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Whole-genome sequencing of the clinical isolate of Legionella pneumophila 
ALAW1 from the West Bank allows high-resolution typing and determination of 
pathogenicity mechanisms
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ABSTRACT
Background: Legionella pneumophila is water-based bacterium causing Legionnaires’ disease 
(LD). We describe the first documented case of nosocomial LD caused by L. pneumophila 
sequence type (ST) 461 and serogroup 6. The etiology of LD was confirmed by culturing the 
bronchoalveolar lavage sample retrieving L. pneumophila strain ALAW1. A 7-days treatment of the 
LD patient with Azithromycin and Levofloxacin allowed complete recovery.
Methods: In details, we sequenced the whole genome of the L. pneumophila ALAW1 using 
Illumina HiSeq platform. The sequence of ALAW1 was aligned with the genome sequence from 
the closely related reference strain Alcoy 2300/99 and a whole-genome phylogeny based on 
single nucleotide polymorphisms (SNPs) was created using Parsnp software. Also, the TYGS web- 
server was used in order to compare the genome with type strain.
Results: An analysis of the population structure by SNP and TYGS comparison clustered ALAW1 with 
the reference genome Alcoy 2300/99. Blastp analysis of the type IV secretion Dot/Icm system genes 
showed that these genes were highly conserved with (≤25%) structural differences at the protein level.
Conclusions: Overall, this study provides insights into detailed genome structure and demon-
strated the value of whole-genome sequencing as the ultimate typing tool for Legionella.
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Introduction

L.pneumophila is an opportunistic bacterial pathogen 
with widespread distribution in freshwater environments. 
This bacterial species is the main etiology of legionellosis 
worldwide except Australia and New Zealand [1–3]. The 
term ‘legionellosis’ describes Legionnaires’ disease (LD), 
a severe form of atypical pneumonia, and a non- 
pneumonic febrile illness called Pontiac Fever. 
L. pneumophila has 15 serogroups (Sgs); Sg1 is the most 
common causative agent of LD, followed by Sg6 [4,5]. 
Many studies have demonstrated that an important 
source for LD is the drinking water distribution systems 
(DWDS) in large buildings like hospitals and hotels [6– 
8]. The contamination of hospital water systems with 
L. pneumophila is considered to pose a high risk for 
patients, especially for vulnerable and immunocompro-
mised people. To this end, it is well known that LD is an 
important cause of hospital-acquired pneumonia [9]. The 
presence of L. pneumophila in DWDS could be a serious 
health risk to hospital staff and patients, but the magni-
tude of the problem is often unrecognized [1,9].

For the identification of possible sources of contam-
ination/infection, high-resolution genotyping of new 
isolates is needed to correlate environmental isolates 
with clinical isolates. This is currently done using the 
standard molecular approach Sequence-Based Typing 
(SBT). SBT of L. pneumophila is done by sequencing 
a set of seven reference genes per isolate, providing 
a specific Sequence Type (ST) that can be matched 
with an International database [10–12]. Another typing 
method is Multi Locus Variable numbered of tandem 
repeats Analysis (MLVA) allowing a somewhat higher 
resolution than SBT for most L. pneumophila strains 
[13]. Both SBT and MLVA were used for typing envir-
onmental and clinical strains of the West Bank in 
previous studies [7,14,15].

Studies on this ubiquitous water-based pathogen 
should be directed towards both sides: i) the clinical 
side from pneumonia patients, and ii) the environmental 
side from DWDS of hospitals and public buildings [16]. 
The problem is apparent in the West Bank because 
awareness about the prevalence of L. pneumophila or 
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LD is lacking, and data scarcity for such arid regions. The 
study by Sharaby et al [17] described a set of genotyped 
clinical and environmental L. pneumophila strains 
retrieved from the closely geographic area Israel. They 
studied the pathogenicity potential (Ex: hemolytic activity 
and cytotoxicity toward amoebae and macrophages.) of 
both clinical and environmental strains. The authors 
concluded that understanding the virulence characteris-
tics of L. pneumophila genotypes may improve the assess-
ment of public health risks of L. pneumophila in DWDS 
[17]. Furthermore, in the West Bank, there are no specific 
guidelines for L. pneumophila surveillance or protection 
from exposure in hospitals or public buildings [18]. Thus, 
the main aim of studying entensively the genomics of 
ALAW1 clinical isolate from this LD case is to focus into 
genome details, to compare among L. pneumophila intra- 
clonal genomic characteristics portraying the importance 
of hospital water habitat.

Case presentation

In January 2014, a 66-year-old woman was admitted to 
hospital F in Bethlehem – West Bank (Figure S1) 

(day 0) after evaluation in the emergency ward for 
high blood pressure and severe gastric pain (Figure 1). 
The woman had been prescribed Arcoxia (NSAIDs) and 
Prednisolone (Corticosteroids) 6 days prior to admission 
(day −6) as treatment of joint inflammation. On day 4 
after admission, the patient complained of dyspnea, 
chest pain, mild fever, and reproductive cough. A chest 
X-ray showed fluffy infiltrates in both lungs. Atypical 
pneumonia was suspected. The incubation period of LD 
is usually 2–10 days, but it has been recorded in some 
cases to be of up to 16 days. The severity of the disease 
ranges from a mild cough to a rapidly fatal pneumonia. 
Initial symptoms include fever, loss of appetite, head-
ache, malaise, and lethargy. Some patients may also 
experience myalgia, diarrhea, and confusion [19,20]. 
On day 5, the patient had difficulty breathing with low 
oxygen and was transferred to the Intensive Care Unit 
(ICU) of a specialized hospital in East Jerusalem (hospi-
tal E) (Figure S1) where bronchoalveolar lavage (BAL) 
and sputum) were collected to be analyzed by cultivation 
for bacterial pathogens. On the same day, treatment 
with Azithromycin followed by Levofloxacin was admi-
nistered. On day 9, bacteriological culture was negative, 

Figure 1. Timeline of events during investigation of a hospital acquired Legionnaires’ disease — in the West Bank, 2014. 
Abbreviations: NSAIDs: Non-steroidal anti-inflammatory drugs, ICU: Intensive Care Unit, BAL: Bronchoalveolar Lavage, Sg: 
Serogroup, ST: Sequence Type and AQU: Al-Quds University. Timeline represents days and the data presented are from one 
hospitalized patient. BAL sample was analyzed twice, at day 5 and day 10.
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and the diagnosis was confirmed as an atypical pneu-
monia caused by a fastidious pathogen. On day 12, the 
patient recovered and was discharged (Figure 1).

On day 17, the clinical isolate ALAW1 was retrieved 
from the BAL sample, and was identified as 
L. pneumophila Sg6 Dresden and ST 461 [14]. 
According to Zayed et al [7] ST 461 was endemic in the 
DWDS of hospital F in Bethlehem. During the patient’s 
stay in hospital F, she had two warm showers that may 
have caused the infection. On day 24 and at the request of 
the patient, a researcher from the Microbiology Research 
Laboratory collected and cultured samples from bath 
shower and faucets in the patients’ home, but the culture 
was negative for L. pneumophila (Figure 1). The patient’s 
two stories family house appeared to be in good condition 
and was connected to a municipal water network render-
ing a nosocomial infection during her stay in hospital F in 
Bethlehem most likely.

Materials and methods

L. pneumophila clinical isolate ALAW1 and 
reference genomes

L. pneumophila clinical isolate ALAW1 was selected for 
this study. For a comparison, genome sequences of 15 
L. pneumophila reference strains retrieved from NCBI 
GenBank database (https://www.ncbi.nlm.nih.gov/gen 
ome/browse#!/prokaryotes/416/) were used as refer-
ence (Table S1). Details for all L. pneumophila isolates 
from the West Bank are in [21].

Short read sequencing, genome assembly, and 
annotation

Whole-genome sequencing based on short reads was 
applied to this study. Therefore, the Illumina Hiseq 
2500 was used, which is well established and produces 
low error rates [22,23]. DNA of the clinical isolate was 
provided for whole-genome sequencing to the Genome 
Analytics unit (GMAK) of the Helmholtz Center for 
Infection Research (HZI).

In detail, a DNA library for the Illumina sequencer 
was prepared using the NEBNext Ultra kit according to 
the manufacturer’s instructions (NEB, Ipswitch, MA, 
USA), and sequenced using 100 bp paired end runs on 
the Illumina Hiseq 2500. Processed sequence reads of 
the clinical isolate were assembled using Velvet version 
1.2.10 with k-mer size of 61.

Assembled contigs of isolate ALAW1 were anno-
tated using Prokka v1.11 [24]. Prokka connects several 
software tools in order to predict the coordinates of 
CDS, tRNAs, rRNAs, CRISPRs, and other genomic 

features encoded on contigs and chromosomes. In 
this case, Prokka was applied using a genus database 
(–usegenus) based on the high-quality, manually anno-
tated L. pneumophila strain Corby [25]. With that, 
2997 Coding DNA Sequence (CDS) annotations could 
be successfully transferred to isolate ALAW1.

The Genome Sequence of isolate ALAW1 was uploaded 
to NCBI GenBank, Acc. No. JALDWK000000000. 
Furthermore, short read sequencing data is provided in 
NCBI Sequence Read Archive under BioProject ID 
PRJNA817377.

Genome analysis

For phylogenomic identification and phylogenomic 
tree construction, GenBank files of L. pneumophila 
clinical isolate ALAW1 and 15 reference genomes 
were submitted to the Type Strain Genome Server 
(TYGS) (https://tygs.dsmz.de) (Table S1). Hereby, 
a comparison and clustering of genome data was per-
formed based on the established digital DNA – DNA 
hybridization (dDDH) threshold of 70% [26]. 
Subspecies clustering was based on a 93% dDDH 
threshold as previously introduced [27].

The software Parsnp was used for SNP analysis in 
order to construct a phylogenomic tree for the core 
genome of already published L. pneumophila genomes 
[28]. Parsnp results were visualized using Gingr [28]. 
Gingr provides an interactive display of multi- 
alignment variants and phylogenetic trees estimated 
from the core genome alignment.

Finally, BLASTp was applied to align the amino acid 
sequences against the Virulence Factors of Pathogenic 
Bacteria (VFDB) database [29,30]. Amino acid sequences 
with 75% match identity was chosen and the description 
of the best hit was assigned as the annotation of pre-
dicted gene compared to L. pneumophila str. 
Philadelphia1 as default bacteria on the webpage.

Results and discussion

Herein, we report, for the first time, that a strain 
representing L. pneumophila ST461 was isolated from 
a BAL sample from a patient hospitalized with LD in 
January 2014.

General features of the genome of L. pneumophila 
clinical isolate ALAW1

Table 1 summarizes the main genome features of the 
L. pneumophila clinical isolate ALAW1. The genome of 
the L. pneumophila clinical isolate ALAW1 was sequenced 
with an approximately 105× coverage using the Illumina 
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Hiseq platform. 35 contigs greater than 200 bp could be 
assembled in total summed up to a total genome size of 
3,368,497 bp, 3041 genes and 2997 CDS were identified. It 
contained genomic islands of a total length of 161,380 bp 
representing 4.8% of the genome.

Identification of L. pneumophila clinical isolate 
ALAW1 based on SBT and MLVA

The clinical isolate belonged to Sg 6 Dresden and ST 461. 
By MLVA, ALAW1 is identified as MLVA-genotype (Gt) 
9(92). Isolates of ST 461 of the West Bank were split up into 
three MLVA-genotypes, i.e. Gt 9(92), Gt 10(93) and Gt 
10(141). These MLVA genotypes form the Clonal Complex 
11 (VACC11), a clonal complex first described for the West 
Bank [7]. Detailed ST and MLVA patterns and genes are 
seen in (Table S2).

Comparison of taxonomic resolution of STs and 
SNP analysis

Identification of L. pneumophila clinical isolate ALAW1 
based on Illumina Hiseq Sequencing was performed 
using the TYGS webserver. Phylogenomic tree of 
L. pneumophila clinical isolate revealed correct taxo-
nomic task to L. pneumophila. Hereby, the recom-
mended dDDH values of 91.3–94.7% were computed 
against the type strain L. pneumophila str. 
Philadelphia1 as default reference strain the web page 
and thereby fulfill the criteria for bacterial species iden-
tification [26]. A phylogenomic tree based on Illumina 
Hiseq sequencing was constructed using the TYGS web 
server4 and ALAW1 isolate cluster in the same clade 
with the reference strains Alcoy 2300/99 and Corby 
(Figure 2a, for the full TYGS phylogenomic tree see 
Figure S2). According to the TYGS recommended 

results of similarity according to the webpage. ALAW1 
is most similar to L. pneumophila str. Alcoy 2300/99 
with a dDDH value of 93.2% and a G+C content differ-
ence of 0.18% (Figure 2a and Table S3)

Additionally, a phylogenomic tree was constructed 
using SNP analysis of 15 reference genomes from 
GeneBank (Table S1) and our clinical L. pneumophila 
genome sequenced strain. The main branches or clus-
ters were observed in the constructed phylogenomic 
tree (Figure 2b). ALAW1 is clustered with the two 
complete reference genomes (L. pneumophila strain 
Alcoy 2300/99 and Corby) (Figure 2b).

By ParSNP analysis L. pneumophila str. Alcoy 2300/ 
99 was shown to be the closest reference strain so far 
with a complete genome available in the GenBank 
database. We found 11,674 SNPs compared to 
L. pneumophila clinical isolate. Indeed, 
L. pneumophila str. Alcoy 2300/99 showed 1,303 
SNPs less than performing the complete ParSNP ana-
lysis with L. pneumophila str. Corby as a reference 
genome. Thus, the best result for our SNP-based phy-
logenomic tree was retrieved with L. pneumophila str. 
Alcoy 2300/99 as reference and documented in 
Figure 2b and Table 2. Overall, we observed a typical 
concordance between phylogenomic tree based on 
SNPs and phylogenomic tree based on TYGS webpage.

Results of TYGS phylogenomic tree of 
L. pneumophila clinical isolate are identical with the 
constructed SNP phylogenomic tree. Comparing the 
phylogenomic tree obtained with these two molecular 
methods and mathematical algorithms, we found that 
ST is in concordance with the SNP genotyping, but it 
cannot cover the needed high resolution at intra-clonal 
level provided by WGS.

Actually, a threshold for the number of SNPs neces-
sary to identify outbreak-associated L. pneumophila 

Table 1. Main features of L. pneumophila clinical isolate used in 
the study.

Isolate designation ALAW1_cl_Ps

Sg (mAb)1 6 Dresden
ST2 ST461
VACC3 VACC11
Year of Isolation 2014
Source of isolation Clinical sample (BAL^)
Genome Size (bp) 3,368,497
No. of Genes 3,040
Genomic Islands (bp) 161,380
Genomic Islands (%) 4.8
CDS* 3,018
GC(%) 38.2
Contigs 40

* Coding DNA Sequence. 
1Serogruop (monoclonal antibody) 
2Sequence Type 
3´ VNTR-Analysis -Clonal Complex 
^Bronchoalveolar Lavage 

4 A. R. ZAYED ET AL.



strains still has to be established. For example, more 
than 200 SNPs have been reported in phylogenetically 
closely related L. pneumophila outbreak strains [31,32]. 
Mercante et al [33] showed that up to 20 core SNPs 
were identified in comparison of Philadelphia clade 
L. pneumophila isolates. In the present case study, 
11,674 SNPs were identified in the same sub-species 
cluster with the reference strain Alcoy 2300/99 from 
Valencia, Spain. While SBT from the same sub-lineage 
in a phylogenomic cluster is different as L. pneumophila 

str. Alcoy 2300/99 is ST578 and ALAW1 is ST461. These 
results are in concordance with Khodr et al [34]. They 
sequenced six ST1 genomes (four clinical and environ-
mental isolates from a hospital and the other two were 
unrelated) and observed that geographically unrelated 
isolates differed by more than 1,500 SNPs (Table 2).

Strains of VACC11 are affiliated with ST461 and 
were classified as Sg 6 Dresden [7]. ST461 was pre-
viously reported by the European Working Group for 
Legionella infections (EWGLI) [7,8,35,36], to be found 

Figure 2. A) Zoomed in Phylogenomic tree of L.pneumophila clinical isolate (Alaw1_cl_ps) and 15 L. pneumophila 
reference genomes and subspecies delineation based on the GBDP phylogenetic analyses retrieved from the TYGS 
website. the dark green squares showed ALAW1 clustered together with the two reference genomes Alcoy 2300/99 and Corby. 
The branch lengths are scaled in terms of GBDP distance formula d4 (the whole phylogenomic tree of Legionella species and 
subspecies in supplementary materials (Figure S2). B) Gingr visualization of 15 L. pneumophila reference genomes and L. 
pneumophila clinical isolate aligned with Parsnp. The leaves of the reconstructed phylogenetic tree (left) are paired with 
their corresponding rows in the multi-alignment. L. pneumophila str. Alcoy 2300/99 is the reference genome. The constructed 
tree share 72% of the core genome. The gray region isn’t a part of core genome. The white region is a part of core genome but no 
SNPs accumulation. The heatmap on the button of the figure indicates more reddish meaning more SNPs accumulation..
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in hospitals water in Poland [35]. Moreover, ST461 was 
identified in Michigan, (USA) water systems and 
showed high capability to efficiently infect THP-1 
macrophages [36]. More recently, ST461 was identified 
in hotel water in southern Israel [8] and in the West 
Bank hospital water systems [7].

Identification of pore-forming genes mediating 
cytotoxicity in L. pneumophila clinical isolate 
ALAW1

Central to the pore-forming mediated cytotoxicity of 
L. pneumophila are the Dot/Icm loci, which taken 
together directly assemble to a type IV secretion system 
(T4SS) [37,38]. Also, the toxin rtxA plays an important 
role in the pore-mediated cytotoxicity [39–41]. 
Although all L. pneumophila strains examined until 
today contain the complete Dot/Icm loci, sequence 
variations among the Dot/Icm genes among different 
L. pneumophila strains have been reported [37,42]. 
Eleven Dot/Icm T4SS genes (icmT [43,44], icmS [45], 

icmR [45], icmQ [45], icmL/dotI [46], icmK/dotH [46], 
icmE/dotG [46], icmC/dotE [46], dotB [46], dotA [46] 
and icmW [45]) and rtxA gene [41] are responsible for 
the pore-forming mediated cytotoxicity of 
L. pneumophila. The 11 Dot/Icm T4SS pore-forming 
mediated cytotoxicity genes and the rtxA gene were 
identified by a BLASTp search against the Virulence 
Factor Database (VFDB) using L. pneumophila strain 
Philadelphia1 as default reference genome for the refer-
ence strain L. pneumophila str. Alcoy 2300/99 and 
L. pneumophila clinical isolate ALAW1, which had 
been genome sequenced (Table 3).

Table 3 shows 75% to 100% similarity between the 
pore-forming mediated cytotoxicity genes. Morozova 
et al [47] showed that the Dot/Icm genes are highly con-
served in L. pneumophila strains. After WGS technology 
was available on the market, Gomez-Valero et al [48,49] 
confirmed the previous study showing high conservation 
(98%) among orthologs of the reference strains Corby, 
Paris, Philadelphia, and Lens with few exceptions in the 
dotA gene. The dotA gene is an essential gene for virulence 
activity of L. pneumophila strains since it encodes an 
integral membrane protein with eight domains. This 
explains why a dotA mutant of L. pneumophila strain 
Corby is being used as a negative control for all virulence 
assays [50]. Costa et al [51] analyzed 300 dotA gene 
sequences from L. pneumophila strains and demonstrated 
that pathogenic L. pneumophila strains belong to a subset 
of the genotypes existing in the environment. Khodr et al 
[34] explained the high variation of the dotA gene of 
L. pneumophila by indicating that this gene is a target for 
host speciation and adaptive evolution to different hosts 
and environments. Dumenil et al [52] showed that IcmR is 
a regulator gene for the IcmQ gene that possesses pore- 
forming activity. In addition, Gomez-Valero et al [53] 
demonstrated that dotB, IcmS and IcmW are highly con-
served genes. These facts are in accordance with our results 

Table 2. Whole-genome SNP comparison of L. pneumophila 
isolates and reference strains.

L. pneumophila Clinical Isolate ALAW1_cl_Ps

Lpn-LPE509 55,387
Lpn-Phildelphia1 58,320
Lpn-Thunderbay 56,257
Lpn-ATCC43290 56,577
Lpn-lpm7613 56,771
Lpn-Lens 69,093
Lpn-Lorraine 52,304
Lpn-HL06041035 47,447
Lpn-D7630 46,594
Lpn-Paris 45,200
Lpn-OLDA 45,262
Lpn-Pontiac 47,414
Lpn-Toronto 47,230
Lpn-Alcoy 2300/99 11,674
Lpn-Corby 12,977

Bold = Least No. of SNPs. 

Table 3. Percentage of nucleotide identity of orthologous pore-forming activity genes with respect to the BLASTp search against 
the VFDB using L. pneumophila strain Philadelphia1 as default reference genome.

Secretion system

Dot/Icm type IVB secretion system

L. pneumophila strain icmT icmS icmR icmQ
Id Length (bp) Id Length (bp) Id Length (bp) Id Length (bp)

Lpn-Alcoy 2300/99 82% 260 100% 344 95% 362 100% 575
ALAW1_cl_Ps 82% 260 100% 344 95% 362 100% 575 

L. pneumophila strain icmL/dotI icmK/dotH icmE/dotG icmC/dotE
Id Length (bp) Id Length (bp) Id Length (bp) Id Length (bp)

Lpn-Alcoy 2300/99 84% 638 84% 1,085 88% 3,146 99% 584
ALAW1_cl_Ps 84% 638 83% 1,085 88% 3,146 99% 548

Toxin
RtxA

L. pneumophila strain dotB dotA icmW rtxA
Id Length (bp) Id Length (bp) Id Length (bp) Id Length (bp)

Lpn-Alcoy 2300/99 100% 1,133 81% 3,059 98% 455 85% 14,009
ALAW1_cl_Ps 100% 1,133 78% 3,119 98% 455 75% 4,877
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(Table 3) showing that IcmR (95%), IcmS and dotB (100%) 
and IcmQ (100%) were highly conserved gene while dotA 
had only a 78% gene similarity for our L. pneumophila 
clinical isolate ALAW1. More recently, Zayed et al studied 
the infectivity and cytotoxicity to all clonal complexes and 
their affiliated genotypes of the West Bank [54]. Overall, 
the Dot/Icm system is a highly conserved and complex 
molecular system (Table 3).

Taken together, this detailed analysis suggests that the 
12 genes studied out of more than 200 of the Dot/Icm 
components of L. pneumophila are representing a large 
repertoire of effectors, which are necessary for virulence 
[48]. In general, both of the L. pneumophila strains studied 
shared the same Dot/Icm T4SS with less than 25% struc-
tural differences at the protein level.

According to David et al [55] a certain local 
micro-evolution could be observed if isolates from 
the same site of isolation have been obtained at dif-
ferent times. Such a case of micro-evolution could 
have occurred in the environmental isolates obtained 
from the DWDS of hospital F. Environmental strains 
of ST461 has had time to diversify by genetic drift 
since it was endemic in Bethlehem area (hospital F) 
and the clinical isolate originated from environmental 
source. Also, conditions in the water systems such as 
disinfection, temperature, and amoeba might have 
increased the virulence of the ST461 strains. 
A thorough genome-based comparison of the envir-
onmental strains and the clinical isolate ALAW1 
might give insight into this development and the 
respective mechanisms.

Conclusions and future plans

This study of L. pneumophila clinical isolate ALAW1 
highlights conserved genetical features that may be criti-
cal for pathogenesis in human lungs. Future plans aim to 
compare the clinical isolate genome with genome 
sequenced environmental isolates belonging to ST461 
from hospital F hotspots. Moreover, complete genome 
sequencing of L. pneumophila ST461 strains is highly 
recommended to better understand the evolution and 
environmental adaptation within the VACC11 clade.
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