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Nonlinear normal modes (NNMs) are widely used
as a tool for understanding the forced responses
of nonlinear systems. However, the contemporary
definition of an NNM also encompasses a large
number of dynamic behaviours which are not
observed when a system is forced and damped. As
such, only a few NNMs are required to understand
the forced dynamics. This paper firstly demonstrates
the complexity that may arise from the NNMs of
a simple nonlinear system—highlighting the need
for a method for identifying the significance of
NNMs. An analytical investigation is used, alongside
energy arguments, to develop an understanding of
the mechanisms that relate the NNMs to the forced
responses. This provides insight into which NNMs
are pertinent to understanding the forced dynamics,
and which may be disregarded. The NNMs are
compared with simulated forced responses to verify
these findings.

1. Introduction
Nonlinear normal modes represent an analogue of
the established theory of linear normal modes [1]
for nonlinear systems. While nonlinear normal modes
(NNMs) lack many of the useful mathematical properties
of linear normal modes, such as superposition and
invariance, they do provide a valuable tool for under-
standing nonlinear systems [2]. The concept of an
NNM was first introduced by Rosenberg in the 1960s
[3,4], where it was defined as any vibration-in-unison
of a conservative nonlinear system—i.e. where the
coordinates of the system pass through the equilibrium
and reach their extrema simultaneously. Numerous
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theoretical studies followed this original work [5–8], and NNMs were established as a valuable
tool for investigating the behaviour of a variety of nonlinear systems [9,10]. Importantly, it was
shown that NNMs (describing the dynamics of the underlying conservative system) could be
used to gain an understanding of the resonant forced responses of the system [11].

It has also been demonstrated that some conservative systems may exhibit important dynamic
behaviours are not encompassed by the vibration-in-unison definition of an NNM; for example
out-of-unison resonance [12] where no coordinates reach zero or extrema simultaneously. To
allow for a wider variety of dynamic behaviours, the definition of an NNM has since been
relaxed to include any non-necessarily synchronous periodic motion [2]—i.e. any periodic motion
of a conservative nonlinear system is considered to be an NNM. Concurrent work has also
extended the NNM concept to damped systems; notably, the work of Shaw & Pierre [13,14],
and, more recently, the work of Haller & Ponsioen [15]. This paper focuses on the more
common NNM definition, where damping is excluded—i.e. a periodic motion of the underlying
conservative system.

The generalization of the conservative NNM definition, along with the development of
accessible methods for their computation [16], has led to the use of NNMs in a diverse range
of applications in structural dynamics. For example, NNMs have been used to understand the
dynamic behaviour of full-scale aircraft and satellites [17,18], as a tool in substructuring [19]
and the construction of reduced-order models [20], and for damage detection in engineering
structures [21]. Along with such large-scale mechanical structures, NNMs have also seen
successful application to MEMS devices [22], nanostructures [23] and to acoustic–structure
interactions [24].

A key feature of NNMs is their relationship to the resonant forced responses of the system,
providing an understanding of the forced behaviour [25] and enabling the prediction of important
features in forced responses, such as isolas [26–28]. However, in [29]—which explores the
dynamics of a taut, horizontal cable—it was observed that, for the forcing and damping cases
that are considered, not all sets of NNMs relate to forced responses. This suggests that not all
sets of NNMs (also referred to as NNM branches or backbone curves) are of equal significance when
considering the forced responses. Determining the nature of this significance is the primary focus
of this paper.

To motivate discussion throughout this paper, we consider a pinned-pinned beam, with a
torsional spring at one end. In line with much of the literature, the system is expressed in terms
of the linear modes (i.e. the modes of the underlying linear system) resulting in differential
equations with nonlinear coupling terms [30]. Here, a nonlinear model consisting of the first
two underlying linear modes is used.1 Numerical continuation reveals that this simple model
exhibits a vast array of NNM branches. The abundance of branches depicts a complex picture
of the dynamic behaviours, and determining which NNMs are pertinent to understanding the
forced responses becomes challenging. This highlights the necessity for a technique that allows
the relative significance of NNMs to be quantified, allowing the complex range of behaviours
to be reduced to those that directly relate to the forced dynamics.

In §3, an analytical approach is used to describe the NNM branches and to gain an
understanding of the physical mechanisms that lead to the dynamic behaviours represented by
the NNMs. It is shown that some NNM branches exhibit phase-locking, where a specific phase
relationship exists between the fundamental components of the linear modes, while other NNM
branches do not exhibit phase-locking, referred to as phase-unlocked branches. Section 4 then
considers the phase difference between the two linear modes of the model. Firstly, a numerical
approach is used to investigate the case where the system is forced such that the response lies
on an NNM branch. A perturbation is then applied to the phase of the external forcing, which
results in a deviation of the response from the NNM branch. It is found that the magnitude of this
deviation varies significantly between the different NNM branches, and hence is used as a means

1Throughout this paper, the term mode refers to an underlying linear mode of the system, unless otherwise specified.
A nonlinear normal mode (NNM) is a separate concept, and is typically composed of multiple linear modes.
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of quantifying the attraction of the forced response to the NNM. The NNM branches that exhibit
little attraction may be considered less significant than those with a greater attraction.

While this numerical approach gives insight into the relative significance of the NNMs, it does
not reveal the mechanisms that cause (or prevent) the attraction between the forced responses and
the NNMs. This is explored in §4b where the analytical results, derived in §3, are used to show
that energy may only be transferred between the fundamental components of the linear modes
in phase-locked responses. This ability to transfer energy between the modes is required for the
majority of forced responses, as discussed in [25]. For the phase-unlocked NNMs, some energy
may still be transferred between the linear modes via changes in the phase difference between
the harmonics. However, as the harmonics are typically small compared with the fundamental
components, this energy transfer mechanism is far weaker than that of the phase-locked NNMs.
As such, phase-unlocked NNMs are unlikely to achieve the necessary energy transfer in the
presence of forcing.

In §5, the response of the system, subjected to a sinusoidal external forcing, is demonstrated.
Initially, a forcing and damping level that is typical of many engineering systems is considered,
and it is seen that the responses follow the phase-locked NNM branches. Next, the damping
level is significantly reduced. It is argued that, due to the very low damping, a weak energy
transfer mechanism between the modes may be sufficient for an NNM to be attractive, and the
phase-unlocked NNMs may be able to provide this via the harmonics. This is confirmed using
numerical continuation results, which show that a section of the forced response follows a phase-
unlocked branch. While this demonstrates that phase-unlocked branches may represent dynamic
behaviours that underpin the forced responses, it is concluded that they are only significant
for structures with extremely low levels of damping.

2. Periodic responses of a nonlinear beam
The contemporary definition of a NNM encompasses any periodic motion of a system [2]. In this
section, we consider a simple nonlinear system—represented in the form of two cross-coupled
linear modal equations—and demonstrate how it may exhibit an extremely large number of
responses that satisfy this definition. Such an abundance of NNM responses presents a challenge
when using the NNMs to gain insight into the behaviour of the forced responses. This motivates
the discussion for subsequent sections, where the relationship between the NNMs and the forced
responses of this structure are explored, and the relative significance of the NNMs, in relation to
the forced responses, are determined.

The pinned-pinned beam represented in figure 1 is used as a motivating example throughout
this paper. The distance along this beam is denoted x and at x = L, where L is the length of the
beam, there is a rotational spring breaking the symmetry of the system. The axial tension in
the beam is assumed to be zero at equilibrium; however, owing to the pinned-pinned boundary
conditions, a significant dynamic axial tension is present when the beam is deflected vertically,
denoted w(x, t). From [31], the motion of this beam may be described by

ρÂ
∂2w(x, t)
∂t2 + EI

∂4w(x, t)
∂x4 −

[
EÂ
2L

∫L

0

(
∂w(x, t)
∂x

)2
dx

]
∂2w(x, t)
∂x2 + δ(x − L)k̂ψ(L, t) = 0, (2.1)

where δ denotes the Dirac delta function, ψ(x, t) is the rotation of the beam and the constants ρ, Â,
E and I represent the density, cross-sectional area, Young’s modulus and second moment of area
of the beam, respectively. The term in the square brackets represents the dynamic tension in the
beam and this results in a nonlinear component in the equation of motion, equation (2.1).

The dynamics of the beam is modelled using the first two linear modes and, for simplicity,
all higher modes are neglected. As such, the vertical deflection may be written as

w(x, t) = θ1(x)q1(t) + θ2(x)q2(t), (2.2)
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w(x, t)

k̂

x = 0 x = L

Figure 1. Schematic of a pinned-pinned beamwith a rotational constraint at one end. (Online version in colour.)

Table 1. The linear natural frequencies,ωni , and nonlinear parameters,αk , of the beam.

ωn1 ωn2 α1 α2 α3 α4 α5

(rad s−1) (×1010)

125.91 418.41 8.81 −1.31 34.70 −5.12 133.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where θi and qi represent the modeshape and displacement of the ith linear mode, respectively.
The modeshapes may be computed using the expression provided in appendix A—see
equation (A 1). As detailed in [32], Galerkin’s method may be used to write the equation of motion
of the displacements of the first two modes as

q̈ + Λq + Nq(q) = 0. (2.3)

For the system considered here, the elements in equation (2.3) are written

q =
(

q1
q2

)
, Λ =

[
ω2

n1 0

0 ω2
n2

]
, Nq =

(
α1q3

1 + 3α2q2
1q2 + α3q1q2

2 + α4q3
2

α2q3
1 + α3q2

1q2 + 3α4q1q2
2 + α5q3

2

)
, (2.4)

where ωni is the natural frequency of the ith linear mode and αk are nonlinear coefficients. These
may be found using equations (A 3) and (A 4).

The beam considered throughout this paper has a length, depth and height of L = 500 mm,
d = 30 mm and h = 1 mm, respectively. The beam also has a density and Young’s modulus of
ρ = 7800 kg m−3 and E = 2 × 1011 N m−2, respectively, and the stiffness of the torsional spring is
k̂ = 10 N m rad−1. This gives the natural frequencies and nonlinear parameters shown in table 1.

(a) A branch of nonlinear normal modes
Figure 2 shows a set of NNMs—i.e. periodic solutions to equation (2.3)—that have been computed
using the numerical continuation software AUTO-07p [33]. Figures 2a,c represent this NNM
branch in three different projections. Figure 2a shows the initial displacement of the first mode,
q1(0), against the initial displacement of the second mode q2(0); the top panel of figure 2c shows
the maximum displacement amplitude of the first mode, Q1, in terms of the base frequency ω,
where ω= 2π/T and where T is the period; and the bottom panel of figure 2c shows the base
frequency, ω, against the maximum displacement amplitude of the second mode, Q2. Figure 2b
shows one particular NNM, parametrized in time, in the projection of the modal displacements,
q1 against q2. This response corresponds to the points marked with a dot on each of the curves
in figures 2a,c. In all conservative responses that are considered in this paper, the initial velocities
are zero, such that they represent the responses of the system when released from rest.

In figures 2a,c crosses are used to show where q1(0) = q2(0) = 0. It can be seen that this
corresponds to the point at which the base frequency is equal to the first linear natural frequency,
i.e. ω=ωn1. This is due to the behaviour of this system tending to that of the underlying linear
system at low-amplitude and, as such, this may be seen as a nonlinear extension of the first linear
mode. Figures 2a,c also show a series of arrowheads, intended to aid comparisons between these
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Figure 2. A set of NNM branches of the example system, represented in different projections: panel (a) shows the initial
displacements of the linear modes, q1(0) against q2(0), when the initial modal velocities are zero; panel (c) shows the base
frequency,ω, against themaximumamplitude of displacement of the firstmode,Q1, and secondmode,Q2; and panel (b) shows
a single NNM, parametrized in time, in terms of the displacements of the twomodes, q1 against q2. The unstable section of this
branch is represented by a dashed line. The NNM shown in (b) is represented by a dot on each of the curves in (a) and (c). Note
that, while this resembles the forced response of a nonlinear system, this figure is showing the locus of unforced, undamped
periodic responses (i.e. NNMs). Additionally, the physical parameters of the system are constant for all NNMs represented
by these branches; however, the energy of the system varies between NNMs. (Online version in colour.)

panels. It can also be seen that figure 2a is rotationally symmetric about [0, 0]—a result of the
symmetry in the restoring forces for this system, as only linear and cubic terms are present,
i.e. there are no even stiffness components. Owing to the symmetry, and as amplitude is positive,
the two sets of arrows shown in figure 2a are superposed in figure 2c.

For the NNM represented in figure 2b, the response frequency of the second linear mode is
three times that of the first. This behaviour is observed for the majority of NNMs represented by
this branch shown in figures 2a,c, and hence this is denoted the 1 : 3 NNM branch. Strictly, these
responses also contain harmonic components; however, the frequency of interest is that of the
component with the highest amplitude, known as the fundamental component. The fundamental
frequency of the ith mode is denoted as ωri and is related to the base frequency by ωri = riω,
where ri is an integer.2 For the NNM shown in figure 2b, the fundamental response frequency
for the first and second modes respond at one and three times the base frequency, i.e. r1 = 1 and
r2 = 3.

2Note that ωri and ωni are distinct and represent the fundamental response frequency (i.e. the frequency of the component
with the highest amplitude) and linear natural frequency of the ith mode, respectively.
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Figure 3. Five NNM branches for the example system, represented in a number of different projections. In panel (a) these
branches are shown in the projection of the initial displacements of the linear modes, q1(0) against q2(0). Themarginally stable
and unstable sections are represented by solid and dashed lines, respectively. Large dots are used to mark the intersections
between the NNM branches, and the colours of these dots correspond to the colours of the two branches. Panel (c) shows these
branches in the projection of the base frequency,ω, against the maximum displacement amplitude of the first linear mode,
Q1. Note that panel (c) shows this projection in two different amplitude ranges, with the bottom section showing the low-
amplitude responses in detail. Large dots are used to mark the branch intersections seen in panel (a) and small segments show
the intersecting branches. The base frequencies of these branches are scaled with the change in period between the branches.
Panels (b(i)) and (b(ii)) both show individual NNMs, parametrized in time, in the projection of the displacements of the two
modes, q1 against q2. Panels (b(i)) and (b(ii)) showNNMs on the 3 : 8 and 4 : 11 branches, respectively, and the locations of these
NNMs are represented by small dots in panels (a) and (c). (Online version in colour.)
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Figure 4. The amplitudes of the first 15 Fourier components of two different NNMs—one from the 3 : 8 branch and one from
the 4 : 11 branch. These NNMs were shown previously in figures 3b(i) and 3b(ii), respectively, parametrized in time. Panels (a)
and (b) are each separated into two sections: the top section showing the amplitude of the kth Fourier component (i.e. the
component responding at kω) for the first modal displacement, q1(t), denoted |Y1(k)|; and the bottom section showing the
components of the second modal displacement, q2(t), denoted |Y2(k)|. (Online version in colour.)

(b) Additional nonlinear normal mode branches
Figure 3 shows additional NNM branches for this system. As with figure 2a, figure 3a shows these
branches in the projection of the initial displacements of the modes, q1(0) against q2(0), where the
initial velocities of both modes are zero. This plot shows five different branches, computed using
numerical continuation and labelled 1 : 1, 1 : 3, 3 : 8, 4 : 11 and 4 : 13 (with n : m denoting the ratio
between the fundamental response frequencies). Note that the 1 : 3 branch was previously shown
in figure 2a and is repeated here.

It can be seen that many of these NNM branches intersect, at points represented by large
dots, and hence must share responses at these points—for example the 1 : 3 and 3 : 8 curves
meet near q2(0) = 0. As an NNM cannot have a fundamental response frequency ratio of both
1 : 3 and 3 : 8 simultaneously, this demonstrates that these ratios cannot be true for all points
on the curves. However, the regions where these ratios are incorrect are small and hence the
branches are labelled according to the frequency ratio that is observed for the vast majority of
responses represented by the curve. The intersections between the curves are also associated with
a change in period. For example, it is found that, as the 3 : 8 branch approaches the intersection
with 1 : 3, the component in the second mode responding at 9ω grows, while the component at
8ω diminishes (where ω is the base frequency). At the point of intersection, the component at
8ω has zero amplitude and the NNM may be described as having a response frequency ratio
of 3 : 9. Furthermore, all components at kω, where k is not divisible by three, are zero, and
this NNM is identical to that of the NNM on the 1 : 3 branch at this point, but repeats three
times. As such, the transition from the 1 : 3 to the 3 : 8 curve is associated with a tripling in the
period.

The small dots on the 3 : 8 and 4 : 11 branches in figure 3a mark two NNMs that are shown,
parametrized in time, in figures 3b(i) and 3b(ii), respectively. These are both represented in the
projection of the first modal displacement, q1, against the second modal displacement, q2, and
highlight the complexity of these responses. The amplitudes of the Fourier components of these
NNMs are shown in figure 4.

Figure 3c shows the NNM branches in terms of the base frequency and displacement
amplitudes, as used previously in figure 2c. It can be seen that the branches, which intersect in
figure 3a, no longer intersect in this projection, due to the change in period associated with these
crossing points. Instead, small segments of the branches are shown, where the base frequency has
been adjusted to reflect the change in period at the intersection. For example, the segments of the
1 : 3 (green) branch intersecting with the 4 : 11 (cyan) and 4 : 13 (purple) branches are shown at ω/4,
and the segment of the 3 : 8 (red) branch intersecting with the 1 : 3 (green) branch is shown at 3ω.
Similar intersections in the frequency projection may be observed with the 1 : 1 branch; however,
for simplicity, these are not shown here.



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160789

...................................................

–4

–2

0

2

4

5 : 13
5 : 14
5 : 16
6 : 17
6 : 19
7 : 19
7 : 20
7 : 22
7 : 23

4 : 13
4 : 11
3 : 8
1 : 3
1 : 1

–4 –2 0 2 4
q1(0) (×10−4)

q 2(
0)

 (
×

10
−

4 )

Figure 5. A further set of NNM branches, represented in the projection of the initial conditions of the modal displacements,
q1(0) against q2(0). The branches that were previously shown in figure 3 are also shown here, and the corresponding colours are
used. Additional branches, with higher response frequency ratios, are represented by thin black lines. (Online version in colour.)

Figure 3 demonstrates the abundance of NNM branches in this nonlinear system; however,
this does not show all branches for this system. As demonstrated in figure 5, many more branches
may be observed if higher frequency ratios are considered. Furthermore, additional branches exist
in regions beyond that shown here, and more branches, with higher response frequency ratios
(associated with longer periods), exist within this region. As such, this figure is not intended as
a complete picture of these responses, but simply as a demonstration of their abundance and the
complexity that arises from NNMs with high fundamental frequency ratios.

NNMs are often used as a means of simplifying the responses of a system in order to
gain insight into the underlying dynamic behaviour [2] and to predict the forced responses
[25]. However, the abundance of responses shown in figure 5 appears to call into question the
efficacy of NNMs. Because such a large and complex range of NNMs exist, it is important to
identify which NNMs correspond to dynamics that are observed in the presence of external
forcing and damping. Without an understanding of this relationship, the complex picture given
by NNMs cannot be simplified, and their use as a tool for interpreting forced responses is
limited. As such, the remainder of this paper explores the relationship between the NNMs and
the forced responses, the mechanisms that govern this relationship, and how the relationship
may be quantified.

3. An analytical investigation of the two-mode beammodel
In this section, an analytical method is used to describe these NNM responses. This gives insight
into the physical mechanisms that underpin the dynamics of each of the NNM branches in the
two-mode beam model. The second-order normal form technique is adopted here [34], as this
method allows expressions for the harmonics to be computed—as demonstrated in §4c.

(a) The second-order normal form technique
The conservative system considered here is expressed in terms of its linear modal coordinates
with no linear coupling between the modes. As such, the first two steps of the second-order
normal form technique (the linear and forcing transforms) are omitted. For a complete description
of the technique see [34], and for the application of the technique to similar systems to that
considered here, see [29,35].
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For the system considered here, the second-order normal form technique consists only of
the nonlinear near-identity transform. This transform takes the form q = u + h(u), where u
and h represent the fundamental and harmonic components of the modal displacements, q,
respectively. Note that it is assumed that the harmonics are small in comparison with the
fundamental components, and may be expressed as a function of the fundamental components.
The aim of this transform is to obtain an expression for the resonant equation of motion,
written

ü + Λu + Nu(u) = 0, (3.1)

where Nu is a vector of resonant nonlinear terms, such that all terms in the ith element of Nu

respond at the ith fundamental response frequency, ωri. As equation (3.1) contains only resonant
nonlinear terms, it may be solved to find u using

ui = Ui cos(ωrit − φi) = Ui

2
e+j(ωrit−φi) + Ui

2
e−j(ωrit−φi) = upi + umi, (3.2)

where Ui, ωri and φi represent the amplitude, response frequency and phase of the fundamental
component of the ith mode, respectively. Note that the subscripts of upi and umi denote the
positive and negative (plus and minus) signs of the exponents, respectively. As the harmonics
h are expressed in terms of u, the harmonics may be found by substituting the solutions
for u.

As shown in [34], the first step in finding the transform q = u + h is to substitute the
approximation q = u into the vector of nonlinear modal terms, Nq(q). From equation (2.4), this
gives

Nq(u) =
(
α1(up1 + um1)3 + 3α2(up1 + um1)2(up2 + um2)
α2(up1 + um1)3 + α3(up1 + um1)2(up2 + um2)

+α3(up1 + um1)(up2 + um2)2 + α4(up2 + um2)3

+ 3α4(up1 + um1)(up2 + um2)2 + α5(up2 + um2)3

)
, (3.3)

where, from equation (3.2), the substitution ui = upi + umi has been made. The brackets in
equation (3.3) may then be expanded to give 20 unique monomials in each vector element.

Next, Nq is expressed as the product Nq = [Nq]u∗ where [Nq] is a {2 × 20} matrix of coefficients
and u∗ is a {20 × 1} vector of variables, whose �th element may be written as

u∗
� = u

sp�1

p1 usm�1
m1 u

sp�2

p2 usm�2
m2 , (3.4)

where sp�k and sm�k are the exponents of upk and umk, respectively. As all time-varying terms are
contained within the vector u∗, it may be used to determine which nonlinear terms are resonant,
and thus which appear in the resonant equation of motion, equation (3.1). This is achieved using
the {20 × 2} matrix β, which is computed from

βi,� =
( 2∑

k=1

[sp�k − sm�k]ωrk

)2

− ω2
ri =

⎧⎨
⎩
( 2∑

k=1

[sp�k − sm�k]rk

)2

− r2
i

⎫⎬
⎭ω2, (3.5)

where βi,� represents element {i, �} of β and where the base frequency, ω= 2π/T, has been used to
express the fundamental response frequencies as ωri = riω. Now, using equations (3.3)–(3.5), [Nq],



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160789

...................................................

u∗ and β may be computed as

[Nq]ᵀ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2

3α1 3α2

3α1 3α2

α1 α2

3α2 α3

6α2 2α3

3α2 α3

3α2 α3

6α2 2α3

3α2 α3

α3 3α4

2α3 6α4

α3 3α4

α3 3α4

2α3 6α4

α3 3α4

α4 α5

3α4 3α5

3α4 3α5

α4 α5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u3
p1

u2
p1um1

up1u2
m1

u3
m1

u2
p1up2

up1um1up2

u2
m1up2

u2
p1um2

up1um1um2

u2
m1um2

up1u2
p2

up1up2um2

up1u2
m2

um1u2
p2

um1up2um2

um1u2
m2

u3
p2

u2
p2um2

up2u2
m2

u3
m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
βᵀ

ω2
r1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 9 − r2

0 1 − r2

0 1 − r2

8 9 − r2

(r + 1)(r + 3) 4(1 + r)

r2 − 1 0

(r − 1)(r − 3) 4(1 − r)

(r − 1)(r − 3) 4(1 − r)

r2 − 1 0

(r + 1)(r + 3) 4(1 + r)

4r(r + 1) (3r + 1)(r + 1)

0 1 − r2

4r(r − 1) (3r − 1)(r − 1)

4r(r − 1) (3r − 1)(r − 1)

0 1 − r2

4r(r + 1) (3r + 1)(r + 1)

9r2 − 1 8r2

r2 − 1 0

r2 − 1 0

9r2 − 1 8r2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.6)

where r = r2/r1 such that ωr2 = rωr1.
In order to find the resonant nonlinear terms, Nu, and the harmonic terms, h, the {20 × 2}

coefficient matrices [Nu] and [h] are defined using Nu = [Nu]u∗ and h = [h]u∗. As discussed in
[34], these matrices are populated with the coefficients from [Nq], such that the coefficients of the
resonant terms are transferred to the matrix of resonant coefficients, [Nu], and the non-resonant
coefficients are transferred to the matrix of harmonic coefficients, [h]. This may be expressed
[Nq] = [Nu] + β ◦ [h], where ◦ represents the Hadamard product. From this, the value of element
{i, �} in the matrices [Nu] and [h] may be found using

[Nu]i,� =
{

[Nq]i,� if : βi,� = 0,

0 if : βi,� �= 0,
[h]i,� =

⎧⎪⎨
⎪⎩

0 if : βi,� = 0,

[Nq]i,�

βi,�
if : βi,� �= 0 .

(3.7)

As can be seen from equation (3.6), and as discussed in [32,35], there are three types of
terms represented by β: unconditionally resonant terms, which are resonant regardless of the
value of r; conditionally resonant terms, which are only resonant for specific values of r; and non-
resonant terms, which cannot be resonant. It can therefore be determined, from equation (3.7),
that the coefficients of unconditionally resonant terms will always appear in [Nu] but never
in [h], while the non-resonant coefficients will always appear in [h] but never in [Nu], and the
conditionally resonant terms may appear in either but not both. For the system considered here,
the conditionally resonant terms are only resonant when r = 1

3 , r = 1 or r = 3.3 It is found that the

3Note that the conditions r = 1
3 , r = 1 or r = 3 are specific to this system and, if alternative nonlinearities were considered,

conditionally resonant terms may arise from other values of r. For example, it is expected that quadratic nonlinearities may
lead to 1 : 2, or r = 2, resonances.
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harmonics of the r = 1
3 solutions are larger than the fundamental components, which violates an

assumption of the second-order normal form technique. As such, it is determined that the r = 1
3

solutions are not valid and hence this case is not presented here.
Using the general form of the resonant equation of motion, equation (3.1), along with the

assumed solution for ui, equation (3.2), the ith resonant equation of motion may be written as[
(ω2

ni − r2
i ω

2)
Ui

2
+ N+

ui

]
e+j(ωrit−φi) +

[
(ω2

ni − r2
i ω

2)
Ui

2
+ N−

ui

]
e−j(ωrit−φi) = 0, (3.8)

where N+
ui and N−

ui are time-independent complex conjugates. As the contents of both sets of
square brackets in equation (3.8) are time-independent, they may each be equated to zero, i.e.

(ω2
ni − r2

i ω
2)

Ui

2
+ N+

ui = 0. (3.9)

To find the nonlinear components, N+
ui, equations (3.6) and (3.7) are used, along with the definition

Nu = [Nu]u∗, to give

N+
u1 = 1

8 {3α1U3
1 + 2α3U1U2

2 + δ3[3α2U2
1U2e+jφ̂3,1 ]

+ δ1[3α2U2
1U2(2e+jφ̂1,1 + e−jφ̂1,1 ) + α3U1U2

2e+j2φ̂1,1 + 3α4U3
2e+jφ̂1,1 ]} (3.10a)

and

N+
u2 = 1

8 {2α3U2
1U2 + 3α5U3

2 + δ3[α2U3
1e−jφ̂3,1 ]

+ δ1[3α4U1U2
2(2e−jφ̂1,1 + e+jφ̂1,1 ) + α3U2

1U2e−j2φ̂1,1 + 3α2U3
1e−jφ̂1,1 ]}, (3.10b)

where the phase difference, φ̂i,j, is defined as φ̂i,j = iφ1 − jφ2 and where δi is defined by

δi =
{

1 if : i = r,

0 if : i �= r,
(3.11)

such that δi corresponds to the conditionally resonant terms. As the r = 1
3 case does not lead to

valid solutions, the conditionally resonant terms resulting from r = 1
3 have not been included.

As previously discussed, the terms in equations (3.6) may be categorized as either
unconditionally resonant, non-resonant or conditionally resonant. Equation (3.10) also reveals
that only the conditionally resonant terms are phase-dependent, i.e. those containing a δi
component, also contain a φ̂i,j component. This follows from [32], where it is shown that only
conditionally resonant terms may lead to a phase relationship in the resonant equations of
motion.4

(b) Computing the nonlinear normal mode branches
The resonant equations of motion, equations (3.9) and (3.10), are now used to compute the NNM
branches, or backbone curves, of the system. As previously discussed, this paper only considers
responses with an initial velocity of zero. Therefore, neglecting harmonics, the initial velocity of
the ith mode may be written u̇i(0) =ωriUi sin(φi) = 0, from equation (3.2). From this, it may be
determined that φi = 0,π such that the phase difference is φ̂i,j = iφ1 − jφ2 = 0,π . This allows the
variable p to be introduced, where

p = e+jφ̂i,j = e−jφ̂i,j =
{

+1 when: iφ1 − jφ2 = 0,

−1 when: iφ1 − jφ2 = π ,
(3.12)

i.e. p = +1 when the two modes are in-phase and p = −1 when the two modes are in anti-phase.

4A copy of this proof is provided as the electronic supplementary material to this paper.
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For the case, where r1 = r2 = 1, such that r = 1, the resonant equations of motion may be found
by combining equations (3.9) and (3.10) to give

4(ω2
n1 − ω2)U1 + 3α1U3

1 + 2α3U1U2
2 + 9pα2U2

1U2 + α3U1U2
2 + 3pα4U3

2 = 0 (3.13a)

and
4(ω2

n2 − ω2)U2 + 2α3U2
1U2 + 3α5U3

2 + 9pα4U1U2
2 + α3U2

1U2 + 3pα2U3
1 = 0, (3.13b)

where equation (3.12) has been substituted. Assuming U1 �= 0 and U2 �= 0, equations (3.13) may
be written as

ω2 =ω2
n1 + 1

4 [3α1U2
1 + 3α3U2

2 + 9pα2U1U2 + 3pα4U−1
1 U3

2] (3.14a)

and
ω2 =ω2

n2 + 1
4 [3α3U2

1 + 3α5U2
2 + 9pα4U1U2 + 3pα2U3

1U−1
2 ], (3.14b)

which may be combined to give the amplitude relationship

[−3pα2U−1
2 ]U4

1 + [3(α1 − α3)]U3
1 + [9p(α2 − α4)U2]U2

1

+ [4(ω2
n1 − ω2

n2) + 3(α3 − α5)U2
2]U1 + [3pα4U3

2] = 0. (3.15)

Equations (3.15) may be solved to find the amplitude U1 in terms of the amplitude U2 for both the
in- and anti-phase cases (i.e. where p = +1 and p = −1, respectively). These solutions may then be
substituted into equations (3.14) to find the response frequencies of the modes.

For the case where r = 3, i.e. r1 = 1 and r2 = 3, the resonant equations of motion may be written

4(ω2
n1 − ω2)U1 + 3α1U3

1 + 2α3U1U2
2 + 3pα2U2

1U2 = 0 (3.16a)

and
4(ω2

n2 − 9ω2)U2 + 2α3U2
1U2 + 3α5U3

2 + pα2U3
1 = 0. (3.16b)

Assuming U1 �= 0 and U2 �= 0 as before, equations (3.16) may be written as

ω2 =ω2
n1 + 1

4
[3α1U2

1 + 2α3U2
2 + 3α2U1U2e+jφ̂3,1 ] (3.17a)

and

ω2 = ω2
n2
9

+ 1
36

[2α3U2
1 + 3α5U2

2 + α2U3
1U−1

2 e−jφ̂3,1 ], (3.17b)

and combined to give the amplitude relationship

[
−p

α2

9
U−1

2

]
U3

1 +
[

27α1 − 2α3

9

]
U2

1 + [3pα2U2]U1 +
[

4

(
ω2

n1 − ω2
n2
9

)
+ 6α3 − α5

3
U2

2

]
= 0,

(3.18)
which provides approximate solutions to the fundamental amplitudes for the case, where r = 3.

If r �= 1, 3, such that δ1 = δ3 = 0, the resonant equations of motion are written as

4(ω2
n1 − r2

1ω
2)U1 + 3α1U3

1 + 2α3U1U2
2 = 0 (3.19a)

and
4(ω2

n2 − r2
2ω

2)U2 + 2α3U2
1U2 + 3α5U3

2 = 0. (3.19b)

These expressions are distinct from equations (3.13) and (3.16) as they do not contain phase-
dependent terms. This implies that, for any response where r �= 1, 3 (such as the 3 : 8, 4 : 11 and
4 : 13 branches considered earlier) the phase-difference between the fundamental components
of the modes may assume any value. Following the terminology introduced in [29], these are
denoted the phase-unlocked cases. The cases where r = 1 and r = 3, however, require specific phase-
differences between the modes, i.e. φ1 − φ2 = 0,π and 3φ1 − φ2 = 0,π respectively—these are
described as the phase-locked cases. Recalling that only the conditionally resonant terms lead to



13

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160789

...................................................

1 : 1

1 : 3

3 : 8

4 : 11

4 : 13

u1(0) (×10−4)

u 2(
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×
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−
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4

Figure 6. Five NNM branches, computed using the second-order normal form technique. These are represented in terms of the
fundamental components of the linear modes at t = 0. Thick lines are used to represent the phase-locked branches (1 : 1 and
1 : 3), while phase-unlocked branches (3 : 8, 4 : 11 and 4 : 13) are represented by thin lines. The colour scheme used in previous
figures is adopted. (Online version in colour.)

phase relationships in the resonant equations of motion, it follows that phase-locking will only
occur when the specific conditions for resonance are met, such as r = 1, 3.

Following the same procedure as the phase-locked cases, equation (3.19) may be written
in terms of the base frequency

ω2 = ω2
n1

r2
1

+ 1

4r2
1

[3α1U2
1 + 2α3U2

2] = ω2
n2

r2
2

+ 1

4r2
2

[2α3U2
1 + 3α5U2

2], (3.20)

and amplitude relationship

4

(
ω2

n1

r2
1

− ω2
n2

r2
2

)
+
[

3α1

r2
1

− 2α3

r2
2

]
U2

1 +
[

2α3

r2
1

− 3α5

r2
2

]
U2

2 = 0, (3.21)

which may be solved to find the phase-unlocked responses in terms of the amplitudes and
response frequencies of the underlying linear modes.

Figure 6 shows the NNM branches of the two-mode beam model, computed using the
second-order normal form technique. This clearly resembles figure 3a, where the branches are
computed using numerical continuation. In figure 6, the phase-locked responses (1 : 1 and 1 : 3)
are represented by thick lines and the phase-unlocked responses (3 : 8, 4 : 11 and 4 : 13) are
represented by thin lines. Note that the 1 : 1 branch only shows responses that are in anti-phase,
i.e. sgn(u1(0)) = −sgn(u2(0)), found when p = −1. Although the 1 : 1 case does yield solutions
when p = +1, using equations (3.14) and (3.15), these solutions lead to harmonic components that
are greater than the fundamentals within the region shown here. As the fundamental components
are defined as those with the greatest amplitude, these solutions are rejected. Note that figure 6
shows only the initial values of the fundamental component, and the harmonics are not included.

In [29], the NNM branches were computed for different models of a symmetric, taut horizontal
cable. It was shown that both phase-locked5 and phase-unlocked branches exist for these models
and, using an analytical stability analysis, it was demonstrated that internal resonance in the
forced responses may follow the phase-locked branches, but not the phase-unlocked branches.
Based on this observation, we now consider the difference between the behaviour of these
two classes of NNM branch. Specifically, our hypothesis is that the phase-unlocked branches

5Note that the phase-locked branches represent a whirling in the cable which, as discussed in [12], is an out-of-unison motion.
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may be neglected when the NNMs are used to interpret the forced responses of a system. The
stability analysis presented in [29] exploits the special properties exhibited by the system due
to its symmetry and hence cannot readily be generalized to asymmetric systems, such as the
beam considered here. As such, a different approach is required to investigate the significance of
the phase-unlocked NNMs. In the following section, the phase difference between the modes is
investigated and an energy-based approach is used to explore the relationship between the forced
responses and the NNMs.

4. Phase considerations
In this section, the influence of the phase difference between the underlying linear modes of
the system are explored. Firstly, in §4a, a numerical method is employed to investigate the
relationship between the forced responses of the system and the NNMs. This is used to develop
a measure of attractiveness of the forced responses and the NNMs. Next, in §4b, the analytical
expressions derived in §3 are used to show that the phase difference between the modes permits
energy to be transferred within the system—a feature that is essential for many forced responses.
This allows the difference in the energy transfer mechanisms of phase-locked and phase-unlocked
responses to be compared, and gives insight into why these classes of NNM exhibit different
relationships with the forced responses.

(a) Perturbing a forced response on a nonlinear normal mode
In many engineering applications, nonlinear normal modes are used to develop an understanding
of the forced responses of systems. This is based on the assumption that the forced responses are
attracted to the NNMs [25]. In order to investigate this attraction, we now consider the case where
a damped version of the two-mode beam model is forced such that the response is precisely
that of an NNM solution. A delay is then applied to the external forcing in one of the modes,
and the resulting change in the steady-state response of the system is measured. It is assumed
that NNMs require a specific phase difference between the linear modes; therefore, if a delay
in the forcing leads to a change in the phase of the response, the response is no longer that of
an NNM. Furthermore, if an NNM is highly attractive it is expected that the change in response,
resulting from the phase perturbation, will be small. However, if the attraction is weak, the change
in the response is expected to be of a similar order to the perturbation. These responses are
computed numerically, employing a time-domain integration scheme and a shooting algorithm
to find the steady-state perturbed solutions.

If external forcing and linear modal damping are applied to the beam, the equation of motion
takes the form

q̈ + ζ q̇ + Λq + Nq(q) = f, (4.1)

where ζ is a linear modal damping matrix and f is a modal forcing vector. Comparing
equations (2.3) and (4.1) reveals that if the forcing equals the damping, i.e. f = ζ q̇, then the
response will precisely match that of an NNM. This is denoted as normal forcing. This section
considers the case where a delay (or shift in phase), δ, is applied to one element of the normal
forcing such that (

f1(t)

f2(t)

)
=
(

2ζωn1q̇1(τT)

2ζωn2q̇2([τ + δ]T)

)
, (4.2)

where τ = t/T and ζ is the linear modal damping ratio (assumed to be equal for both modes).
This delay will perturb the forced response from the NNM solution, and it is assumed that the
perturbed response may be expressed in terms of the NNM solutions with a time delay (or phase),
i.e. q̄i(t) = qi([τ + εi]T), where q̄i and qi denote the perturbed and NNM solutions, respectively.
As such, the change in the phase between the two modes may be expressed εd = ε2 − ε1. For a
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Figure 7. The phase gradients of the five NNMbranches, previously considered in figure 3. Panel (a) shows the NNMbranches in
the projection of the initial displacements of themodes, q1(0) against q2(0). The absolute values of the phase gradients of these
NNMs are represented by a colour gradient, as shown by the colour bar. As in previous figures, the branches are labelled, and
the unstable section of the 1 : 3 branch is dashed. To aid comparison between the panels, the intersection points between the
branches aremarked using coloured circles. Panel (b) shows the 3 : 8, 4 : 11 and 4 : 13 branches in the projection of θ against the
absolute phase gradient, |dεd/dδ|, where θ denotes the angle in the q1(0) against q2(0) plane. The 1 : 1 and 1 : 3 branches
are shown in panel (c) in the projection of S against |dεd/dδ|, where S is the arc length in the q1(0) against q2(0) plane.
The horizontal dashed lines in panels (b) and (c) mark the phase gradients at 0 and 1, and the vertical dotted lines in (c) show
the asymptotes. (Online version in colour.)

sufficiently small δ, the gradient of εd with respect to δ may be estimated as

dεd

dδ
≈ ε+d − ε−d

2|δ| , (4.3)

where ε+d and ε−d are the values of εd when δ = +|δ| and δ = −|δ|, respectively.
Figure 7 shows the phase gradients on the NNM branches considered previously for the

example beam. These have been computed for the case where the system has linear damping with
ζ = 0.01. Figure 7a shows the NNM branches in the projection of the initial displacements of the
modes, q1(0) against q2(0), as used previously in figure 3a. A colour gradient is used to represent
the absolute phase gradient, |dεd/dδ|, as shown by the colour bar on the r.h.s. of the plot. Note
that the upper limit of this colour bar is 1+, as some gradients exceed 1. In the projection of
q1(0) against q2(0), the 3 : 8, 4 : 11 and 4 : 13 branches are near-circular. This property is exploited in
figure 7b, where the phase gradients of the NNMs of these branches are shown in the projection
of the angle (in the q1(0) against q2(0) plane), θ , against the absolute phase gradient, |dεd/dδ|.
Similarly, figure 7c shows the phase gradient of the 1 : 1 and 1 : 3 branches. As these are not circular,
the projection of the arc length (in the q1(0) against q2(0) plane), S, against the absolute phase
gradient, |dεd/dδ|, is used. Owing to the symmetry of these NNM branches, only half of the
branches are shown, i.e. between 0 and π for figure 7b and between 0 and 0.5 for figure 7c (where
S = 0 marks q1(0) = q2(0) = 0 for these branches). Note that the colour scheme used in figure 7a
is also employed in figures 7b,c. A series of coloured circles (as used previously in figure 3) are
used in figure 7 to show the points where the NNM branches intersect in the q1(0) against q2(0)
projection.

Figure 7 demonstrates how the phase gradients differ between the NNM branches. Firstly, it
can be seen that the 1 : 1 branch has a gradient close to 0 at all points shown here. This shows that
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the responses exhibit little change when the external forcing is perturbed, suggesting that these
NNMs are highly attractive to the forced responses. As such, it may be concluded that the 1 : 1
branch is a key feature for using NNMs to interpret the forced responses of this system.

The 1 : 3 branch shows a more complex behaviour and it can be seen that this behaviour
is related to the unstable regions (represented by dashed lines). This includes the presence of
vertical asymptotes, represented by vertical, dotted black lines in figure 7c. However, aside from
the regions in the vicinity of the unstable NNMs, the phase gradient for this branch is close to
zero. This suggests that the influence of the stable portion of the 1 : 3 branch is similar to that of
the 1 : 1 branch, and represents a key feature underlying the forced responses.

It can be seen that the phase-unlocked (i.e. the 3 : 8, 4 : 11 and 4 : 13 branches) have phase
gradients close to 1 at most points. This shows that the majority of NNMs on these branches
do little to attract the forced responses, as the change in the response is of the same order as the
perturbation. As such, the phase-unlocked branches are expected to have little influence on the
forced responses. It can also be seen that, in vicinity of the crossing points with phase-locked
branches, the phase gradient of the phase-unlocked branches decreases towards zero. This is to
be expected as, at the crossing points, the two branches must share solutions, and hence must also
share phase-gradients. Furthermore, as phase-unlocked branches approach a crossing point, they
must converge to that of a phase-locked response. For example, at the crossing point with the 1 : 3
branch, the 3 : 8 branch must be exhibiting a 3 : 9 response. As such, it is expected that in vicinity of
the crossing point (where the phase gradient is seen to decrease) the ninth harmonic of the second
mode grows to be larger than the fundamental. This analysis suggests that the phase-locked
branches are influential structures underpinning the forced responses of this system, whereas
the majority of phase-unlocked solutions have less influence.

(b) Energy transfer between modes
It has been shown in §4a that phase-locked and phase-unlocked NNM branches have differing
degrees of influence on the forced responses. We now build upon the results presented in [29],
showing internally resonant behaviour in a taut cable. In [29], it was demonstrated that phase-
unlocked branches do not correspond to internally resonant responses (where a mode that is not
directly forced exhibits a response). Internal resonance requires a net energy transfer from the
forced mode into the unforced mode (assuming the unforced mode is losing energy to damping).
This energy transfer thus represents a physical mechanism that must be present in order for a
system to exhibit internal resonance. As such, in this section, this energy transfer mechanism is
investigated for both phase-locked and phase-unlocked responses.

The net energy transfer into the ith linear mode over one period of motion may be written as

Ei =
∫T

0
Nqi(t)q̇i(t) dt, (4.4)

where Nqi represents the nonlinear terms in the ith conservative equation of motion. Neglecting
the harmonics, this may be approximated to

Ei =
∫T

0
Nui(t)u̇i(t) dt, (4.5)

where Nui represents the nonlinear terms in the ith resonant equation of motion. As these
nonlinear terms all respond at the ith fundamental frequency, ωri, this may be written as

Ei = −Uiωri

∫T

0

⎧⎨
⎩

Ki∑
k=1

N̄ui,k cos[ωrit − (φi + ψi,k)]

⎫⎬
⎭ sin(ωrit − φi) dt, (4.6a)

= −πUiri

Ki∑
k=1

N̄ui,k sin(ψi,k), (4.6b)
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where N̄ui,k and ψi,k represent the amplitude and phase of the kth term in Nui, respectively; Ki
denotes the total number of terms in Nui; and where the assumed solution for ui, equation (3.2),
has been used. Recalling the form of the resonant equations of motion, equations (3.8) and (3.9),
phase-locking may only occur when ψi,k �= 0 and, for phase-unlocked responses, ψi,k = 0 for all
terms. As such, equation (4.6b) demonstrates that, for phase-unlocked responses, a shift in phase
will not lead to a transfer of energy between the resonant components of the underlying linear
modes.

Although net energy transfer does not occur between modes in a steady-state conservative
response (such as an NNM) it may occur in forced and transient responses. In the case of internal
resonance, as considered in [25], a net energy transfer from the forced mode to the unforced mode
must be present if the unforced mode is to exhibit a response (assuming the unforced mode is
damped). As such, if an internally resonant forced response is close to an NNM, that NNM must
be able to transfer energy between the modes. This explains why no internally resonant responses
were seen to follow the phase-unlocked backbone curves in [29], as no energy can be transferred
via the fundamental components of the response.

This analysis also helps explain the difference between the phase gradients of the phase-locked
and phase-unlocked branches shown in figure 7—the change in the external forcing will change
the net energy transfer into each mode due to the forcing. To compensate for this, the net energy
must either be transferred between the linear modes or the modes must alter their response
to reduce this change. The phase-locked branches are able to exhibit a small shift in phase to
accommodate the transfer, whereas the phase-unlocked branches cannot, and so must alter their
response phase to match that of the forcing. However, the analysis presented here only considers
the energy via the fundamental components. Next, we explore the role of harmonics in the transfer
of energy between modes.

(c) Harmonics of a nonlinear normal mode
The second-order normal form technique, used earlier to compute analytical expressions for the
NNM branches, may also be used to compute analytical expressions describing the harmonics.
This has previously been demonstrated in [30,34], for example. Recalling equations (3.6) and (3.7),
the matrix of harmonic coefficients, [h], may be computed. Using this, along with h = [h]u∗, allows
the harmonics of the first and second modes to be written

h1 =
7∑

k=1

H1,k cos[(μk + νkr)(ωr1t − φ1) + νkφ̂r,1] (4.7a)

and

h2 =
7∑

k=1

H2,k cos[(μk + νkr−1)(ωr2t − φ2) + νkr−1φ̂r,1], (4.7b)

where

μ1 = 0, μ2 = 0, μ3 = 1, μ4 = 1, μ5 = 2, μ6 = 2, μ7 = 3,

ν1 = 1, ν2 = 3, ν3 = −2, ν4 = 2, ν5 = −1, ν6 = 1, ν7 = 0,

and where the amplitudes of these components, H1,k and H2,k, are listed in appendix B.
The presence of the phase-difference, φ̂r,1 = rφ1 − φ2, in these expressions demonstrates that,

even when phase-locking is not present in the resonant equations of motion (i.e. when r = 1, 3), the
harmonics are phase-dependent. As such, it may be assumed that the phase-unlocked responses
may transfer energy via the harmonics when there is a change in the phase-difference between
the modes.

As the harmonics are smaller than the fundamental components of the response they may
only transfer a small amount of energy. Therefore, the phase-locked responses (which are
able to transfer energy via the fundamental components) may transfer more energy than the
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phase-unlocked responses (which may only transfer via the harmonics). This demonstrates a
fundamental difference between the underlying mechanisms of these two classes of NNM,
and it may be concluded that it is the relative weakness of this energy-transfer mechanism
that prevents many forced responses from following the phase-unlocked branches, as observed
in [29]. In applications where the harmonics are assumed to be negligible, it is reasonable to
assume that the phase-unlocked NNMs transfer a negligible amount of energy between the
modes.

5. Forced responses
In previous sections, it has been argued that phase-unlocked NNM branches have little influence
on the forced responses as the energy may only be transferred between the linear modes of
the system via the action of the harmonics. In this section, the case where a sinusoidal forcing
is applied to the second linear mode is considered. Initially, damping levels that are typical
of engineering structures are used, and it is shown that the phase-locked NNM branches are
followed. Next, an extremely low damping level is used, and it is shown that this allows the
phase-unlocked branches to be followed. This demonstrates that phase-unlocked branches may
be followed by the forced responses when the damping is very low, as the required energy transfer
between the linear modes is sufficiently small.

The sinusoidal forcing considered in this section is only applied to the second linear mode
such that, recalling the forced equations of motion from equation (4.1), this is expressed as
f1 = 0 and f2 = P cos(Ωt) (where P is the forcing amplitude and Ω is the forcing frequency). As
previously, a linear modal damping is assumed. Figure 8 shows the 1 : 1 and 1 : 3 NNM branches,
along with an additional 1 : 3 branch at one third of the base frequency such that Ω =ω/3.
A segment of this branch, referred to as the subharmonic 1 : 3 branch, has previously been shown
in figure 3c, intersecting with the 3 : 8 NNM branch. Note that, as with the bottom panel in
figure 3c, the complete loop in the 1 : 3 and subharmonic 1 : 3 branches cannot be seen. To help
simplify this figure, the 1 : 3 and subharmonic 1 : 3 branches are truncated in the Ω against Q2
projection.

Along with the NNM branches, figure 8 also shows forced responses when the forcing
amplitude is P = 5 and the linear damping ratio is ζ = 0.01. It can be seen that a large peak
envelops the 1 : 1 NNM branch and a smaller peak envelops the 1 : 3 branch. This is to be expected
as, at low amplitude, the 1 : 1 branch is primarily composed of the second mode (the forced mode)
while the 1 : 3 branch is primarily composed of mode 1 (figure 3a). As shown in detail in figure 8,
a small peak also envelops the subharmonic 1 : 3 branch.6 It can be expected that decreasing the
damping ratio, or increasing the forcing amplitude, will lead to a growth in the forced response
following this subharmonic branch, and the response following the 1 : 1 branch will become
extremely large. Figure 8 also shows that the peaks do not envelop the NNM branches precisely—
they appear to be shifted to a higher frequency. This is due to the relatively high amplitude
reached by the second mode away from resonance, which leads to a stiffening effect in the system,
as described in [29,37].

Figure 9 shows the forced responses when the system is forced with an amplitude of P = 5
and with a damping ratio of ζ = 10−8—an equal forcing but significantly lower damping ratio
than that used in figure 8. While figure 8 shows the forced responses over a forcing frequency
range including the first and second linear natural frequencies, ωn1 and ωn2, the range in figure 9
is much smaller, and details the responses enveloping the 1 : 3 subharmonic branch. The very
low damping considered here leads to an extremely high-amplitude response enveloping the 1 : 1
branch, and hence is not shown here. Figure 9a shows, in the Ω against Q2 projection, that the
second mode exhibits a non-zero response away from resonance, due to the external forcing. As
previously shown in figure 8, this causes a slight shift in the frequency of the forced responses.

6For further discussion of subharmonic resonances, see [36].
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Figure 8. The NNM and forced response branches when the second mode is forced with an amplitude of P = 5 and where
the damping ratio is ζ = 0.01. These forced responses are shown in the projection of the forcing frequency,Ω , against the
maximum displacements of the first and second modes, Q1 and Q2, respectively. The stable and unstable forced responses are
represented by solid-black and dashed-orange lines respectively, and fold bifurcations are represented by orange dots. The NNM
branches are represented by solid-blue and solid-green lines, and crosses mark the linear natural frequencies, as labelled. Two
regions, near toΩ =ωn1/3 andΩ =ωn1, are shown in detail in theΩ against Q1 projection. (Online version in colour.)

Figure 9a shows that, near ωn1/3, the first linear mode exhibits a response that follows the 1 : 3
subharmonic NNM branch very closely. This response follows the loop region of the branch before
reaching a fold bifurcation. A similar behaviour is observed in the second mode, although an
amplitude shift is also introduced by the forcing. Along with this primary forced response branch,
an isola7 is observed, enveloping the upper section of the 1 : 3 subharmonic NNM branch. Close
to where the subharmonic 1 : 3 and 3 : 8 NNM branches meet, a set of branch point bifurcations
connect the isola to a set of additional responses. These responses are shown in detail in figure 9b,c,
where they appear to follow the subharmonic 3 : 8 branch. An additional branch point bifurcation
can be seen near Ω =ωn1/2, which is found to lead to an additional set of responses following
the subharmonic 1 : 3 branch at Ω =ω/2. As this subharmonic branch does not connect to any
phase-unlocked branches, this response is not shown.

Figure 10 shows the amplitudes of the first 15 Fourier components at two points on the forced
responses following the subharmonic 3 : 8 NNM branch. As shown in figure 10a(ii), figure 10a(i)
shows the Fourier components at a fold bifurcation on the larger of the two sets of responses,
while figure 10b(i) shows the components at a fold bifurcation on the smaller of the two. In both
cases, the fundamental component of the first mode (represented by the blue dots in the upper
plots) is at three times the forcing frequency, while the fundamental component of the second
mode (red dots in the lower plots) is at 8Ω . There is also a fairly large component in the second
mode responding at the forcing frequency, due to the external forcing acting directly on the second
mode. However, this clearly shows that in both cases the responses are exhibiting a 3 : 8 response.

This demonstrates that the forced responses may follow the 3 : 8 NNM branch, determined
to be phase-unlocked in the analytical analysis. Fundamentally, the system is only forced in the
second mode, and so a 3 : 8 response (in which the first mode is active and damped) requires a net
transfer of energy from the second to the first mode. This shows that the 3 : 8 response is able to

7An isola is a detached section of the forced response. For further discussion of isolas, see [26,28].
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Figure 9. The NNM and forced response branches when the second mode is forced with an amplitude of P = 5 and where
the damping ratio is ζ = 10−8. Panel (a) shows the forced responses in the projection of the forcing frequency,Ω , against
the maximum displacements of the first and second modes, Q1 and Q2, respectively. Note that the range of forcing frequencies
is smaller than that shown in figure 8. The NNM branches are represented by solid lines, using the colour scheme adopted for
previous figures. The stable and unstable forced responses are represented by solid-black and dashed-orange lines, respectively,
while the fold and branch point bifurcations are represented by orange dots and black dots, respectively. The boxes, labelled (b)
and (c), mark the regions that are shown in detail in panels (b) and (c). (Online version in colour.)

transfer energy between the modes. Furthermore, the external forcing is at a single harmonic and
well away from the linear natural frequencies. As such, in exhibiting a 3 : 8 response, the system
is resisting the external forcing and this response is driven by its attraction to the 3 : 8 NNMs.

The 3 : 8 forced responses may only be observed when the damping is extremely low (ζ = 10−8

in the case considered here). As such, only a small amount of energy is lost from the first, unforced,
mode, and hence only a small amount of energy must be transferred between the modes. This net
energy transfer is sufficiently small that it may be achieved via the harmonics, which is required
for a phase-unlocked NNM branch to be followed. If the damping is increased to ζ = 2.7 × 10−6, it
is found that the isola disappears, and hence the mechanism for reaching the 3 : 8 branch no longer
exists. This is still an extremely low level of damping, and rarely seen in mechanical structures.

Therefore, while it has been demonstrated in this section that the phase-unlocked NNMs
are able to attract forced responses, they do not appear to do so in the majority of engineering
systems, with more conventional levels of damping. If the damping is extremely low, the forced
responses may be attracted to the phase-unlocked NNMs, resulting in a large number of complex
resonant behaviours. However, these resonances are likely to be much less significant than those
enveloping the phase-locked branches.
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Figure 10. The amplitudes of the first 15 Fourier components of two different solutions on the forced response branches
following the 3 : 8 NNM branch. Panel (a(ii)) shows the larger of the two forced response branches in detail, in the projection of
forcing frequency against the amplitude of displacement of the first mode, and a green circlemarks the responsewhose Fourier
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smaller of the two forced response branches. The green circle in this panel marks the response whose Fourier components are
shown in panel (b(i)). (Online version in colour.)

6. Conclusion
This paper has considered the dynamic behaviour of a simple nonlinear model of a beam. It
has been shown that this system may exhibit a large number of NNM branches, i.e. the loci of
responses of the underlying conservative system. These branches describe a vast array of dynamic
behaviours, many of which are not observed when the system is forced and damped. As NNMs
are often used to gain an understanding of the forced responses, this highlights the need for a
method for determining which NNM branches relate to the forced responses, and which can be
neglected.

To gain an understanding of the mechanisms that govern the NNMs, the dynamics of the
NNM branches was described using an analytical method. This revealed two distinct classes
of NNM branch: phase-locked branches, where the fundamental components of the responses
were coupled via specific phase relationships; and phase-unlocked branches, where no phase
relationship between the fundamental components is directly enforced. This phase relationship
is key to understanding how the NNMs correspond to the forced responses.

The influence of the phase relationship between the modes was investigated by considering a
perturbation to the phase of the external forcing. The forcing was initially such that the response
was precisely that of an NNM, and hence the perturbation leads to a deviation of the response
from the NNM. The magnitude of this deviation was used as a measure of the attraction between
the NNM and the forced response. This assumes that a strongly attractive NNM will be robust
to the external forcing, and hence the deviation will be small, while a forced response on a
weakly attractive NNM will deviate further. The results of this analysis demonstrated that the
phase-locked NNM branches are strongly attractive, while the phase-unlocked NNMs are weaker.

To explain the nature of attraction between the NNMs and forced responses, the energy
transfer between the linear modes of the system was then considered. This revealed that the
phase-locked NNMs are able to transfer energy via the fundamental components of the modes,
while the phase-unlocked NNMs can only transfer energy via the harmonics. As the harmonics
are typically much smaller than the fundamental components, this mechanism for energy transfer
is much weaker in phase-unlocked responses.
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The importance of the energy transfer mechanism is then demonstrated by considering the
case where the system is sinusoidally forced. When the damping is very low, the net energy
transfer between the modes is sufficiently small that it may be achieved by some phase-
unlocked NNMs. However, when the damping is at a level that is more typical of engineering
structures, the required energy transfer is too great and the phase-unlocked NNM branches
cannot be followed. This was demonstrated using two different damping values: one that is
typical of engineering structures, where the phase-unlocked branches are not followed; and
one extremely low value, where a phase-unlocked branch is followed. It is therefore concluded
that phase-unlocked NNMs will only influence the forced responses in systems with extremely
low damping, and may be disregarded in other cases. This reduces the number of NNM
branches that need to be considered, and simplifies their use as a tool for understanding forced
responses.
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Appendix A. Parameters of the beammodel
From [32], the modeshape of the ith linear mode may be written as

θi(x) =
√

2

[
1 − 2

EI

k̂L
sin2(βi) −

(
sin(βi)

sinh(βi)

)2
]−1/2 [

sin
(
βi

L
x
)

− sin(βi)
sinh(βi)

sinh
(
βi

L
x
)]

, (A 1)

where βi may be found by solving

cot(βi) − coth(βi) + 2EI
βi

k̂L
= 0. (A 2)

Additionally, the linear natural frequencies may be found using

ω2
ni = EI

ρÂ

(
βi

L

)4
, (A 3)

and the nonlinear coefficients are found from

α1 = −E
2L2ρ

[∫L

0
θ ′

1θ
′
1 dx

][∫L

0
θ ′′

1 θ1 dx

]
, α2 = −E

2L2ρ

[∫L

0
θ ′

1θ
′
1 dx

][∫L

0
θ ′′

1 θ2 dx

]
,

α3 = −E
2L2ρ

{
2

[∫L

0
θ ′

1θ
′
2 dx

][∫L

0
θ ′′

2 θ1 dx

]
+
[∫L

0
θ ′

2θ
′
2 dx

][∫L

0
θ ′′

1 θ1 dx

]}
,

α4 = −E
2L2ρ

[∫L

0
θ ′

2θ
′
2 dx

][∫L

0
θ ′′

2 θ1 dx

]
and α5 = −E

2L2ρ

[∫L

0
θ ′

2θ
′
2 dx

][∫L

0
θ ′′

2 θ2 dx

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 4)

http://dx.doi.org/10.5523/bris.18ov1ijiiox0u1b0z40rzcsnwl
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Appendix B. Amplitudes of the harmonic components
The amplitudes of the harmonics components, described in equations (4.7), may be computed
using

H1,1 = 3�1

r + 1

(α2

2
U2

1U2 + α4

4
U3

2

)
, H1,2 = α4U3

2
4(3r + 1)(3r − 1)

,

H1,3 = α3�1

16r
U1U2

2, H1,4 = α3U1U2
2

16r(r + 1)
, H1,5 = 3α2

4
�1�3U2

1U2,

H1,6 = 3α2U2
1U2

4(r + 1)(r + 3)
, H1,7 = α1

32
U3

1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)

and

H2,1 = −3�1

r + 1

(α2

4
U3

1 + α4

2
U1U2

2

)
, H2,2 = −α2�3U3

1
4(r + 3)

, H2,3 = −α3

16
�1U2

1U2,

H2,4 = α3U2
1U2

16(r + 1)
, H2,5 = 3α4�1U1U2

2
4(3r − 1)

, H2,6 = 3α4U1U2
2

4(r + 1)(3r + 1)
,

H2,7 = α5U3
2

32r2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (B 2)

where �i is defined by

�i =
⎧⎨
⎩

0 if: i = r,

(r − i)−1 if: i �= r.
(B 3)

Note that it has been assumed that r = 1
3 is not a solution.
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