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Abstract

In the present study we determined the performance interrelations of ten different tasks that involved the processing of
temporal intervals in the subsecond range, using multidimensional analyses. Twenty human subjects executed the
following explicit timing tasks: interval categorization and discrimination (perceptual tasks), and single and multiple interval
tapping (production tasks). In addition, the subjects performed a continuous circle-drawing task that has been considered
an implicit timing paradigm, since time is an emergent property of the produced spatial trajectory. All tasks could be also
classified as single or multiple interval paradigms. Auditory or visual markers were used to define the intervals. Performance
variability, a measure that reflects the temporal and non-temporal processes for each task, was used to construct a
dissimilarity matrix that quantifies the distances between pairs of tasks. Hierarchical clustering and multidimensional scaling
were carried out on the dissimilarity matrix, and the results showed a prominent segregation of explicit and implicit timing
tasks, and a clear grouping between single and multiple interval paradigms. In contrast, other variables such as the marker
modality were not as crucial to explain the performance between tasks. Thus, using this methodology we revealed a
probable functional arrangement of neural systems engaged during different timing behaviors.
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Introduction

The quantification of the passage of time is a ubiquitous and

crucial phenomenon in a large repertoire of behaviors. In the

hundred of milliseconds range, for example, interval timing is a

complex process that is not linked exclusively to a specific sensory

modality or motor behavior [1]. It is, however, involved in a broad

spectrum of behaviors, ranging from object interception and

collision avoidance to musical perception and performance, and it

is exhibited by a wide variety of vertebrates including rats, pigeons,

and humans [2,3]. Nevertheless, not all behaviors depend on an

explicit timing system where the temporal variability increases as a

function of the interval to be timed (i.e. scalar property of interval

timing; [4–6]). Recent studies have emphasized that in some tasks

time is an emergent property of the way in which events are

organized during motor activity or within a sensory modality [7,8].

For example, continuous drawing tasks have been associated with

an implicit timing process, since their temporal precision is not

correlated with well-known explicit timing tasks, such as multiple

tapping and interval discrimination tasks [9]. In addition, the

central component of timing variability, measured as the slope

from the timing variance plotted against the square of the timed

interval, also differed for tapping and drawing tasks [10]. Hence,

explicit and implicit timing processes can be clearly dissociated.

Now, psychologists have used different analytical tools, other than

psychometric techniques, to study complex perceptual or cognitive

processes. For example, without any quantitative information about

the physical properties of colors, natural visual scenes, or speech

sounds, researchers have learned about how humans process these

stimuli using the analysis of ratings of perceived dissimilarity, values

by which the stimuli are actually distinguished from each other.

These dissimilarities are used in analyses, such as hierarchical

clustering and multidimensional scaling (MDS), in order to reveal

the most relevant physical dimensions of complex stimuli [11]. In

fact, these two methods are designed to study complementary

aspects of the underlying psychological structure, starting from pair

wise measures of dissimilarity in large groups of complex stimulus

comparisons that are summarized in a matrix. On one side, MDS

reduces the number of dimensions in large dissimilarity matrices

obtaining the most representative multidimensional spatial config-

uration between data, whereas hierarchical clustering reveals a

nondimensional representation in the form of tree structures or

dendrograms [12,13]. Indeed, in the present study we used the same

methodology to study the organization of temporal performance in

ten different tasks that involved time perception, tapping, or circle

drawing, with the purpose of gaining more information about

mechanisms governing implicit and explicit timing in a variety of

behavioral contexts.

Results

General
The variability of temporal performance of twenty subjects was

measured in ten different timing tasks that cover different aspects
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of behavior. First, these tasks can be grouped in explicit

(categorization, discrimination, single interval tapping, and

multiple interval tapping) and implicit (circle drawing) timing

tasks. In addition, we included three motor (single and multiple

interval tapping, and circle drawing), and two perceptual

(categorization, discrimination) paradigms that, in fact, can also

be subdivided into single (categorization, single interval tapping) or

multiple interval (discrimination, multiple interval tapping, and

circle drawing) tasks. The tasks included time intervals that were

defined by auditory (A) or visual (V) markers (Fig 1). It is very

important to emphasize that all the tasks involved temporal

processing of the same time intervals (range of 350 to 1000 ms),

and that each subject performed all tasks. Therefore, this

methodological strategy allowed for a thorough evaluation of

temporal and non-temporal components of the subjects’ behavior,

with a high statistical sensitivity within and between subjects.

An analysis of variance (ANOVA) was performed, using the

performance variability as dependent variable and the implicit/

explicit, the number of timed intervals, the perception/production,

and modality parameters as factors. The results showed, significant

main effects for all the factors as follows: implicit/explicit (F(1,995) =

28.79, p,0.0001), the number of timed intervals (F(1,995) = 52.131,

p,0.0001), the perception/production (F(1,995) = 169.64, p,0.0001),

and modality (F(1,995) = 26.2, p,0.0001). Thus, as depicted in Table 1,

Figure 1. Timing tasks. A. Categorization B. Discrimination C. Single Interval Production D. Multiple Interval Production E. Circle Drawing F.
Representative kinematic trajectories for the y-axis in the circle drawing task. The onset of each cycle is marked by the small circles on the top. Open
and closed circles correspond to the synchronization and continuation phases, respectively.
doi:10.1371/journal.pone.0003169.g001
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the performance variability for the explicit timing conditions was

larger in perceptual than in motor-timing tasks, was also larger using

visual rather than auditory stimuli, and decreased as a function of the

number of intervals. In addition, the temporal accuracy in the circle

drawing tasks showed intermediate values between the single and

multiple interval tapping tasks. Furthermore, the reliability coeffi-

cients for the three production tasks were close to one (Table 1),

indicating that the multidimensional analyses below are meaningful

with the current data sets.

It is important to mention that the performance differences

between the explicit timing tasks have been reported in detail

elsewhere [5]. Here we report the relative relationships in the

performance variability between the ten paradigms using multi-

dimensional analyses. Nevertheless, in order to dissociate the

performance timing bias from the task multidimensional interre-

lations, we performed an ANOVA where the constant error

([produced or estimated interval] - target interval) was the

dependent variable and the implicit/explicit, the number of timed

intervals, the perception/production, and the modality were used

as factors. The results showed significant main effects only for the

number of timed intervals (single vs multiple) (F(1,995) = 13.7,

p,0.0001). The implicit/explicit (F(1,995) = 0.093, p = 0.761), the

perception/production (F(1,995) = 2.47, p = 0.116), and the modal-

ity (F(1,995) = 0.02, p = 0.888) did not showed significant effects.

These properties are evident in Table 2 that shows the constant

error mean and SEM for the ten tasks. Additionally, Table 3

shows that the estimated or produced intervals were close to the

target intervals in all tasks. Therefore, it is unlikely that the tasks

interrelations showed below with multivariate analyzes were due

to poor performance in particular intervals or tasks.

Dissimilarity matrix
Figure 2 shows the dissimilarity matrix of performance

variability between the ten tasks. Each square represents the

behavioral distance between pairs of tasks with a simple rule: the

darker the square, the smaller the distance. In fact, each square

corresponds to the squared Euclidean distance between 100-

dimensional vectors (20 subjects65 intervals) associated with the

two tasks. It is evident that complex interactions occur between

paradigms. However, it is also clear that the circle drawing task,

which implies implicit timing, is quite different from the remaining

explicit timing tasks. This phenomenon occurred for both sensory

modalities (Fig 2).

Hierarchical clustering dendrograms
We used hierarchical clustering with the purpose of classify our

tasks in accordance with the distances given in the dissimilarity

matrix of Figure 2, following an agglomerative algorithm that

starts with each task as a separate cluster or branch. The

algorithm, then, merges the closer tasks into successively larger

clusters, until only one cluster is left. The resulting clustering

pattern is depicted in the dendrogram of Figure 3A, which shows

three important features of the behavioral relations between the

ten tasks: (1) the circle drawing task, associated with implicit

timing, is isolated from all the explicit timing tasks (light gray),

Table 1. Mean and SEM of the performance variability (SD)
averaged across subjects and intervals for each task.

Task Mean SEM Reliability

Categorization A 59.84 3.87

Categorization V 78.47 5.37

Discrimination A 41.70 2.91

Discrimination V 70.16 4.66

Single Interval Tap A 42.02 2.13 0.95

Single Interval Tap V 44.75 2.21 0.96

Multiple Int. Tap A 25.67 0.93 0.98

Multiple Int. Tap V 25.10 1.00 0.97

Circle Drawing A 41.79 1.62 0.97

Circle Drawing V 42.06 1.60 0.97

Reliability coefficients are also shown for the production tasks. A = auditory,
V = visual.
doi:10.1371/journal.pone.0003169.t001

Table 2. Mean and SEM of the constant error averaged across
subjects and intervals for each task.

Task Mean SEM

Categorization A 27.36 4.32

Categorization V 9.05 4.68

Discrimination A 214.32 3.99

Discrimination V 211.82 5.06

Single Interval Tap A 5.29 3.43

Single Interval Tap V 22.09 3.91

Multiple Int. Tap A 3.03 2.08

Multiple Int. Tap V 213.17 3.15

Circle Drawing A 211.21 3.84

Circle Drawing V 24.80 3.70

doi:10.1371/journal.pone.0003169.t002

Table 3. Mean (6SEM) of the estimated (PSE, perceptual tasks) or produced (motor tasks) intervals across subjects for each task
and interval.

Interval Cat A Cat V Dis A Dis V STap A STap V MTap A MTap V CirD A CirD V

350 353.364.3 360.966.3 351.464.9 361.365.9 353.363.3 356.064.6 351.361.9 341.663.3 354.663.4 366.463.9

450 443.565.6 457.366.1 447.864.7 459.366.5 463.565.3 456.566.8 466.462.2 449.064.7 468.065.1 468.963.7

650 639.866.6 673.9611 644.167.6 627.369.0 653.469.4 649.869.6 656.263.4 641.866.9 643.366.9 647.266.1

850 827.7611 848.5610 826.4610 844.5612 852.768.8 846.268.9 851.764.9 834.867.3 825.268.1 830.769.8

1000 998.9615 1004.6615 958.7611 948.6614 1003.669.9 980.9611 989.667 966.969.7 952.869.9 962.868.6

A = auditory, V = visual.
doi:10.1371/journal.pone.0003169.t003

Timing Multidimensionality

PLoS ONE | www.plosone.org 3 September 2008 | Volume 3 | Issue 9 | e3169



having separate branches (dark gray) for both auditory and visual

interval markers; (2) the two single interval and the two explicit

multiple interval tasks form a bigger branch; (3) the initial

clustering was between the same tasks but different modalities,

particularly for the circle drawing, categorization, and multiple

interval tapping tasks. A bootstrap technique was used to assess the

reliability of the tree topology. In fact, the probability that each

tree ramification was a random event is shown on top of the

branches in Figure 3A. All the branches show significant effects,

with a chance likelihood that was less than p = 0.05.

The individual dendrograms for the auditory and visual stimuli,

shown in Figure 3B, reveal additional properties of the

multidimensional relations between tasks. For example, for

auditory markers, the multiple interval tasks (multiple interval

tapping, discrimination) are close together forming a branch,

whereas the categorization task is the next closest to them,

followed by the single interval tapping in another branch. In

contrast, the dendrogram for the visual markers clearly shows one

explicit timing branch for production (single and multiple interval

tapping), followed by the perceptual tasks discrimination and then

categorization in other branches. These results suggest that the

modality used to define the time intervals has an influence on the

level of association between tasks, and that the behavioral relations

of the perceptual tasks were the most affected by the modality.

Nevertheless, the implicit timing task (circle drawing) again formed

a solitary branch separate from the explicit timing tasks in both

modality trees.

MDS analysis
The MDS is an analytical method that reduces the dimension-

ality of a data set, in this case the dissimilarity matrix of Figure 2,

to create a two or three dimensional representation of the complex

relations between the data. Thus, the goal of the MDS analysis is

to detect meaningful underlying dimensions of multidimensional

data sets. Our results showed that the MDS analysis was

successfully applied to the 969 dissimilarity matrix of Figure 2;

the stress value was 0.146, and the R2 was 0.902 (see Materials and

Methods for goodness to fit criteria). The derived configuration

plot in 2-D is shown in Fig. 4, where it can be seen that the most

important dimension (abscissa) separated the circle drawing from

all other timing tasks, whereas the second dimension (ordinate)

separated single from multiple interval tasks. Thus, explicit and

implicit timing paradigms can be dissociated based on the pair-

wise dissimilarities in the temporal performance variability

between tasks. In addition, multiple interval tasks, including both

implicit and explicit timing behaviors, were distinguished from the

categorization and the single interval tapping task. Therefore,

engaging a cyclic behavioral loop during multiple interval tasks

elicits clear differences in performance from behaviors where only

a single interval must be timed.

The bootstrapping technique was also used to generate random

dissimilarity matrices from the original data and then carry out

MDS analyses. The probability of the original stress solution

falling within the distribution of ten thousand random data was

less than 0.0087. In addition, the same analysis showed that the

implicit-explicit and the single-multiple axes had a probability of

being a random event of 0.0172 and 0.0053, respectively.

As a final question, we were interested in finding out whether

the implicit-explicit and the single-multiple axes were consistently

Figure 2. Dissimilarity matrix showing the squared Euclidean
distance in a gray-scale (see inset at lower left) for all possible
pair-wise task comparisons. The behavioral distance between pairs
of tasks follows a simple rule: darker the square, smaller the distance.
doi:10.1371/journal.pone.0003169.g002

Figure 3. A. Dendrogram for the temporal variability in the ten
tasks. The cophenetic correlation coefficient was 0.81. B. Dendrograms
for the temporal variability in five tasks where the intervals where
marked by auditory (top) or visual (bottom) stimuli. The cophenetic
correlation coefficients were 0.87 and 0.76 for the auditory and visual
dendrograms, respectively. All the dendrograms show an important
segregation between explicit timing tasks (light-gray squares) from the
implicit timing paradigms (dark-gray squares). The number on the top
of each branch is the probability of the branch occurring by chance.
doi:10.1371/journal.pone.0003169.g003

Timing Multidimensionality
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obtained when a subset of subjects were analyzed using MDS, or

whether other superordinate dimensions could be obtained in

specific subgroups of subjects. Consequently, we carried out a

permutation analysis as follows. The 969 dissimilarity matrix

based on the temporal performance of twelve of the twenty

subjects was computed for all the possible permutations (see

Materials and Methods). Then the MDS analysis was carried out

as above, and the resulting configuration was saved for each

permutation. The results showed that the implicit/explicit axis was

found in 88.6% of the twelve subject permutations, whereas in

54.4%, 24.3%, and 0.026% of the permutations the number of

timed intervals, the perception/production, and the modality

superordinate dimensions were found, respectively. Thus, these

results indicate that, in the multidimensional interactions between

tasks, the implicit/explicit and single/multiple interval parameters

are better represented across all the subjects than the perception/

production, and specially the modality components. Indeed, the

hierarchical clustering results showed that the marker modality

had a relatively small impact in the organization of the task

grouping, since it conformed the lowest level of branching. In

addition, only the dendrogram for the tasks in the visual modality

(Fig 3B, bottom) showed the clustering between perception

(categorization and discrimination) and production (single and

multiple interval tapping) tasks. Thus, these results stress the

complementary nature of the two multidimensional analyses. Both

were applied to the dissimilarities in performance variability

between tasks. However, the MDS identified the most important

behavioral parameters defining the relationships between the tasks,

whereas the dendrograms showed a more comprehensive picture

of the variables that act as grouping elements between tasks.

Discussion

This paper illustrates how different types of analytical

representations, including multidimensional spatial configurations

and nondimensional dendrograms, can reveal important proper-

ties of the mechanisms underlying the performance variability in

different tasks [14]. At the heart of the approach is the assumption

that information contained in the performance variability reflects

the proximities or the overlap between distributed neural networks

engaged in the prominent behavioral features of each paradigm.

Thus, the MDS and cluster analyses are used to reduce the

number of dimensions in order to make the configuration of the

distributed systems more understandable. In fact, both the

hierarchical clustering and MDS analyses validated the distinction

between explicit and implicit timing, with a clear separation of the

temporal variability of the circle drawing task from the explicit

timing tasks (categorization, discrimination, single and multiple

interval tapping). Consequently, these results support the notion of

different brain processes involved in the execution of behavior

over time. On one side there is an explicit representation of the

passage of time, and on the other, the temporal properties of the

behavior are emergent and depend on mechanisms that may not

quantify time in a direct fashion.

The performance dissociation of explicit and implicit timing in

repetitive tapping and drawing tasks has been meticulously

documented using correlation [7,9,15] and slope [10] analyses.

For instance, the temporal consistency during a continuous circle

drawing task (very similar to our circle drawing) is not correlated

with the timing variability during multiple interval tapping,

discrimination, or a task where circle drawing is intermittent

[7,9]. It is important to note that the implicit/explicit timing

distinction holds independently of the joints employed during

drawing, because the subjects in most of the previous studies used

the elbow and shoulder [9,15], whereas in the present study the

subjects used the wrist as the main drawing joint. Interestingly,

cerebellar lesions severely disrupt the execution of explicit timing

tasks, such as multiple interval tapping and intermittent circle

drawing, but they do not affect the performance in the continuous

circle drawing task [16,17]. These results not only support the idea

that the cerebellum is part of an internal explicit timing system, but

also strengthen the hypothesis that continuous rhythmic movements

do not engage a timing-specific mechanism. Nevertheless, a

precautionary note is in place. Since in the cerebellar patients’

study, the spatial accuracy during circular drawing was not

reported, it is possible that normal timing in these patients is due

to a speed-accuracy trade off, rather that an implicit timing process

that emerges from producing a more continuous movement.

Therefore, it is conceivable that the behavioral distinction between

circle drawing and the other tasks in the present study may be due to

factors other than implicit timing, including the prominent spatial

component of the motor behavior in this paradigm.

The present results also showed an important segregation in the

performance variability between single and multiple interval timing,

particularly in the MDS analysis. This suggests that the activation of

a cyclic pattern of behavior not only confers an advantage regarding

temporal variability and accuracy in multiple interval tasks as

reported before [5,18–20], but also may engage a distinctive neural

substrate that can be discriminated from the single interval

mechanisms using multivariate analytical approaches. Under this

scenario, it is possible that the brain mechanisms underlying cyclic

behavior, in implicit and explicit timing contexts, have some

commonalities that are not shared with one-interval tasks.

On the other hand, the internal consistency analysis using MDS

in subsets of subjects, showed that despite the prominence for the

representations of the implicit/explicit and number of timed

intervals, the perception/production superordinate dimension was

also present in the multidimensional relations of temporal

variability among more than 25% of the subgroups of twelve

subjects. This suggests that the activation of the motor system

during a production task elicits differences in performance from

perceptual tasks, where timing decisions are expressed by pushing

Figure 4. Two-dimensional representation of the temporal
performance in the ten tasks, obtained using MDS analysis. The
most important dimension (abscissa) separated the circle drawing from
all other timing tasks, whereas the second dimension (ordinate)
separated single from multiple interval tasks.
doi:10.1371/journal.pone.0003169.g004
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a button. Therefore, it seems reasonable to expect that the

ordinate axis in the MDS 2D plot of a subgroup of subjects

represents important, but non-temporal, aspects of the variability

in the execution of our ten tasks [5].

The marker modality did not create superordinate dimensions

in the resulting MDS axes. These results are at odds with studies

showing that, in both perceptual and production tasks, visual

stimuli produce more variable time estimates than auditory ones

[5,21–23], and that the temporal precision increases as a function

of the number of intervals to be timed [5,18–20]. However, our

present MDS results may reflect the fact that the explicit-implicit

and number of timed intervals functional distinctions are more

important than the task modality. Indeed, the dendrograms

obtained, which showed a more comprehensive picture of the

grouping between behavioral parameters, demonstrated some

relevance of task modality. For example, in the ten tasks

dendrogram the three tasks have individual low-level branches

containing both marker modalities, with the exception of the single

interval tapping and discrimination tasks that showed two different

but close branches for visual and auditory stimuli. In addition, at

the level of the individual modality dendrograms we found two

important features. The tree associated with auditory markers

showed that the multiple interval tasks (discrimination and

multiple interval tapping) formed an individual branch, with the

categorization closer to them in an individual branch, followed by

the single interval tapping in another, more distant one (Fig. 3B).

On the other hand, the dendrogram for the visual markers showed

one explicit timing branch for production (single and multiple

interval tapping), followed by the perceptual tasks discrimination

and then categorization in other branches. Hence, these findings

suggest that the modality used to define the time intervals has also

some influence on the level of association between tasks, and that

the functional relations of the perceptual tasks could be affected by

the modality, which is a phenomenon that we already described

using slope and correlation analyses [5].

One of the current views regarding the neural underpinnings of

temporal information processing is that timing depends on a

distributed but dedicated clock-like neural mechanism [24].

Indeed, several fMRI studies have described a distributed timing

system that includes the cerebellum, as well as the supplementary

motor cortex (SMA), dorsal premotor cortex, posterior parietal

cortex, putamen, the ventrolateral thalamus, and the dorsal

prefrontal cortex [2,25–27]. All these structures are densely

connected [28] forming a network. However, these areas have

been also associated with other sensorimotor behaviors [29–31].

Hence, it is conceivable that the dedicated neural clock may be

represented in the dynamic way in which these structures interact

and process information [27]. Under this scenario, we can

hypothesize that the rules of the network processing may change

according to the multivariate relations described in the present

paper. Needless to say that elaborate neurophysiological experi-

ments, using a multielectrode and a multiarea approach, are

necessary to test this idea.

Overall, the present findings indicate that the functional

relationships between timing tasks can be described using the

multidimensional dissimilarities of their inherent performance

variability.

Materials and Methods

Participants
Twenty (10M, 10F) subjects, mean (SD) age of 26.5 (2.5) years,

(range: 23–32 years) participated in this study. Additional details

about the temporal performance of twelve of the participating

subjects in the explicit timing tasks are presented in a preceding

paper [5]. They were right-handed, had normal or corrected vision,

and were naive about the task and purpose of the experiment. All

subjects volunteered and gave written consent for this study before

commencement of experiments, which were approved by the

National University of Mexico Institution Review Board.

Apparatus
Subjects were seated comfortably on a chair facing a computer

monitor (Dell Optiplex 19’’) in a quiet experimental room and

tapped on a push-button (4 cm diameter, #7717, Crest, Dassel

MN, USA) during the production tasks (see below). In addition,

during the perceptual tasks subjects were asked to push a key on

the computer keyboard to reflect their decisions. Finally, during

the circle drawing task the subjects operated a joystick (H000E-

NO-C, CTI electronics, Stratford CT, USA) to control a feedback

cursor on the computer screen. The subjects could not see their

hand during tapping or circle drawing. The stimulus presentation

and collection of the behavioral responses were controlled by a

custom-made Visual Basic program (Microsoft Visual Basic 6.0,

1998) on a PC computer. Auditory stimuli were presented through

noise-canceling headphones (Sony, MDR-NC50), and the sam-

pling rate of the push-button and the joystick was 200 Hz.

Task 1: Categorization of time intervals (Cat)
a. Experimental task. The subjects were trained first to press

the n-key on the keyboard after the presentation of an extremely

short interval, or to press the m-key after the presentation an

extremely long interval. At least 20 trials (short/long) were

performed in this training phase. Categorization feedback was

provided during the training phase, with the word ‘correct’ or

‘incorrect’ on the screen. Once the subject learned to associate the

short and long intervals with the response on the ‘n’ and ‘m’ key,

respectively, intermediate intervals were also presented. Thus, the

subject was required to push one of the keys to indicate his/her

categorical decision for eight intervals using acquired category

boundaries and an implicit middle base interval set during the

training period (Fig 1A). The intertrial interval was 1.5 s.

b. Stimuli. The stimuli were tones (33 ms, 2000 Hz, 50 dB)

or visual stimuli in the form of a green square (4 cm side),

presented in the center of a computer screen for 33 ms. The

frame-rate of the video board (60 Hz) was accurately calibrated,

and the duration of visual presentations was controlled precisely in

terms of the number of frames. Eight intervals were used for each

of the five different implicit intervals (II [350, 450, 650, 850, and

1000 ms]). For the 350 ms II the intervals were 233, 283, 316,

333, 366, 383, 416, and 466. For 450 ms II the intervals were 299,

366, 416, 433, 466, 483, 533, and 599. For the 650 ms II the

intervals were 433, 533, 583, 633, 666, 699, 766, and 866. For

850 ms II the intervals were 566, 666, 783, 816, 883, 916, 1033,

and 1133. Finally, for the 1000 ms II the intervals were 699, 816,

933, 966, 1033, 1066, 1183, and 1299. These intervals were

carefully chosen to maximize the quality of the threshold

boundaries. In all cases, the first four were considered short

intervals while the last four were long intervals. Thus, one

repetition of the task for each implicit middle base interval

included the categorization of the eight intervals. The intervals

were presented pseudorandomly for each base interval, and ten

repetitions were collected for one implicit middle base interval

before moving to the next interval.

c. SD calculation. The difference threshold is equivalent to

one SD from the implicit standard interval [32,33]. In order to

calculate this threshold a psychometric curve was constructed,

plotting the probability of long-interval categorization as a

Timing Multidimensionality
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function of the interval. A logistic function was fitted to these data,

and the SD was computed as half the difference between the

interval at 0.75p and that at 0.25p. Finally, the point of subjective

equality (PSE, 0.5p) was considered the estimated interval (see

Table 3). Details about the logistic function fitting are given below.

Task 2: Discrimination of time intervals (Dis)
a. Experimental task. The subjects were trained to

discriminate between a standard and a comparison interval,

pressing the n-key on the keyboard if the comparison interval was

shorter, or the m-key if it was longer than the standard interval. On

each trial, participants heard a series of six tones (33 ms, 2000 Hz,

50 dB) or viewed six visual stimuli (green squares, 10 cm side, 33 ms).

The first five created the four isochronous standard intervals. The

sixth one produced the comparison interval that was either shorter or

longer than the standard (Fig 1B). Again, 10 trials (extreme short/

long) were performed in the training phase, followed by 8 trials for

each of the eight standard/comparison combinations. Feedback was

provided, with the word ‘correct’ or ‘incorrect’ on the screen during

the training phase. The intertrial interval was 1.5 s.

b. Stimuli. The intervals used in the categorization task were

also used in this task as comparison for each of the five different

standard intervals (350, 450, 650, 850, and 1000 ms). One

repetition of the task for each standard interval included the

discrimination of the eight intervals, and 8 repetitions were

collected. In addition, in 20% of the trials the standard and

comparison intervals were chosen at random within the range of

330 ms to 1100 ms. This was done with the purpose of

maintaining the subject’s attention to both interval durations

across all trials. Finally, the comparison intervals were presented

pseudorandomly within each standard interval, and the order

between standard intervals was chosen randomly.

c. SD calculation. The SD was calculated in the same

fashion as in the categorization task.

Task 3: Production of a single time interval (STap)
a. Experimental task. For each interval there was a training

and an execution period (Fig 1C). In the training period, a target

interval (two stimuli separated by an interval of a particular

duration) was presented at the beginning of the trial. Then the

subject tapped twice on the push-button to produce the same

interval. This was repeated for 5 training trials, after which the

subject entered the execution period, where he/she produced

another 10, single intervals after a go signal appeared on the

screen. Again, feedback was displayed on the screen, indicating the

subject’s intertap interval and SD across trials of the same interval.

The intertrial interval was 1.5 s.

b. Stimuli. The stimuli were tones (33 ms, 2000 Hz, 50 dB)

or visual stimuli in the form of a green square (4 cm side)

presented in the center of a computer screen for 33 ms. The

interval durations were 350, 450, 550, 650, 850, or 1000 ms. Ten

trials during the execution period were collected for a particular

interval duration before changing to another one. The intervals

were chosen pseudorandomly.

Task 4: Production of multiple time intervals (MTap)
a. Experimental task. Subjects produced tapping

movements on a push-button device synchronized to a sensory

stimulus and then were asked to continue tapping with the same

interval without sensory stimulus (Fig 1D). At the beginning of the

trial, the stimuli were presented with a constant interval. Subjects

were required to push a button each time a stimulus was

presented, which resulted in a stimulus-movement

synchronization. After five consecutive synchronized movements

the stimulus was eliminated, and the subjects continued tapping

with the same interval for four additional intervals. Feedback was

displayed on the screen, indicating the human subject’s mean

intertap interval and the SD for the continuation phase of the trial.

The interval separating the synchronization and the continuation

phase was not included in this feedback measure or in the further

analyses. The intertrial interval was 1.5 s.

b. Stimuli. The same stimuli and interval durations as for the

single interval tapping were used. The intervals were chosen

pseudorandomly, and ten repetitions were collected for each

interval.

Task 5: Circle Drawing (CirD)
a. Experimental task. The subjects operated a joystick, a

vertical rod placed in front of the subject at midsagittal level that

controlled a feedback cursor, which was displayed in the monitor as a

circle of 0.55 cm in diameter. At the beginning of the trial, the

subjects had to place the cursor within a white circle of 1 cm diameter

(‘‘start window’’). Then, the stimuli were presented with a constant

interval, and the subjects were required to draw a circle with the

cursor, following a circular path of 5 cm diameter, during that

interval (Fig 1E). Thus, the subjects attempted to pass the feedback

cursor through the start window coincident with the presentation of

the synchronous stimuli, while continuously moving around the

circumference of the path circle. After the drawing of four

synchronized circles the stimuli stopped, and the subjects continued

to move as consistently as possible at the rate of the extinguished

stimuli for another four loops (Fig 1F). Feedback was displayed on the

screen, indicating the human subject’s mean interloop interval and

SD for the continuation phase of the trial. Temporal accuracy was

stressed over the spatial accuracy of drawing. Subjects performed the

drawing mainly with the wrist joint.

b. Stimuli. The same stimuli and interval durations as for

multiple interval tapping were used. The intervals were chosen

pseudorandomly and eight repetitions for each interval were

collected.

c. SD calculation. We defined the start of a circle drawing as

the point of maximum displacement in the y-dimension (Fig 1F;

[9]). We used an algorithm written in Matlab (MathWorks, Natick,

MA, Version 7.3.0.267) to determine all local maxima in the y

dimension during the synchronization and continuation epochs of

the circle drawing task. With these values we determined the mean

and SD of the intervals produced during the continuation phase.

Again, the interval separating the synchronization and the

continuation phase was not included in the analyses.

Timing Task Procedure
The first twelve subjects performed tasks 1 to 4 in random order

in four sessions, followed by the circle drawing in a fifth session.

The remaining eight subjects performed the five tasks in random

order in the five sessions. At least eight repetitions were collected

for each condition and task. Before data collection, practice trials

were given in the five tasks until the subjects acknowledged that

they understood the tasks and were comfortable with their

performance.

Analysis
Logistic regression. This regression was used for the

psychometric data of tasks 1 and 2, and is given by:

y~
p1{p4ð Þ

1z x
p3

� �p2
zp4 ð1Þ
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where p1 and p4 correspond to the maximum and minimum values

of y, y is the probability of long interval categorization, p2 is the

estimated slope, and p3 corresponds to the value of x (time interval)

at half of the maximum value of y. The percentage of variance

explained (R2) was greater than 90% in all the fittings.
Reliability analysis. We computed reliability values (varying

from zero to one) for the produced intervals in the single and

multiple interval tapping, and circle drawing tasks, using the

correlation coefficient from odd and even trials of the same subject

and interval. The SPSS statistical package (version 12, SPSS Inc.,

Chicago, IL 2003) was used for this purpose.
Hierarchical cluster analysis. We performed hierarchical

clustering analyses [12] to determine the pattern of grouping of the

temporal variability associated with five tasks where the intervals

were defined by auditory or visual markers. The SD of temporal

performance, for each time interval and task, was standardized

and re-expressed as a z-score within each task. Thus, the primary

clustering variables consisted of 100-dimensional vectors for each

task, containing the z-scores for each subject (n = 20) and interval

(n = 5). The squared Euclidean distance between the 100-

dimensional vectors of all possible pairs of tasks formed a 969

dissimilarity matrix (Fig. 2) that was used for both the hierarchical

cluster and MDS analyses. Dendrograms were obtained as a result

of the agglomerative algorithm in the clustering analysis. The

cophenetic correlation coefficient was computed to establish the

goodness of fit of the clustering (Matlab, MathWorks, Natick, MA,

Version 7.3.0.267). In fact, cophenetic correlation coefficient is

defined as the linear correlation coefficient between the distances

obtained from the tree and the original distances (or dissimilarities)

used to construct the tree.

In order to determine the significance of each of the tree

branches (Fig. 3) a bootstrapping technique was performed as

follows. First, for each subject and time interval, the value of the

temporal SD was permuted among the 10 tasks. Second, the

100610 matrix was re-expressed as z-scores within each task, and

then a hierarchical clustering analysis was performed on the

corresponding dissimilarity matrix. The resulting tree configura-

tion was saved. This procedure was repeated 10,000 times, and the

number (and percentage) of branches that showed the same

original clustering was computed. This analysis was carried out on

Matlab (MathWorks, Natick, MA, Version 7.3.0.267) with

subroutines for bootstrapping phylogenetic trees (Bioinformatics

Toolbox).
MDS analysis. The MDS was also performed on the 969

dissimilarity matrix, with an ordinal scale (i.e. non-metric MDS;

[12]) and two final dimensions (ALSCAL procedure). The success

of the MDS analysis was evaluated by computing Kruskal’s stress

formula 1 and the R2. The latter is the proportion of variance of

the scaled data (disparities), which is accounted for by their

corresponding distances. The SPSS statistical package (version 12,

SPSS Inc., Chicago, IL 2003) was used for all the statistical

analyses. It is important to note that two assumptions are made

with the MDS model: (1) that the appropriate metric for the

similarity space between timing tasks is Euclidean and (2) that each

set of individual subject data included in the analysis can be

modeled by linear stretching of the centroid configuration, as

specified by the individual subject weights. If these assumptions

hold true, one expects low stress values for the overall MDS

solution. In fact, Monte Carlo studies suggest that stress values

below 0.2 are indicative of an output configuration with a good fit

to the similarity data [34].

An additional set of analyses was carried out with the purpose of

determine the representation of different MDS superordinate

dimensions or axes throughout subpopulations of the studied

subjects, as follows. First, the 969 dissimilarity matrix for twelve of

the twenty subjects was computed for all the possible permuta-

tions:

Tper~
20!

12!8!

where Tper is the total number of permutations and is equal to

125970. Second, the MDS analysis was performed for each

dissimilarity matrix. Finally, the resulting MDS configuration was

saved for each permutation, and the following criteria were used to

define a particular axis. First, the length of an axis was defined as

the distance between the maximum and minimum coordinate

values for the ten tasks. Then, a superordinate dimension was

defined when the distance between the groups of tasks forming an

axis (implicit/explicit, single/multiple, perception/production, or

auditory/visual) was larger than 1/5 of the total length of that axis.

For example, taking the data of Figure 4, the implicit-explicit

superordinate dimension was defined when the distance between

each CirD task and the other eight tasks was larger than 0.86 (4.3/

5), whether for the x or the y axes.
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