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Abstract

Precise temporal coordination of gene expression is crucial for many developmental processes. One central question in
developmental biology is how such coordinated expression patterns are robustly controlled. During embryonic
development of the Drosophila central nervous system, neural stem cells called neuroblasts express a group of genes in
a definite order, which leads to the diversity of cell types. We produced all possible regulatory networks of these genes and
examined their expression dynamics numerically. From the analysis, we identified requisite regulations and predicted an
unknown factor to reproduce known expression profiles caused by loss-of-function or overexpression of the genes in vivo,
as well as in the wild type. Following this, we evaluated the stability of the actual Drosophila network for sequential
expression. This network shows the highest robustness against parameter variations and gene expression fluctuations
among the possible networks that reproduce the expression profiles. We propose a regulatory module composed of three
types of regulations that is responsible for precise sequential expression. This study suggests that the Drosophila network
for sequential expression has evolved to generate the robust temporal expression for neuronal specification.
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Introduction

Precise coordination of cell fate decisions is crucial in the

development of multicellular organisms. In the developmental

processes, where a series of events occurs at a specific place and

time, gene regulatory networks are responsible for implementing

reliable biological functions [1,2]. To obtain system-level under-

standing of such processes, it is necessary to integrate the

molecular machinery of each regulation with architecture and

dynamics at the regulatory network level. Biological functions

achieved by gene networks are generally expected to possess

robustness, i.e., insensitivity of system properties against a variety

of perturbations that might originate from fluctuations during

development and mutations through evolution. Recent investiga-

tions have addressed the questions of how robust biological

functions are achieved through underlying molecular network

architecture and its dynamic properties [3,4,5,6,7]. An illustrative

example in developmental systems on this subject is segmentation

of Drosophila melanogaster, which has been studied both experimen-

tally and theoretically [8,9,10]. The requisite regulations or

architecture of this system have been discussed at the network

description level [10,11,12,13,14], and it is suggested that the

underlying gene network has evolved to perform its processes in a

robust manner [15,16,17].

Besides spatial patterning, temporal profiles of gene expression

also play important roles in development [18,19,20]. Several

computational studies have analyzed temporal expression profiles

in biological processes such as the midgut development of sea

urchin [21,22] and vulval development of C. elegans [23]. These

studies have shown relevant regulatory interactions and predicted

unknown regulations for cell-fate specification.

The development of the Drosophila central nervous system (CNS)

also manifests the importance of temporal patterning mechanism in

development. Drosophila neural stem cell-like progenitors, called

neuroblasts (NBs), generate a variety of neural cell types. During the

embryonic development of the Drosophila CNS, NBs in the ventral

nerve cord express certain transcription factors, i.e., Hunchback

(Hb), Krüppel (Kr), Pdm1/Pdm2 (Pdm), and Castor (Cas), in a

definite order (Fig. 1A–C) [24,25,26,27]. In addition, the fifth factor,

Seven-up (Svp), is expressed in the time window between Hb and Kr

expression [28]. In association with this sequential expression, NBs

divide asymmetrically to bud off a series of ganglion mother cells

(GMCs). Each GMC undergoes an additional division to typically

generate two postmitotic neurons. Depending on the transcription

factors expressed in NBs at each division, postmitotic neurons acquire

different cell fates. Thus, the sequentially expressed transcription

factors control the cell-fate specification, thereby establishing the

diversity of neurons in the Drosophila CNS. While neuronal

specification process and generated cell types also depend on the

spatial position [29,30,31] and lineage [32,33] of NBs, the sequential

expression is observed in a majority of ventral nerve cord NBs [34].
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Isolated NBs exhibit sequential expression in vitro and differen-

tiate into various neurons in a manner similar to that observed in

vivo [35,36]. Hb expression is switched off by Svp in a mitosis-

dependent manner, while the subsequent expression of Kr, Pdm,

and Cas proceeds in a mitosis-independent manner [28,37]. These

observations suggest that sequential expression of the genes is

regulated cell-autonomously and occurs through mutual interac-

tions among the factors.

In this study, we address the robustness of the gene network for

sequential expression in the Drosophila CNS. One of the promising

approaches to obtain insights into the system-level properties of

biological systems is to compare the robustness of the actual

network with that of other possible network architectures. Wagner

considered how network architecture and robustness are related by

studying circadian oscillation networks [38], although these

networks lack a direct biological counterpart. Ma et al. studied

the robustness of the Drosophila segmentation network [39], in

which they had to arbitrarily eliminate components to reduce the

size of the entire network. From theoretical and computational

points of view, one advantage of studying temporal patterning in

the Drosophila CNS is that the number of system components is so

small that we can perform a comprehensive analysis of network

architecture without any loss of biological relevance.

First, we explored the regulatory networks to reproduce the

observed expression patterns in both wild-type (WT) and mutant

embryos. We did not confine ourselves to only known regulations

for sequential expression, but rather searched all possible networks

that could reproduce the observed expression patterns. Studying

the common structure of the specified genetic networks, we

detected requisite regulations and predicted an unknown factor to

reproduce known expression profiles. Second, we compared the

robustness of the actual Drosophila network with that of the other

networks reproducing the expression profiles. As a measure of

robustness, we analyzed the stability of sequential expression

against parameter variations and gene expression fluctuations. We

found that the Drosophila network is highly robust and stable

among possible functional networks. By further investigating the

regulations necessary for the Drosophila network to be robust, we

detected the responsible regulations. We propose a regulatory

module composed of three kinds of regulations that is responsible

for precise sequential expression of the Drosophila network.

Results

Temporal patterning network of D. melanogaster NBs
Expression profiles of temporal transcription factors (hb,

Kr, pdm, cas, and svp) in Drosophila NBs are summarized in

Figure 1D for WT, loss-of-function, and overexpression embryos

[25,26,28,36,40,41]. It has been considered that these sequential

expressions are produced (or at least modulated) by mutual

regulations among the temporal transcription factors [24,25]. We

reconstructed the gene network for sequential expression in

Drosophila NBs from the literature as shown in Figure 1E and F

(for references, see Table 1).

Modeling gene network dynamics by Boolean
description

First, we searched for regulatory networks that reproduce the

sequential expression patterns of both WT and mutants. To

investigate gene expression dynamics, we adopted a Boolean-type

model [6] (see Materials and Methods for details of the model

and the following analysis):
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where X t
i represents the expression state of gene i

(i [ hb, Kr, pdm, casf g) at the t-th time step and takes either 1

(ON) or 0 (OFF). Regulation from gene j to gene i is either positive

(Jij .0), negative (Jij ,0), or zero (Jij = 0), which corresponds to

activation, repression, or absence of regulation, respectively. The

state of gene i at the next step (X tz1
i ) is 1 when the sum of

regulatory inputs is positive (
P

j JijX
t
j w0) or 0 when the sum is

negative (
P

j JijX
t
j v0). When the sum equals zero (

P
j JijX

t
j ~0),

X tz1
i takes the default expression state hi: hi [ f0, 1g. In this

study, the value of Jij is supposed to take one of the discrete values

Jij [ f1, 0, {5g. The large negative value (25) of Jij signifies that

the expression of a gene is completely shut off in the presence of a

repressor. This choice of large negative value comes from

experimental observations of mutants. In experimentally observed

expression patterns (Fig. 1D), genes are not activated when both

repressors and activators are expressed. For example, in Kr++ and

pdm++ embryo (here ‘‘++’’ means overexpression of the gene), pdm

and cas expression is not observed in hb-expressing time window,

although their activators are overexpressed. This indicates that the

repressive effect from hb is dominant over pdm activation by Kr and

cas activation by pdm.

Initial expression state of genes is set to 0, except for Hb, which

emulates the NB gene expression in the first stage of sequential

expression [24,25]. Thus far, the only known function of Svp

during the early stage is downregulation of Hb. There is no

evidence that Svp regulates or is regulated by other temporal

transcription factors during the expression series: Kr ? Pdm ?
Cas [28]. In addition, Hb is only regulated by Svp and not by the

other three factors (Kr, Pdm, and Cas). Thus, in the model, we

assumed a pulsed expression of Svp as an input to the system,

Author Summary

Cell fate specification is of key importance in the
development of multicellular organisms. To specify various
cell fates correctly, genetic networks precisely coordinate
spatial and temporal gene expression patterns during
various developmental stages. One central question in
developmental biology is to elucidate the relationship
between the pattern formation and the network architec-
ture. During embryonic development of the Drosophila
central nervous system, the neural stem cells express a
group of genes in a definite order, which is responsible for
the diversity of neural cells. To elucidate the underlying
mechanism of the process, we analyzed the structure and
dynamics of the genetic network for the temporal changes
occurring in the Drosophila neural stem cells. Searching all
the possible regulatory networks of these genes using a
computer program, we detected the requisite regulations
that reproduce observed gene expression profiles. By
comparing the stability of the dynamics among the
functional networks, we uncovered the robust nature of
the actual Drosophila network against environmental and
intrinsic fluctuations. These results indicate that the
genetic network for sequential expression has evolved to
be robust under functional constraints. Our study propos-
es regulatory modules that are responsible for the precise
sequential expressions, which might exist in genetic
networks for other temporal patterning processes.

Robustness in Drosophila Neurogenesis
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Figure 1. Sequential expression of temporal transcription factors within neuroblasts in the Drosophila CNS. (A) The relative position of
neuroblasts (NBs) in Drosophila embryo. The picture is the ventral view of NBs and shows Cas expression in the NBs at developmental stage 12. The
bracket indicates a single segment. Dashed line corresponds to the midline. Scale bar: 40 mm. (B) The expression levels of Hb, Kr, Pdm, and Cas in a single
NB (NB 2–4 lineage) are shown from the developmental stage 10 to 12: early stage 10 (st. 10), early stage 11 (e11), mid stage 11 (11), late stage 11 (l11),
mid stage 12 (12), late stage 12 (l12). (C) Schematic representation of the change of the expression pattern in a single NB. (D) The expression profiles of
WT, loss-of-function, and overexpression mutants of the genes observed in the experiments (for references, see Table 2). (E) Reconstructed genetic
network for sequential expression in Drosophila NBs. Repression from hb to cas (dashed line) was suggested to exist [26], although there is no direct
verification. When the Drosophila network is invoked in this article, this regulation is also included. (F) Matrix representation of the Drosophila network.
doi:10.1371/journal.pcbi.1000760.g001

Robustness in Drosophila Neurogenesis
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resulting in downregulation of Hb at the next time step. The

temporal expression dynamics of Kr, Pdm, and Cas follow Eq. (1)

with assigned values of Jij (Fig. 1F).

The regulatory networks of known factors do not
reproduce the experiments

Based on the above formulation, we investigated whether the

reconstructed Drosophila gene network (Fig. 1E and F) is sufficient

to reproduce the sequential expression observed in WT, as well as

all the known single loss-of-function and overexpression mutants,

i.e., hb2, Kr2, pdm2, cas2, hb++, Kr++, pdm++, and cas++ (Fig. 1D,

Table 2). Presently, we cannot specify the value of the parameters

hKr, hpdm and hcas from empirical data; thus, each value could be

arbitrarily chosen from hi [ f0,1g (i [ fKr, pdm, casg). We

studied all 23 combinations of fhig and found that the dynamics

coincide with the expression profile in WT but not in some

mutants for each choice of parameters (examples shown in Fig. 2).

Depending on the parameter values, the expression dynamics

changed to some extent, but none of the possible combinations

reproduced the expression profiles of all of the mutants. For

example, in case of hKr~0, hpdm~0, and hcas~1, the dynamics of

the network for hb2 and Kr2 did not agree with the experiments

(Fig. 2A), and in case of hKr~1, hpdm~1, and hcas~1, the

dynamics of hb2 and pdm2 did not (Fig. 2C).

We then investigated whether networks other than the Drosophila

network can reproduce the observed expression profiles by

checking all the 312 ( = 531,441) combinations of Jij values. The

dynamics agreed with the expression profile in WT for a large

number of networks (39,391 out of 531,441), but any networks

composed of hb, Kr, pdm, cas, and svp did not reproduce the profiles

in both WT and mutants.

Introduction of a presumptive factor is sufficient to
reproduce the expression profiles

Preceding results indicate the difficulty of reproducing the

observed expression patterns only with known constituents. We

therefore introduced an additional presumptive regulator (x). The

expression state of x was assumed to start in the ON state and

change into OFF, or vice versa at t~tswitch (0ƒtswitchƒtend) (see

Materials and Methods). Including this assumption, we

reinvestigated the dynamics of all 315 ( = 14,348,907) possible

regulatory networks with all the possible switching timings of x. In

the case that the expression of x switches OFF to ON, none of the

networks conformed to the expected expression profiles. On the

other hand, in the case that the expression of x switches ON to

OFF, we found that 384 networks (,0.003%) reproduced the

expression profiles of both WT and mutants. We refer to the

detected networks as ‘‘the functional networks’’ hereafter in the

study.

Comparing the regulatory interactions of the functional

networks, we found that the regulations shared among all the

functional networks are coincident with experimentally verified

regulations (colored as black in Fig. 3A). In addition, activation of

Kr and repression of cas by a presumptive factor x appear in all of

the functional networks (colored as brown in Fig. 3A). The genetic

network composed of these common regulations is a minimum

network to reproduce the expression profiles of WT and mutants.

To quantify the similarity among the functional networks, we

measured the distances of the 384 functional networks from the

actual Drosophila network (Fig. 3C); the distances are defined by the

number of different regulations (see Materials and Methods).

As a reference, we also performed the same analyses of distance

measurement for all possible networks and the networks that are

randomly reconnected from functional networks (see Materials
and Methods). For all possible networks, the frequency

distribution of the distances shows that the network architectures

are different from the actual Drosophila network by 7.8+1.5

regulations. The reconnected networks yield similar results, albeit

with slightly decreased distances (7.0+1.7 regulations). In

contrast, the architectures of the functional networks differ by

only 2.4+1.1 regulations. The architectures of the functional

networks resemble that of the actual Drosophila network. These

indicate that the gene networks that reproduce the known

sequential expression patterns are highly constrained in their

topologies.

Robustness of the Drosophila network against parameter
variations and expression noise

Because there are multiple network architectures that explain

the observed expression profiles as shown above, we then

investigated the characteristics of the actual Drosophila network

among the functional networks. From the biological point of view,

the sequential expression in NBs should proceed reliably despite

developmental disturbances such as cell-to-cell variation and

intracellular fluctuations. We thus evaluated the stability of

sequential expression for each of the detected functional networks

and compared the properties of the actual Drosophila network to

those of the other networks. To address the problem quantita-

Table 1. List of the regulatory interactions of the genes in the
NB temporal patterning network.

Regulations References

Activation hb ? Kr [25]

Kr ? pdm [25]

pdm ? cas [26]

Repression hb ? pdm [24], [25]

hb ? cas [26]

Kr ? cas [25]

pdm ? Kr [26]

cas ? pdm [24], [26]

svp ? hb [28], [37]

doi:10.1371/journal.pcbi.1000760.t001

Table 2. List of references for the sequential expression
pattern in various genotypes.

Genotype References

wt [25], [28]

hb2 [25], [36]

Kr2 [25]

pdm2 [26], [41]

cas2 [26], [41]

hb o.e.1 [25]

Kr o.e. [25], [40]

pdm o.e. [26], [41]

cas o.e. [26], [41]

1 o.e.: over expression.
doi:10.1371/journal.pcbi.1000760.t002

Robustness in Drosophila Neurogenesis
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tively, we extended the previous Boolean model into a model of

ordinary differential equations with fluctuations in gene expres-

sion, where the concentrations of mRNAs {Mi(t)} and proteins

{Pi(t)} obey the following equations [42,43] (see Materials and
Methods for the details of the model and the following analysis):

dMi(t)

dt
~cM Fi(fPj(t)g){Mi(t)

� �
zji(t),

dPi(t)

dt
~cP Mi(t){Pi(t)½ �:

ð2Þ

Here i refers to one of each gene: i [ fhb, Kr, pdm, cas, xg. The

variables {Mi(t)} and {Pi(t)} take continuous values, unlike the

previous Boolean description. The precise function form of

promoter activities {Fi({Pj(t)})} is dependent on the regulatory

interactions of the genetic networks f~JJijg and the default promoter

activities {Si}, corresponding to the Boolean model. The time-

dependent variables fji(t)g represent the noise in promoter

activities. Here we have assumed that the expression noise comes

from the transcription process (noise is incorporated only in the

dynamics of {Mi(t)}). One reason is the practical convenience in

the numerical calculations. In addition, recent quantitative

analyses of gene expression have indicated that the gene

expression noise mainly arises from transcription [44,45,46].

However, we should note that the result and conclusion obtained

from the following analysis does not change even if we incorporate

noise in the dynamics of {Pi(t)} as well (data is not shown).

Typical dynamics of the Drosophila network are shown in

Figure 4, where sequential expression of WT is reproduced. The

dynamics of the model are largely dependent on the parameter

values and the noise intensities, and coincide with the experimen-

tal observations only under appropriate conditions. Therefore,

such sensitivity to parameter variation is important for the

development to proceed under environmental and individual

fluctuations.

To characterize sensitivity, we measured the fraction of

successes; that is, the fraction of the parameter sets that can

reproduce the expression profile of WT among all the trials of

random parameter assignments [15,39]. To judge whether the

dynamics coincide with the expression profile in Drosophila NBs,

the dynamics of the protein concentrations {Pi} were discretized to

1 (0) for Pi . Pth (Pi , Pth). The threshold Pth was set as Pth = 0.2.

The temporal dynamics of a network were accepted when the

discretized dynamics satisfied the condition for WT in Table 3. To

obtain the effect of parameter variation, we carried out the

Figure 2. Reconstructed Drosophila network cannot reproduce the experimentally reported expression profiles. Sequential gene
expression of reconstructed Drosophila network is simulated using Boolean model. The grids filled with colors represent ON states of the genes. The
dynamics could be different depending on the choice of the default expression states fhig. (A) hKr~0, hpdm~0, and hcas~1; (B)
hKr~0, hpdm~1, and hcas~1; and (C) hKr~1, hpdm~1, and hcas~1.
doi:10.1371/journal.pcbi.1000760.g002

Robustness in Drosophila Neurogenesis
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simulation without stochastic terms in Eq. (2). In each network, we

repeated the simulations with random assignment of parameter

values and calculated the fraction of successes (Fig. 5A). The

Drosophila network scored the highest fraction of successes among

the functional networks, and the networks closer to the Drosophila

network tended to have higher scores.

We also investigated the dynamical stability of the gene

networks against fluctuations. In this case, we performed the

stochastic simulations in Eq. (2) with expression noise. To evaluate

stability against noise, we chose the parameter values with which

the expression profile is reproduced in the absence of noise. We

then measured the relative fraction of successes under fluctuation.

As is shown in Figure 5B, the fraction of successes under

expression noise increased with the similarity to the actual

Drosophila network as the fraction of successes under parameter

variations. Thus, the Drosophila network lies at the top level of

the functional networks in terms of robustness against these

perturbations.

Regulations that heighten functional stability
Because the Drosophila network has several other regulations in

addition to the minimum functional network (gray arrows in

Fig. 3A), these regulations might be responsible for the robustness

shown above. We compared the robustness among the networks

with or without the additional regulations. The fraction of

successes against parameter variations for these networks is plotted

in Figure 6A. The minimum network reproduces the sequential

expression under the appropriate parameters, but the robustness is

much lower than that of the Drosophila network. The scores of

networks that lack one of the regulations fall between the

minimum and the Drosophila network. Stability to expression noise

was also evaluated by changing noise intensity, and similar results

were obtained (Fig. 6B). The fraction of successes decreased as the

noise intensity became larger, but the effect of noise on the

Drosophila network was less severe than that on the minimum

network. Thus, each of these regulations contributes to the

robustness of the system.

To elucidate the roles of these regulations, we tried random

parameter assignments for each of these networks and sampled

successful parameter sets that reproduce WT sequential expression

profile (Fig. 7). In the Drosophila network (Fig. 7A), wide ranges of

parameter values are allowed, indicating that this network

reproduces the required profile without quantitative tuning of

parameters, and thus, shows high robustness. For other networks

Figure 3. Architecture of the detected functional networks. (A) Architecture of the functional networks reproducing the gene expression
profiles observed in the experiments. The black arrows are the regulations that appear in all the functional networks. The brown arrows are the
regulations from the presumptive factor x that also appear in all the functional networks. The other regulations existing in the actual Drosophila
network are shown by gray arrows. (B) Matrix representation of the functional networks. Elements of {Jij} are shown as either + for activation, 2 for
repression, or 0 for the absence of regulation. (C) Frequency distributions of the distances of networks from the Drosophila network. The distributions
are drawn from the functional networks (N = 384; magenta), all the possible networks (N = 14,348,907; blue), and the networks randomly reconnected
from the functional ones (N = 38,400; yellow). From each of the functional networks, 100 reconnected networks were generated. The regulatory
interactions from x and positive self-feedbacks are neglected in counting the number of different regulations.
doi:10.1371/journal.pcbi.1000760.g003

Robustness in Drosophila Neurogenesis

PLoS Computational Biology | www.ploscompbiol.org 6 April 2010 | Volume 6 | Issue 4 | e1000760



(Fig. 7B–E), the ranges are narrower for some parameters (as

clearly seen in Spdm and Scas), and the numbers of successful

parameter sets are less than those obtained for the Drosophila

network.

How is the robust nature of the Drosophila network implemented

by these regulations? As seen above, the parameter values of Spdm

and Scas (default promoter activities of pdm and cas) are most

influenced by the loss of these regulations. Because expression of a

gene is induced by either the activity of the default promoter or the

activators (see Materials and Methods), additional regulations

in the Drosophila network (gray arrows in Fig. 3A) might

compensate for the loss of default activities. To verify this

possibility, we measured the dependence of the fraction of

successes on the strength of regulations (~JJpdm, Kr, ~JJcas, pdm, and
~JJcas, hb) and default promoter activities (Spdm and Scas) (Fig. 8A–C).

Figure 8A shows the fraction of successes for random

assignments of parameter values under given strengths of ~JJpdm, Kr

and Spdm. To score high reproducibility, Spdm must be large for

small ~JJpdm, Kr, but need not to be large for sufficiently large
~JJpdm, Kr. This indicates that activation of pdm expression by Kr

indeed compensates for the loss of default promoter activity of pdm.

Thus, for the network lacking this regulation, the default promoter

activity is necessary because inductions from other factors are

absent. A similar relationship is found between ~JJcas, pdm and Scas

(Fig. 8B).

As for repression of cas by hb, the role for robustness seems to be

different from the above two. When the absolute value of ~JJcas, hb is

small, Scas must be small to achieve a high fraction of successes

(Fig. 8C). As DD~JJcas, hb
DD becomes larger, a higher value of Scas is

allowed. This is because the repression from hb to cas reduces the

mis-expression of cas in the early stage of sequential expression.

Grosskortenhaus et al. suggested the direct repression from hb to cas

[26], although there is no confirmative evidence to our knowledge.

This regulation possibly contributes to the robustness of the actual

system.

Discussion

Through the present analyses, we obtained 384 functional

networks that reproduce the sequential expression of both WT and

mutants. The detected functional networks exhibit high similarity in

regulatory interactions among the transcription factors (Fig. 3). This

exemplifies the importance of the regulations in the minimum

network for the sequential expression. In addition, the actual

Drosophila network scores quite high on reproducibility of the WT

sequential expression among all the functional networks (Fig. 5 and

6). Below, we discuss the biological implications of the temporal

patterning of Drosophila NBs drawn from our numerical analyses.

Existence of an unknown factor can reproduce the
expression patterns of WT and mutants

In this study, we introduced an additional presumptive factor x

to obtain networks that reproduce the sequential expression of

both WT and mutants. Because x is hypothetical, we discuss its

validity here.

Because the loss-of-function mutant of any one gene has only

minor effects on the expression sequence (Fig. 1D), several

previous reports suggested the existence of either unknown

regulators or an additional clock mechanism that regulates the

sequential expression [25,26]. Our assumption is feasible for

explaining experimental results because it does not need any other

clock mechanism or superfluous multiple regulators. It is notable

that our analysis indicates that the possible regulations of the

presumptive factor are highly restricted; the expression of x

switches ON state to OFF state (Fig. 4), and all the functional

networks have activation of Kr and repression of cas by x (Fig. 3A).

Thus, our assumption can be tested in future experiments in vivo.

We should note that while the regulator x is needed to explain

the mutant profiles under our modeling assumptions, the mutual

Figure 4. Temporal dynamics of the Drosophila network in the
continuous model. The dynamics of expression levels of proteins
{Pi(t)} with different parameter values (upper) and discretized represen-
tation of a typical temporal dynamics (lower). In addition to the known
genes, the presumptive factor x is also incorporated. The expression
level of X changes from a high level to a low level as in the previous
model. Each gene is considered to be in the ON state when the
expression level is larger than a threshold Pth. The parameter values of

~JJij

� �
and {Si} are randomly selected from the following ranges:

D~JJij D [ 10{1, 100
� �

for ~JJijw0 and D~JJij D [ 100, 101
� �

for ~JJijv0; and

Shb, SKr, Sx [ 10{2, 100
� �

and Spdm, Scas [ 10{1, 100
� �

. The other
parameter values are set as shown in Table 4.
doi:10.1371/journal.pcbi.1000760.g004

Table 3. Criterion for expression profile in each genotype.

Genotype Criterion for the expression profile1

wt thb, on(off)ƒtKr, on(off)ƒtpdm, on(off)ƒtcas, on(off)

hb2 tKr, on(off)ƒtpdm, on(off)ƒtcas, on(off)

Kr2 thb, on(off)ƒtpdm, on(off)ƒtcas, on(off)

pdm2 thb, on(off)ƒtKr, on(off)ƒtcas, on(off)

cas2 thb, on(off)ƒtKr, on(off)ƒtpdm, on(off)

hb o.e. thb, on(off)ƒtKr, on(off) , X t
pdm~X t

cas~0

Kr o.e. thb, on(off)ƒtKr, on(off)ƒtpdm, on(off) , X t
cas~0

pdm o.e. thb, on(off)ƒtpdm, on(off)ƒtcas, on(off) , X t
Kr~0

cas o.e. thb, on(off)ƒtKr, on(off) , X t
pdm~0

1 There is an additional condition that expression time windows have to be
different for any two genes (i.e., ti, on~tj, on\ti, off ~tj, off is forbidden).
doi:10.1371/journal.pcbi.1000760.t003
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regulations of only known factors also reproduce the WT

sequential expression (Fig. 1D). Therefore, the regulations among

hb, Kr, pdm, and cas would play a primary role as discussed below.

Minimum network for the sequential expression
An effective way to capture network function is to focus on the

specific substructures (network motifs or modules) [1,13,14,16,39,47].

Figure 5. Robustness of the gene expression profiles in the functional networks. (A) The fraction of trials that reproduce the experimental
expression profile against random assignments of parameters. The values of ~JJij

� �
, Sif g, and tx, off are randomly chosen within the ranges shown in

Table 4. The other fixed parameter values are also listed in Table 4. Neglecting the positive self-feedback regulations in the 384 functional networks,
120 networks were chosen and investigated (Materials and Methods). The dynamics were checked for 50,000 trials in each network. The networks
were sorted based on the distance from the Drosophila network (Nd). Here Nd corresponds to the number of regulations different from the Drosophila
network. Because there are a few possible regulations from the unknown factor x, more than one network with Nd = 0 exist. (B) The fractions of the
trials that reproduce the experimental profile under expression noise (vertical axis) are plotted against the fraction of successes against the random
parameter assignments. To analyze the stability against noise, we used 1000 different parameter sets, by which the expression profile is reproduced
in the absence of noise for each network. The dynamics were checked for 50 trials for each parameter set.
doi:10.1371/journal.pcbi.1000760.g005

Figure 6. Contribution of the actual regulations to the robustness of the system. (A) The fraction of the trials that reproduce the
experimental WT expression against parameter variations. The data of Figure 5A are replotted for the Drosophila network, the networks lacking an
indicated regulation (one of the gray arrows in Fig. 3A) and the minimum network (black and brown arrows in Fig. 3A). (B) The fractions of the trials
that reproduce the experimental profile under gene expression noise with various intensities. We used 5,000 different parameter sets with which the
profile is reproduced in the absence of noise. The dynamics are checked for 50 trials for each parameter set.
doi:10.1371/journal.pcbi.1000760.g006
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Figure 7. Graphical representation of parameter sets with which the WT sequential expression profile is reproduced. (A) The
Drosophila network, the networks lacking (B) activation from Kr to pdm, (C) activation from pdm to cas, (D) repression from hb to cas, and (E) the
minimum network. The parameters involved in minimum network are shown. Each spoke represents a value of indicated parameter between the
range used for random parameter assignment (Table 4). The value of tx, off is shown by normal scale and those of the other parameters are shown by
log scale. Each polygon indicates one parameter set. Solid and broken lines indicate mean and s.d. of obtained parameters. The data are drawn from
5,000 trials of the random assignment of parameter values.
doi:10.1371/journal.pcbi.1000760.g007

Figure 8. Parameter dependencies of robustness for the Drosophila network. The fractions of successes for random assignment of parameter
values are plotted under the different strengths of regulations (~JJpdm, Kr, ~JJcas, pdm , and ~JJcas, hb) and default promoter activities (Spdm and Scas). Dependencies of
robustness to (A) ~JJpdm, Kr (strength of activation from Kr to pdm) and Spdm, (B) ~JJcas, pdm (strength of activation from pdm to cas) and Scas, and (C) ~JJcas, hb

(strength of the repression from hb to cas) and Scas. The other parameters are set as listed in Table 4. The temporal dynamics were tested for 50,000 trials.
doi:10.1371/journal.pcbi.1000760.g008
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Comparing all the functional networks, we detected the minimum

structure for the sequential expression, which contains two

successive regulatory loops (Fig. 3A and 9A); one is composed of

hb, Kr, and pdm, and the other of Kr, pdm, and cas. In each loop, one

gene represses the previous and the second next factor. The

repressions of the second next factors (hb to pdm and Kr to cas)

define the induction timing of the regulated factors, since they are

kept repressed until the regulators are switched off. The feedback

repression of the previous factors (pdm to Kr and cas to pdm) ensures

their downregulation, which promotes the progress of the

sequential expression. These coincide with the observations by

Kambadur et al., who experimentally showed that the repressions

from hb and cas define the temporal window of Pdm [24]. These

repressive regulations and the activation from hb to Kr compose the

minimum network for sequential expression (Fig. 9A). Although

they are enough to reproduce the sequential expression under

appropriate conditions, the expression profiles could be easily

perturbed by parameter variations or increase of noise (Fig. 5

and 9A).

Robustness of the Drosophila network: mechanism
generating the precise sequential expression

In the two loops of the Drosophila network, activations from one

gene to the next (Kr to pdm and pdm to cas) exist in addition to the

repressive regulations. Other functional networks do not neces-

sarily have these activations, but the activations can compensate

for the loss of default promoter activities (Fig. 8A and B). These

regulations achieve precise expression by enhancing the correla-

Figure 9. Regulatory module for precise sequential expression. The regulatory interactions and schematic expression profiles of the
networks. (A) Regulatory interactions of the minimum network for sequential expression (left). This network reproduces the sequential expression
under appropriate conditions (middle). However, the parameter variations from the appropriate values and the increase of noise could easily alter the
expression profiles (right). (B) Regulatory interactions of the Drosophila network (left). Three types of regulations in this network enable the temporal
expression in the precise order.
doi:10.1371/journal.pcbi.1000760.g009
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tions among the factors and heightening the stability against

fluctuations (Figs. 5B and 6B). From these results, we conclude that

three types of regulations (activation of the next factor, feedback

repression, and repression of the second next factor) compose a

regulatory module for precise temporal expression, as summarized

in Figure 9B. The feature of this network module embodies the

robustness of the Drosophila network.

Do the previous discussions have any implications on other

developmental processes? In the studies of spatial patterning in

Drosophila segmentation, it was claimed that the frequent

substructure feed forward loop (FFL) can set the positions of

expression domains [13], and mutual feedback repressions

between the gap genes also have a pivotal role in the formation

of expression domains with steep boundaries [12,47]. In case of

the Drosophila network for sequential expression, preceding genes

activate the next ones, while these genes repress the preceding

ones. Similar regulatory interactions are reported in the yeast cell

cycle by Lau et al. [48]. Thus, such asymmetric mutual regulations

would be a general mechanism that serves as precise switches in

the process of temporal patterning.

Role of the robustness in Drosophila neurogenesis
We showed that the temporal specification network of Drosophila

NBs contains not only the regulations necessary for generating

sequential expression, but also additional regulations to achieve

higher precision in the expression. In each hemisegment of

Drosophila embryo, 30 different NBs are generated through spatial

heterogeneity [29]. To guarantee sequential expression of

common temporal transcription factors despite their differences

in Drosophila NBs, the robustness of the system might be important.

The robust nature of the Drosophila temporal network could be

the consequence of evolutionary optimization in the reproducibil-

ity of the sequential expression under functional constraint. In

future, we expect that experimental manipulation of correspond-

ing enhancers will be able to clarify the relevance of each

regulation to temporal patterning and stability.

Materials and Methods

Analysis of temporal dynamics of the genetic networks
with the Boolean model

Here we describe the details of the Boolean model (Eq. (1)). The

expressions of svp and x occur as inputs to the system. A pulse of svp

expression always occurs at t = 1. Expression of x switches either

from ON to OFF state, or from OFF to ON state at t~tswitch

(0ƒtswitchƒtend ). Once we assign the switching time of x

expression (tswitch), its value becomes fixed through the analysis

of expression patterns for all the genotypes. Because the

autonomous pulsed expression of svp results in hb downregulation,

we set Jhb, svp = 25, Jhb, j = 0 (j = hb, Kr, pdm, cas, or x), and Jk, svp = 0

(k = Kr, pdm, or cas) throughout this study. The time step at which

we finish the simulation (tend) was set as tend~12.

We thus investigated the behaviors of the remaining three

factors (Kr, pdm, and cas) under the given regulatory interactions

{Jij}. The total number of combinations of the parameters is

3M|23 (the number of possible network architecture {Jij}

multiplied by the number of default expression states fhig), where

M is the number of regulations. To simulate the dynamics for

mutants, we always set the expression state of the corresponding

gene to 0 (OFF) for loss-of-function or to 1 (ON) for

overexpression. We then examined whether the temporal

dynamics of the genetic networks are coincident with the

expression profiles of each mutant (Fig. 1D and Table 3).

Analysis of network statistics
In order to measure the similarity between the functional

networks and the actual Drosophila network, we used two types of

network ensembles as references. One is the ensemble of the

possible network architectures. The other is a set of reconnected

networks generated from the functional networks by iterative

random reconnections of the matrix elements (1,000 iterations).

The numbers of positive and negative regulations are preserved in

the iterations.

To count the number of different regulations between

functional networks and the actual Drosophila network, we

neglected the regulations from x and positive self-feedbacks

because the existence of those is uncertain from the experimental

data.

Continuous model of the expression dynamics
We introduced the continuous model with stochasticity as

shown in Equation (2). The promoter activity of gene i (i = hb, Kr,

pdm, cas, or x) is described as follows,

Fi(fPj(t)g)~
g(Siz

P
j
~JJijPj)

h ia

Ka
Mz g(Siz

P
j
~JJijPj)

h ia :

Regulatory interactions f~JJijg are continuous equivalents of {Jij} in

the Boolean model, and g(x) is a piece-wise linear function such

that g(x) = x for x.0 and g(x) = 0 for x,0. The parameters {Si} are

the default activities of the promoters. Transcription of a gene is

induced when the total regulatory inputs become positive

(Siz
P

j
~JJijPjw0), and is suppressed when they become negative

(Siz
P

j
~JJijPjv0). In order to consider the effect of fluctuations

on the expression dynamics, we introduced additive white

Gaussian noise fji(t)g: Sji(t)jj(t
0)T~s2

i dijd(t{t0) (Eq (2)), where

si is the noise intensity of gene i.

The expression of hb and x is induced only by the default

promoter activities because all the regulations are absent for these

two (f~JJhb, ig~f~JJx, ig~0). To describe the expression change of hb

and x, the promoter activities of these two are set as Shb .0 for

tvthb, off (Sx .0 for tvtx, off ) and Shb = 0 for twthb, off (Sx = 0 for

Table 4. Parameter values used for continuous dynamics of
the genetic networks.

Parameter Biological meaning Value

cM Degradation rate of mRNAs 1.0

cP Degradation rate of proteins 0.2

thb, off Time for promoter activity of hb
switched off

10.0

tx, off Time for promoter activity of x
switched off

0:5thb, off , 2:0thb, off

� �

KM Michaelis constant for the
promoter functions

0.1

a Hill coefficient for the promoter
functions

2.0

~JJij Strength of regulation from
gene j to gene i

D~JJij D [ 10{1, 101
� �

Si Default promoter activity of
gene i

Si(=hb) [ 10{3, 101
� �

,

Shb [ 2|10{1, 101
� �

doi:10.1371/journal.pcbi.1000760.t004
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twtx, off ), respectively. The promoter activities of the others are

always assumed to exist (SKr, Spdm, and Scas .0). The noise

intensities are also set as si~s (.0) for tvti, off and si~0 for

twti, off (i = hb, x). Those of the other genes are sj~s (.0) (j = Kr,

pdm, cas), Here we simply assume that the noise intensities of the

genes take the same value s. The noise intensity s is set as s~0:05
in Figure 4, and s~0:08 in Figure 5. Noise intensity (horizontal

axis) in Figure 6B means the value of s.

Analysis of the robustness of the networks
For the continuous model, we considered two different types of

robustness: (1) the reproducibility of the sequential expression

against parameter variations and (2) dynamical stability against

temporal fluctuations. To analyze the former, the default promoter

activities {Si} were assigned randomly within the defined ranges.

The values of the matrix ~JJij

� �
were set to 0 when the

corresponding regulations were absent (the corresponding element

of the Boolean model takes Jij = 0) or assigned randomly when

they are present (Jij=0). In order to confine our attention to the

properties of network architectures, the other parameters (cM , cP,

KM , and a) were fixed throughout the analysis. The ranges and the

fixed values of the parameters are listed in Table 4. Robustness

against temporal fluctuations is measured as explained in the main

text.

In the simulations, we found that the existence of positive self-

regulation enhanced the fraction of successes in many cases, but

hardly affected the sequential expression. To focus on the

contributions of mutual regulations of genes to robustness, we

neglected the positive self-feedback regulations and confined the

analysis to 120 out of 384 functional networks.
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