the median and
dynamic creatinine levels in males were significantly higher
than those in females (Figure 4B and C). To explore the
relevance between creatinine and COVID-19 severity, we
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Table 3 Serum sample information of Case II

Group Group 1 Group 2

Number of patients 231 183

Number of serum samples 949 684

Age (year) 64.3 ± 12.4 68.1 ± 11.9

Gender Male

Female

231

0

0

183

Severity Mild

Severe

Critical

0

165

66

0

144

39

Outcome Cured

Death

193

38

161

22

Source Tongji Hospital, Wuhan, China

Table 4 The binary logistic regression parameter of severity in association with the gender among COVID-19 patients

Gender
Severity

b SEM Wald c2 OR (95% CI) P

Female � � � 1 �
Male 0.544 0.145 14.180 1.724 (1.298, 2.288) < 0.001

Note: SEM, standard error of mean; CI, confidence interval.
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compared the dynamic creatinine levels between mild and
severe/critical cases in males and females, respectively. Similar
to ORF9b IgG responses, male patients with severe/critical

COVID-19 symptoms had a higher level of creatinine
(Figure 4D). Hence, ORF9b antibodies and creatinine are
associated with severe/critical symptoms in male COVID-19

patients, which suggests different pathogeneses and complica-
tions between male and female COVID-19 patients.

Discussion and perspectives

In this study, we built COVID-ONE-hi, a COVID-19-specific
database, using R Shiny. COVID-ONE-hi is based on a

comprehensive dataset generated by analyzing 2360
COVID-19 sera using the SARS-CoV-2 protein microarray
containing 24 full-length/truncated proteins corresponding to

20 of the 28 known SARS-CoV-2 proteins and 199 peptides
completely covering the entire spike protein sequence.

There are several published studies identifying the clinical

characteristics, biomarkers, and specific antibody responses of
diverse COVID-19 patients (Table S3). To strengthen the cred-
ibility of our dataset, we compared SARS-CoV-2-specific anti-
body responses with other studies at different levels. At the

protein level, we analyzed the dynamic response to the S1 and
N proteins. The results showed that the responses to S1 and N
proteins peaked at 6 weeks after the onset of symptoms for

IgG and 4 weeks for IgM, which is consistent with the results
of previous studies [18,20] (Figure S2). At the peptide level, we
compared IgG recognition of immunodominant regions in the
Figure 2 SARS-CoV-2-specific antibody responses and their correlati

A. The IgG response landscapes against SARS-CoV-2 proteins (uppe

B. Heatmap showing correlation analysis of blood parameters. C. Heat

CoV-2 proteins. D. Scatter plots showing correlations between the S1 Ig

subunit of spike protein; S2 protein, S2 subunit of spike protein; N pro

full-length N protein purified by prokaryotic system; N-Nter, N-ternim

N protein purified by cell-free system.

3

SARS-CoV-2 spike protein and found that some high response
areas that we identified [12] are consistent with those identified
by Shrock et al. [14]: aa 25–36, aa 553–588, aa 770–829,

aa 1148–1159, and aa 1256–1273. And another hot spot
(aa 451–474) was only detected in our study. Regarding
antibody diagnosis, Assia et al. [19] achieved an area under the

curve (AUC) value of 0.986 for IgG and 0.988 for IgM for the
detection of prior SARS-CoV-2 infection when combining N
and spike proteins. In our study, the AUC values of the N pro-

tein for IgG and IgM are 0.995 and 0.988, respectively, and the
AUC values of the S1 protein for IgG and IgM are 0.992 and
0.992, respectively. We also found that S2-78 (aa 1148–1159)
IgG is comparable to S1 IgG for COVID-19 patients, with an

AUC value of 0.99 for IgG and 0.953 for IgM [11].
To our knowledge, COVID-ONE-hi is the first database for

COVID-19-specific immune responses enriched in clinical

parameters and has the following features. 1) Universality:
COVID-ONE-hi contains 783 COVID-19 patients that have
been classified by their medical history (Table S4), and thus

will be of broad interest for researchers and clinicians from
diverse backgrounds. 2) Accessibility: COVID-ONE-hi pro-
vides a one-stop analysis pipeline, by which users can easily

obtain meaningful information. 3) Scalability: COVID-ONE-
hi is built on the R platform, which is freely accessible, and
many modular tools are readily available; thus, we can easily
expand and incorporate new analyses for the dataset whenever

necessary without changing the overall structure of the data-
base. Nonetheless, there are some limitations for COVID-
ONE-hi. For example, it lacks data for convalescent patients,
ons with clinical parameters for COVID-19 non-survivors

r), S1 protein peptides (middle), and S2 protein peptides (lower).

map showing correlation analysis of IgG responses against SARS-

G response and the N-Cter IgG response / globulin. S1 protein, S1

tein1, full-length N protein purified by cell-free system; N protien2,

us of N protein purified by cell-free system; N-Cter, C-ternimus of



Figure 3 Correlation of the ORF9b IgG response with COVID-19 severity in male patients

A. Scatter plot showing UMAP results for serum samples using IgG/IgM responses to 24 full-length/truncated proteins (corresponding to

20 known SARS-CoV-2 proteins) in gender subgroup analysis. B. Histogram showing IgG-positive rates of different SARS-CoV-2

proteins and spike protein peptides in males and females. C. Scatter plots showing the dynamic IgG responses of ORF9b (left), NSP1

(middle), and RdRp (right) using longitudinal samples from male and female patients. D. Scatter plots showing the dynamic ORF9b IgG

response in male (left) and female (right) COVID-19 patients with mild and severe/critical symptoms. P value was calculated by a two-

sided t-test. UMAP, uniform manifold approximation and projection.
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peptide-level humoral responses to proteins other than S
protein, and multicentre samples. In the future, we will analyze

the dynamic responses of SARS-CoV-2-specific antibodies
using � 500 serum samples from � 100 COVID-19
convalescent patients. We will also integrate published

peptide microarray/phage display-related data [14–16,29] and
attempt to update the database covering the whole
SARS-CoV-2 proteome at the peptide or amino acid level.

In addition, the SARS-CoV-2 protein microarray has already
been promoted by CDI Labs (www.cdi.bio) and ArrayJet
(www.arrayjet.co.uk), and we anticipate more diverse data
for SARS-CoV-2-specific antibody responses from multicentre
samples. We strongly believe that by sharing a large dataset
and facilitating data analysis, COVID-ONE-hi will be a valu-

able resource for COVID-19 research.
Ethical statement

The study was approved by the Ethical Committee of Tongji
Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China (ITJ-C20200128).

Written informed consent was obtained from all participants
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Figure 4 Correlation of creatinine response with COVID-19 severity in male patients

A. The top 15 gender-specific parameters by random forest analysis ranked by the mean decrease in accuracy (left) and Gini coefficient

(right). B. Boxplot showing the significant difference of median creatinine levels in gender subgroup analysis. C. Scatter plot showing the

dynamic creatinine levels for male and female COVID-19 patients. D. Scatter plots showing the dynamic creatinine levels for male (left)

and female (right) COVID-19 patients with mild and severe/critical symptoms. P value was calculated by a two-sided t-test.
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Data availability

COVID-ONE-hi is freely accessible at www.covid-one.cn. If
users need the raw data of antibody responses or clinical
parameters, please contact the corresponding author (taosc@
sjtu.edu.cn).
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