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Construction of a lung adenocarcinoma prognostic model 
based on N6-methyl-adenosine-related long noncoding RNA 
and screening of potential drugs based on this model
Qinghua  Houa, Yanfeng Zhongb, Linzhuang Liuc, Liusheng Wuc and Jixian Liuc  

Lung adenocarcinoma (LUAD) has a high mortality rate. 
N6-methyl-adenosine (m6A)-related long noncoding 
RNA (lncRNA) is associated with tumor prognosis. 
Our objective was to construct an m6A-related lncRNA 
prognostic model and screen potential drugs for the 
treatment of LUAD. The LUAD sequencing data were 
randomly divided into Train and Test cohorts. In the Train 
group, the LASSO Cox regression was used to construct 
the m6A-related lncRNA prognostic model. The LUAD 
tumor immune dysfunction and exclusion model was 
used to evaluate immunotherapy efficacy in LUAD. The 
‘pRRophetic’ package was utilized to screen potential 
drugs for the treatment of LUAD. Eleven m6A-related 
lncRNAs were identified by LASSO Cox regression and 
were used to construct the risk model to calculate sample 
risk scores. Patients were divided into high- and low-risk 
groups based on their median risk scores. The LUAD 
data of The Cancer Genome Atlas database showed 
that the overall survival (OS) of the high-risk group was 
significantly lower than that of the low-risk group in both 
cohorts. Multivariate Cox regression analysis showed that 
this risk model could serve as an independent prognostic 

factor of LUAD, and receiver operating characteristic 
curves suggested that m6A-related lncRNA prognostic 
signature has a good ability in predicting OS. Finally, 
nine potential drugs for LUAD treatment were screened 
based on this prognostic model. The prognostic model 
constructed based on the m6A-related lncRNAs facilitated 
prognosis prediction in LUAD patients. The screened 
therapeutic agents have potential application values and 
provide a reference for the clinical treatment of LUAD. 
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Introduction
According to recent statistics published in 2020, lung 
cancer is the deadliest and second most common can-
cer worldwide, with a diagnosis rate of 11.4% [1]. Lung 
cancer is usually divided into small cell lung cancer and 
nonsmall cell lung cancer according to cytological type, 
and the most common subtype of nonsmall cell lung can-
cer is lung adenocarcinoma (LUAD) [2]. Owing to the 
lack of tumor-specific clinical symptoms experienced 
by LUAD patients in the early stage, they are often in 
the middle and late stages when diagnosed. By this time, 
local invasion or even distant metastasis has occurred in 
the tumor foci, the curative effect is poor, and the 5-year 
overall survival (OS) rate is less than 20% [3,4]. Targeted 

therapy and immunotherapy are two of the main meth-
ods of LUAD treatment. Although dozens of gene-tar-
geted drugs such as EGFR, ALK, ROS1, BRAF, RET, 
etc., which are widely used, have achieved good clinical 
efficacy [5,6], the number of clinically available molecu-
lar targets is still limited, resulting in a limited number of 
beneficiaries [7,8]. In consideration of the limitations of 
LUAD treatment, new therapeutic targets are required 
to increase the clinical efficacy of LUAD treatment. 
Therefore, there is an urgent need for a reliable and new 
prognostic model, so as to provide reference for the clin-
ical treatment of LUAD and improve the feasibility of 
targeted therapy.

N6-methyl-adenosine (m6A) is one of the most com-
mon mRNA modifications in eukaryotes and plays a key 
role in cancer pathogenesis [9]. It is mainly and dynam-
ically regulated by methyltransferase (also referred to as 
‘writers’), demethylase (also referred to as ‘erasers’) and 
methylated binding protein (also referred to as ‘readers’) 
[10]. ‘Writers’ catalyze the transfer of methyl groups to 
adenosine bases, and ‘erasers’ refer to two demethylases, 
alpha-ketoglutarate-dependent dioxygenase (FTO) and 
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alkane hydroxylase gene homolog 5 (ALKBH5), which 
remove m6A from RNA. ‘Readers’ recognize and bind to 
the m6A binding site, thereby generating the correspond-
ing biological signal. Growing evidence suggests that 
m6A regulators are closely associated with malignancy 
[11,12]. For instance, in liver cancer, the downregulation 
of METTL14, which is one of the m6A ‘writers’, is sig-
nificantly associated with tumor metastasis [13]. YTHDF, 
which is one of the ‘readers’, is associated with tumor-
igenicity and tumor stem cell-like activity in colorectal 
cancer [14]. FTO is one of the ‘erasers’, and it is carcino-
genic in acute myeloid leukemia [15].

The coding of RNA is regulated by m6A, which also mod-
ifies long noncoding RNAs (lncRNAs). The latter, lncR-
NAs, is a class of noncoding RNAs with a length greater 
than 200 nucleotides and can control genetic expression, 
biological functions of cells, etc. [16]. Studies conducted 
in recent years showed that m6A influences lncRNAs 
mainly through two types of regulatory mechanisms. On 
one hand, m6A could induce the binding of RNA-binding 
protein, by providing binding sites for reader proteins or 
by regulating the structure of local RNAs. On the other 
hand, m6A might also regulate lncRNAs and specific 
DNA, by affecting the RNA-DNA triple helix structural 
relationship between sites [17]. Studies have shown that 
m6A affects the biological process (BP) of tumors by reg-
ulating related lncRNAs, such as lncRNA (LINC00958) 
as a competing endogenous RNA binds to miR-3619-5p 
to increase the expression of hepatocellular carcino-
ma-derived growth factors (HDGFs), whereas MET-TL3 
can positively regulate the lncRNA LINC00958/miR-
3619-5p/HDGF axis through m6A, thereby affecting the 
incidence and development of liver cancer [18]. However, 
m6A-related lncRNAs are less studied in LUAD, so we 
systematically analyzed m6A-related lncRNAs, con-
structed a prognostic model based on these lncRNAs, 
studied the correlation between lncRNAs and the tumor 
immune microenvironment, and screened for potential 
therapeutic agents for LUAD, based on this model.

Materials and methods
Data collection and screening of N6-methyl-adenosine-
related lncRNAs
We downloaded LUAD transcriptome data and corre-
sponding clinical data in FPKM format from The Cancer 
Genome Atlas (TCGA) database, as well as nucleotide 
variation (version calculated by ‘varscan’ software) data 
of LUAD samples, which included 535 cases of tumor 
samples and 59 cases of normal samples. In addition, we 
extracted 23 genes involved in m6A methylation from 
published literature [9,11,12,19–21]. The R software 
(version 4.1.3) was used to screen for lncRNAs from the 
TCGA transcriptome data, and the ‘limma’ package was 
used for m6A coexpression analysis to screen for lncRNAs 
related to m6A genes. The LUAD transcriptome data 
were merged with the corresponding clinical data. In the 

process of model construction, tumor samples with incom-
plete survival time or status information were removed, 
and in the correlation analysis of the clinicopathological 
characteristics of LUAD patients, ‘unknown’, ‘TX’, ‘NX’, 
and ‘MX’ were excluded samples.

Construction of prognostic model
The LUAD samples were randomly divided into Train 
and Test cohorts, each of which accounted for 50% of 
the data. The clinical characteristics of the two groups 
were statistically analyzed to determine whether there 
was any deviation between the two groups. Based on the 
LUAD samples in the Train cohort and their correspond-
ing survival data, the genes associated with prognosis 
were screened from the m6A-related lncRNAs that were 
screened previously. Univariate Cox regression analysis 
was used for these lncRNAs, and the P threshold was 
set to 0.05 to prevent overfitting in the Cox regression 
model modeling process. The ‘glmnet’ software pack-
age was used to perform LASSO regression analysis on 
prognosis-related genes, and the cross-validation method 
was used to select the point with the smallest error as the 
penalty parameter ‘λ’ to determine the number of lncR-
NAs and the corresponding risk coefficients for build-
ing the model. The risk score formula is as follows: Risk 
Score =  Xi Yi

i

n
×∑  (n: number of lncRNAs, X: risk fac-

tor, and Y: level of gene expression).

Evaluation and testing of the prognostic model
We divided patients in the Train cohort into high- and 
low-risk subgroups based on the median risk score of the 
prognostic model. The 1-, 3-, and 5-year receiver oper-
ating characteristic (ROC) curve analyses and multi-in-
dex ROC curve analysis were then performed using the 
‘survival’, ‘survminer’, and ‘timeROC’ packages in the R 
software to evaluate the predictive ability of this prognos-
tic model for OS in patients with LUAD. The genes for 
which the model was constructed were subjected to prin-
cipal component analysis (PCA) analysis by the ‘prcomp’ 
function in the ‘Rtsne’ package, and the OS of the two 
groups was compared by Kaplan–Meier analysis. In order 
to validate m6A-related lncRNA prognostic signature 
(m6A-LPS), we applied the Test cohort data to validate 
the constructed model. In addition, to verify whether 
the model was applicable to patients in different clinical 
groups, we also performed clinical group validation.

Functional enrichment and immune function analysis of 
differential genes
Differentially expressed genes (DEGs) between high- 
and low-risk groups of LUAD were screened according 
to the criteria of false discovery rate (FDR) < 0.05 and 
|log2FC| ≥ 1. Based on these DEGs, the ‘clusterProfiler’ 
package [22] and the ‘GOplot’ package [23] were used 
to perform gene ontology (GO) enrichment analysis 
and kyoto encyclopedia of genes and genomes (KEGG) 
analysis of DEGs from three aspects: BPs, cellular 
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components, and molecular functions. Pathway analy-
sis and enrichment analysis were combined with logFC 
analysis. The single sample gene set enrichment analysis 
was then performed using the ‘gsva’ package to calculate 
immune cell infiltration scores and assess the immune-re-
lated pathway activity.

Mutation burden analysis
Based on the downloaded LUAD nucleotide variation 
data, we applied the Perl software (version 5.30.0) to 
calculate the genetic mutation burden of LUAD sam-
ples. Differences in tumor mutational burden of LUAD 
patients between high- and low-risk groups were ana-
lyzed using the ‘limma’ software package. Then, accord-
ing to the patient’s tumor mutation burden, all LUAD 
patients were divided into two groups with high and low 
mutation burdens, and combined with high- and low-risk 
groups, the ‘survival’ and ‘survminer’ packages were used 
to perform a combined survival analysis of the patient’s 
tumor mutation burden and risk grouping.

Analysis of lung adenocarcinoma immunotherapy and 
screening of potential drugs
The tumor immune dysfunction and exclusion (TIDE) 
scoring file was obtained from the TIDE website (http://
tide.dfci.harvard.edu). The TIDE score was used to eval-
uate the immune escape of the high- and low-risk groups, 
so as to determine the efficacy of immunotherapy in the 
high- and low-risk groups. The ‘pRRophetic’ package 
[24] was subsequently applied to screen potential thera-
peutic drugs for LUAD.

Results
N6-methyl-adenosine-related lncRNAs
Among the m6A genes extracted from the published 
literature, there were eight ‘writers’ genes (METTL3, 
METTL14, METTL16, WTAP, VIRMA, ZC3H13, 
RBM15, and RBM15B), 13 ‘readers’ genes (YTHDC1, 
YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, 
FMR1, LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2, 
IGFBP3, and RBMX), and two ‘erasers’ genes (FTO and 
ALKBH5). A total of 1126 m6A-related lncRNAs were 
screened by coexpression analysis (Supplementary Table 
1, supplemental digital content 1, http://links.lww.com/
ACD/A424), and the correlation filtering criteria were: 
correlation > 0.6; P < 0.001 (Fig. 1).

Construction of N6-methyl-adenosine-related lncRNA 
prognostic model
After performing Chi-square test, it was found that there 
was no deviation in the clinical characteristics of the 
patients in the Train cohort and the Test cohort (P > 0.05; 
Table  1). We used univariate Cox regression analysis to 
obtain 35 lncRNAs related to prognosis in the Train group 
(Fig. 2a) and obtained 20 lncRNAs related to prognosis 
through LASSO regression analysis. Then, we used mul-
tivariate Cox regression analysis to analyze the lncRNAs 

obtained by LASSO regression after optimization, and 
11 lncRNAs (AP001178.1, AL121772.2, AL360270.2, 
AL358115.1, AF131215.5, AC010999.2, TRAF3IP2-AS1, 
AC026355.2, ADPGK-AS1, LINC02656, and AC012409.4) 
were used to construct the prognostic model (Fig.  2b 
and c). According to the constructed risk score formula, 
the risk scores of the samples in the Train cohort and the 
Test cohort were calculated, respectively. The calculation 
method of the risk score was as follows: Risk Score = 1.82
8*EXP(AP001178.1) + 0.871*EXP(AL121772.2) + 1.365
*EXP(AL360270.2) + 1.458*EXP(AL358115.1) +  (−0.49
9)*EXP(AF131215.5) + (−2.683)*EXP(AC010999.2) + (−
1.849)*EXP(TRAF3IP2-AS1) + (−0.3383914)*EXP(AC0
26355.2) + (−4.597)*EXP(ADPGK-AS1) + (−1.131)*EXP
(LINC02656) + 1.762*EXP(AC012409.4). In addition, we 
also performed m6A correlation analysis on these lncR-
NAs (red represents positive correlation and blue repre-
sents negative correlation; see Fig. 2d).

Prognostic ability of the N6-methyl-adenosine-related 
lncRNA prognostic model
In the Train cohort, we divided the samples into high- and 
low-expression groups based on the median risk score and 
then performed PCA based on model m6A-related lncR-
NAs, m6A all-related lncRNAs, m6A genes, and all genes, 
and the results showed that in the m6A-related lncRNAs, 
the high-risk group and the low-risk group had the most 
obvious differentiation (Fig.  3). This showed that the 
model we had constructed could differentiate between 
high- and low-risk groups very well. We also explored the 
difference in OS between the high- and low-risk groups 
in the Train and Test cohorts by Kaplan–Meier analysis, 
and the OS time in the high-risk group was significantly 
shorter than that in the low-risk group (P < 0.001; Fig. 4). 
We also plotted risk curves based on the risk scores, in both 
the Train and Test cohorts, patients in the high-risk group 
had more deaths and shorter survival times compared with 
the low-risk group (Fig. 5a–f, on the right side of the dot-
ted line), and the expression of lncRNAs involved in the 
model construction in high- and low-risk groups was also 
displayed in the form of a heat map, among which the 
expression levels of AP001178.1, AL121772.2, AL360270.2, 
AL358115.1, and AC012409.4 increased, as the risk 
scores increased. The expression levels of AF131215.5, 
AC010999.2, TRAF3IP2-AS1, AC026355.2, ADPGK-AS1, 
and LINC02656 were significantly higher in the low-risk 
group and were the low-risk genes in this model (Fig. 5g–
i). In addition, we also conducted a validation analysis in 
each clinical subgroup of all patients, with different ages 
(age ≤ 65 and age > 65), sex (female and male), and patho-
logical stage (stages I–II and stages III–IV). The OS of 
the low-risk group was significantly better than that of the 
high-risk group (P  <  0.05; Fig.  6a–f), indicating that the 
model is suitable for patients with different clinical sub-
groups. Subsequently, applying ROC analysis to evaluate 
the sensitivity and specificity of the prognostic model, we 
found that the ROC area under the curve (AUC) was 0.729 
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at 1 year, 0.689 at 2 years, and 0.725 at 3 years (Fig. 6g), 
indicating that the model has a certain predictive capability.

Analysis of risk score and independent prognostic 
factors
Next, we performed a univariate analysis in all LUAD 
patients based on the model-based risk score and clin-
ical characteristics such as age, sex, and stage, and the 
results showed that stage and risk score had a significant 
effect on prognosis (Fig. 7a). The results of multivariate 

analysis showed that risk score and stage still had signifi-
cant prognostic significance (Fig. 7b), indicating that risk 
score could be used as an independent prognostic factor 
for patients with LUAD. In addition, we also conducted 
a multi-index ROC curve analysis. The multiple curves 
in the figure represent the risk scores and clinical char-
acteristics of LUAD patients. The AUC of each clinical 
characteristic was 0.537 for age, 0.596 for sex, and 0.711 
for stage, whereas the AUC of the model-based risk value 
was 0.729, which indicated that our constructed LUAD 

Fig. 1.

N6-methyl-adenosine-related lncRNA, correlation coefficient > 0.6, P < 0.001.

Table 1. Clinical and statistical analysis of lung adenocarcinoma lung adenocarcinoma patients in the train and test cohorts

Covariates Type Total Test Train P value

Age <=65 224(47.86%) 106(45.69%) 118(50%) 0.3979
>65 234(50%) 121(52.16%) 113(47.88%)

Unknow 10(2.14%) 5(2.16%) 5(2.12%)
Sex Female 254(54.27%) 135(58.19%) 119(50.42%) 0.1111

Male 214(45.73%) 97(41.81%) 117(49.58%)
Stage Stage I 253(54.06%) 127(54.74%) 126(53.39%) 0.8899

Stage II 107(22.86%) 53(22.84%) 54(22.88%)
Stage III 75(16.03%) 34(14.66%) 41(17.37%)
Stage IV 25(5.34%) 13(5.6%) 12(5.08%)
Unknow 8(1.71%) 5(2.16%) 3(1.27%)

T T1 159(33.97%) 82(35.34%) 77(32.63%) 0.6988
T2 248(52.99%) 123(53.02%) 125(52.97%)
T3 39(8.33%) 16(6.9%) 23(9.75%)
T4 19(4.06%) 9(3.88%) 10(4.24%)

Unknow 3(0.64%) 2(0.86%) 1(0.42%)
M M0 315(67.31%) 161(69.4%) 154(65.25%) 1

M1 24(5.13%) 12(5.17%) 12(5.08%)
Unknow 129(27.56%) 59(25.43%) 70(29.66%)

N N0 302(64.53%) 145(62.5%) 157(66.53%) 0.3275
N1 86(18.38%) 49(21.12%) 37(15.68%)
N2 66(14.1%) 28(12.07%) 38(16.1%)
N3 2(0.43%) 1(0.43%) 1(0.42%)

Unknow 12(2.56%) 9(3.88%) 3(1.27%)
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prognostic model was superior to other clinical features 
in predicting patient survival (Fig.  7c). Moreover, we 
drew the c-index curve to the same conclusion (Fig. 7d). 
The above evaluation indicated that our model based on 
m6A-related lncRNAs could serve as an independent 
prognostic factor for LUAD.

Analysis of gene ontology/kyoto encyclopedia of genes 
and genomes enrichment and immune function
To further explore the functions and pathways of differ-
ential genes between the high- and low-risk groups in all 
TCGA-LUAD samples, we used the ‘limma’ R package to 
extract DEGs with filtering conditions of FDR < 0.05 and 
|log2FC| ≥ 1. A total of 223 DEGs were identified between 
the high- and low-risk groups, of which 82 genes were upreg-
ulated and 141 genes were downregulated in the high-risk 

group (Supplementary Table 2, supplemental digital con-
tent 2, http://links.lww.com/ACD/A425). GO-enrichment 
analysis and KEGG pathway analysis were then performed 
based on these DEGs. GO-enrichment analysis showed 
that DEGs were mainly associated with spliceosomal 
tri-snRNP complex assembly, formation of quadruple SL/
U4/U5/U6 snRNP, mRNA trans splicing via spliceosome, 
Golgi lumen, endopeptidase inhibitor activity, peptidase 
inhibitor activity, etc. KEGG-enrichment analysis showed 
that DEGs were mainly involved in the nitrogen metabo-
lism pathway (Table 2, Fig. 8a). A subsequent analysis of 
differences in immune function showed that there were 
significant differences in type II IFN response, type I IFN 
response, HLA, antigenpresenting cells (APC) co-stim-
ulation, APC coinhibition, chemokine receptor, parain-
flammation, cytolytic activity, inflammation-promoting, T 

Fig. 2.

Construction of risk signature. (a) 33 lncRNAs associated with lung adenocarcinoma (LUAD) prognosis, P < 0.05. (b) LASSO Cox regression 
analysis of prognostic m6A-related lncRNAs. (c) Correlation between m6A genes and lncRNAs involved in model construction.

http://links.lww.com/ACD/A425
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cell coinhibition, check-point, T cell costimulation, etc. 
(Fig.  8b, low expression in blue and high expression in 
red). It was found that these immune functions declined 
in the high-risk group.

Analysis of lung adenocarcinoma tumor mutation
In order to explore the mutation differences between 
samples in the high- and low-risk groups, we first ana-
lyzed the mutation frequency of the different groups. 
The results showed that the overall mutation fre-
quency of samples in the high-risk group (93.44%) was 
higher than that in the low-risk group (83.33%). Hence, 
this showed that the high-risk group based on the prog-
nostic model was accompanied by a higher mutation 

frequency, of which TP53 had the highest mutation 
frequency in the low-risk group, whereas titin (TTN) 
had the highest mutation frequency (50%) in the high-
risk group. We also found that the frequency of TP53 
mutation was not different between the high- and low-
risk groups and was dominated by Missense Mutation, 
and the mutation information was displayed in the form 
of waterfall plots (Fig. 9a and b). We then performed a 
mutational load differential analysis, again with signifi-
cant differences between the high- and low-risk groups, 
with a significantly higher mutational load in the high-
risk group than that in the low-risk group (Fig.  9c). 
Then, we carried out a survival analysis of tumor muta-
tion burden in combination with high- and low-risk 

Fig. 3.

Principal component analysis (PCA). (a) PCA analysis of m6A-related lncRNAs used in constructing the prognostic model. (b) PCA analysis of all 
m6A-related lncRNAs. (c) PCA analysis of 23 m6A-related lncRNAs. (d) PCA analysis of all genes based on TCGA-LUAD data.
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levels, determined the optimal cutoff value through 
the ‘surv_cutpoint’ function, and then divided the 
mutation data into two groups of high- and low-muta-
tion ‘high-tumor mutation burden’ ‘L’. Combined with 
the high- and low-risk groups, they were divided into 
four groups for survival analysis. The results showed 

that there was no significant difference in the OS of 
patients between the high- and low-burden mutation 
groups (Fig.  9d), whereas after combining the high- 
and low-risk groups, there was a significant difference 
in survival time of the patients between the four groups 
(Fig. 9e).

Fig. 4.

Evaluation of model-based survival time. (a) Kaplan–Meier curves of the overall survival of high- and low-risk patients in the Train cohort. (b) 
Kaplan–Meier curves of the overall survival of high- and low-risk patients in the Test cohort. (c) Kaplan–Meier curves of the overall survival of all 
high- and low-risk lung adenocarcinoma (LUAD) patients.

Fig. 5.

Evaluation of the risk curves of the model. (a) Distribution of patients based on the risk score in the Train cohort. (b) Distribution of patients based 
on the risk score in the Test cohort. (c) Distribution of patients based on the risk scores of all lung adenocarcinoma (LUAD) patients. (d) The sur-
vival status for each patient in the Train cohort (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the 
dotted line). (e) The survival status for each patient in the Test cohort. (f) The survival status of all LUAD patients. (g) The heatmap of 11 m6A-re-
lated lncRNAs in the Train cohort. (h) The heatmap of 11 m6A-related lncRNAs in the Test cohort. (i) The heatmap of 11 m6A-related lncRNAs of 
all LUAD patients.



378 Anti-Cancer Drugs 2022, Vol 33 No 4

Analysis of immunotherapy and screening of potential 
drugs for lung adenocarcinoma treatment
We analyzed the immune evasion and immunotherapy 
of LUAD samples by TIDE score, and the high-risk 
group had lesser potential for immune evasion and better 
effect of receiving immunotherapy (Fig. 10a). Using the 
pRRophetic package for predicting drug sensitivity, for 
those with different sensitivities between high- and low-
risk groups, the lower the IC50 value, the more sensitive 
the drug. The results showed that ABT.263, ABT.888, 
AG.014699, AICAR, AP. 24534, AS601245, ATRA, 
AUY922, and AZD.0530 had significant differences in 
sensitivity between high- and low-risk groups, with the 
high-risk group being paired (Fig. 10b–j).

Discussion
LUAD has a high incidence and poor prognosis world-
wide, and faces major challenges in early tumor screening, 
diagnosis, and treatment [25]. The abnormal regulation 
of lncRNAs is an important factor in tumorigenesis and 
development, and these lncRNAs were also potential 
diagnostic and therapeutic targets for LUAD. A growing 
number of studies have demonstrated that m6A modifica-
tions and lncRNAs are involved in regulating tumor ini-
tiation, progression, and prognosis through endogenous 
lncRNAs targeting m6A regulators [26]. Therefore, we 
established an m6A-related lncRNA signature to explore 
the potential prognostic markers and therapeutic targets 
in LUAD patients and predicted potential therapeutic 
drugs for LUAD based on these lncRNA signatures.

We collected the data of 535 LUAD patients from the 
TCGA dataset and identified 35 m6A-related lncR-
NAs associated with LUAD prognosis. Furthermore, 
we improved the prediction of OS in LUAD patients 
by incorporating 11 of the 35 m6A-related prognostic 
lncRNAs into m6A-LPS by LASSO Cox regression. 
Based on this model, the risk scores of LUAD patients 
were calculated, and these patients were divided into 
high- and low-risk groups according to the median risk 
score. We found that high risk was accompanied by 
poor OS, and the m6A-LPS risk score was determined 
by multivariate Cox regression analysis as an independ-
ent risk factor for OS. Then, we used time-dependent 
ROC curve, multi-index ROC curve, and C-index 
curve analyses to show that m6A-LPS has a certain 
predictive ability for the prognosis of LUAD and has 
higher accuracy than other clinical features. In order to 
validate whether the constructed model was suitable 
for patients in different clinical groups, we analyzed 
the patients in each clinical group based on the risk 
model. The results showed that the model was suitable 
for both male and female patients, patients aged ≤65 
and >65  years old, and early- and late-stage patients, 
further demonstrating the predictive potential of the 
risk assessment model.

In subsequent mutational analysis, we found that 
patients in the high-risk group were accompanied by a 
higher mutation rate, with the highest frequency of TTN 
mutations in the high-risk group, TTN encodes a large 

Fig. 6.

Stratification analysis of survival according to the clinicopathological characteristics and receiver operating characteristics (ROC) curve analysis of 
prognostic model. (a and b) Survival analysis of all patients adjusted to age, (c and d) sex, (e and f) pathological stage between high- and low-risk 
groups. (g) ROC curves of prognostic models.
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abundant protein of striated muscle, which is closely 
related to actin and myosin and constitutes the third 
most abundant type of fiber in human heart and skeletal 
muscle [27]. Studies have shown that TTN is mutated in 
many types of tumors, including lung squamous cell car-
cinoma, LUAD, and colon adenocarcinoma [28], which is 
consistent with our findings.

In order to better guide the clinical treatment of 
LUAD, we screened nine potential drugs based on 
the constructed model, including ABT.263, ABT.888, 
AG.014699, AICAR, AP.24534, AS601245, ATRA, 
AUY922, and AZD.0530. ABT.263 is a Bcl-2 inhibitor, and 
oral administration of ABT.263 induces complete tumor 
regression in xenograft models of small cell lung cancer 

Fig. 7.

Analysis of prognostic factors. (a) Univariate prognostic factors analysis forest plot of the model for all lung adenocarcinoma (LUAD) patients. (b) 
Multivariate prognostic factors analysis forest plot of the model for all LUAD patients.

Table 2. Gene ontology/kyoto encyclopedia of genes and genomes enrichment analysis

Ontology ID Description Gene ratio Bg ratio P.adjust q value

BP GO:0000244 Spliceosomal tri-snRNP complex assembly 5/154 26/18670 0.001 0.001
BP GO:0000353 Formation of quadruple SL/U4/U5/U6 snRNP 4/154 12/18670 0.001 0.001
BP GO:0000365 mRNA trans splicing, via spliceosome 4/154 12/18670 0.001 0.001
CC GO:0005796 Golgi lumen 6/161 102/19717 0.028 0.026
CC GO:0046540 U4/U6 x U5 tri-snRNP complex 4/161 42/19717 0.028 0.026
CC GO:0097526 Spliceosomal tri-snRNP complex 4/161 42/19717 0.028 0.026
MF GO:0004867 Serine-type endopeptidase inhibitor activity 7/130 94/17697 0.002 0.002
MF GO:0004866 Endopeptidase inhibitor activity 8/130 175/17697 0.005 0.004
MF GO:0030414 Peptidase inhibitor activity 8/130 182/17697 0.005 0.004
KEGG hsa00910 Nitrogen metabolism 3/63 17/8076 0.035 0.034

BP, biological processes; CC, cellular components; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; MF, molecular functions.
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Fig. 8.

Analysis of GO/KEGG enrichment and immune functions. (a) Differentially expressed genes (DEGs) combined with logFC GO enrichment 
analysis and KEGG pathway, where the inner circle height is the relative size of p.adj, and the corresponding filled color represents the zscore 
value corresponding to the entry. The outer circle is the molecule contained in the entry, the height represents the corresponding logFC value, the 
molecule with positive logFC is marked as Up, and the molecule with negative logFC is marked as Down (see Table 2 for details). (b) Heatmap of 
immune functions.

Fig. 9.

Model-based lung adenocarcinoma (LUAD) mutational burden and survival analysis. (a and b) Mutational signals of the high- and low-risk groups. 
(c) Grouped burden differences between high- and low-risk groups. (d and e) Combined survival analysis of high- and low-mutation groups and 
high- and low-risk groups.



LUAD prognostic model with drug screening Hou et al. 381

and acute lymphoblastic leukemia [29]. The tumor sup-
pressor genes BRCA1 and BRCA2 can repair DNA dou-
ble-strand breaks through homologous recombination 
deficiency (HRD), and the loss of their functions could 
easily lead to gene instability, which in turn led to the 
generation of tumor cells [30]. Studies have shown that 
poly ADP-ribosylation polymerase (PARP) inhibitors are 
abnormally sensitive to BRCA1- and BRCA2-mutated 
tumor cells, so PARP inhibitors are used to treat HRD-
deficient malignancies [31]. ABT.888 is an oral PARP 
inhibitor with the ability to inhibit poly ADP-ribose 
polymerase-1/2 (PARP-1/2) [32], whereas PARP-1/2 are 
involved in DNA breakage and PAR polymerization and 
play a key role in the base excision repair pathway [33]. 
AG.014699 is a potent PARP inhibitor codeveloped by 
Newcastle University and Agouron Pharmaceuticals (part 
of Pfizer GRD) [34]. AICAR (5-aminoimidazole-4-car-
boxamide riboside) is an AMP-activated protein kinase 
(AMPK) agonist [35,36]. There is growing evidence that 
this compound is cytotoxic to a variety of cancer cells, 
including colon and prostate cancer. Therefore, AICAR 
might be a promising anticancer drug [37–40], with 
potential value for the drug therapy of LUAD. AP.24534, 
also known as ponatinib, is a potent oral tyrosine kinase 
inhibitor with activity against unmutated and mutated 
BCR-ABL, including threonine at position 315 (T315I) 
Isoleucine mutation [41]. Ponatinib showed significant 
antileukemia activity in patients with Philadelphia chro-
mosome (Ph)-positive disease [42]. c-Jun N-terminal 
kinase (JNK) is a subfamily of mitogen-activated protein 
kinases that regulate important cellular activities includ-
ing cell proliferation, differentiation, and apoptosis [43]. 
JNK promotes the development of many cancers includ-
ing lung cancer [44]. AS601245, a cell-permeable JNK 
inhibitor, showed promising anticancer effects in colon 

cancer and T-cell acute lymphoblastic leukemia [45]. 
Since ATRA was first used in the clinical treatment of 
acute promyelocytic leukemia, it has provided a suc-
cessful example for ATRA in the treatment of malig-
nant tumors. The research on the relationship between 
ATRA and tumor cells has increased yearly [46]. Studies 
have shown that ATRA has an inhibitory effect on the 
proliferation of lung cancer cells and solid tumor cells 
[47]. AUY922 is a newly developed nongeldanamycin 
HSP90 inhibitor. By inhibiting HSP90, AUY922 can 
overcome ALX-mediated lung cancer cell lines and lung 
cancer cells and drug resistance in animal models [48]. 
AZD0530 is an oral inhibitor of Src signaling pathway 
(Src is involved in tumor progression and metastasis). 
AZD0530 can significantly inhibit the motility and inva-
siveness of endocrine-resistant breast cancer cells in vitro 
[49]. In addition, the study by Zhao et al. [50] showed 
that AZD0530 could reduce the drug resistance of ALK-
positive lung cancer cells by inhibiting the Src signaling 
pathway. The above nine drugs were all potential drugs 
for the clinical treatment of LUAD.

However, our study had some limitations. First, the 
model was only validated with TCGA’s own data, and 
more external data validation based on RNA-seq cohorts 
is needed in the future. In addition, we only preliminar-
ily explored the signaling pathways involved in the 11 
m6A-related prognostic lncRNA targets and the correla-
tion of m6A-related lncRNAs with immunity. However, 
the specific mechanisms of m6A-related lncRNAs in 
LUAD and their interconnections with immunity and 
m6A regulators remain to be not entirely clear, and more 
experiments are needed to validate our findings.

In summary, we constructed a prognostic model with 
11 m6A-related lncRNAs, which was able to predict 

Fig. 10.

Immune evasion analysis and drug screening. (a) Immune evasion analysis. (b–j) Model-based screening of potential drugs.
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the clinical progression and prognostic risks of LUAD. 
We screened for potential drugs and provided clinical 
reference for the treatment of LUAD using this model. 
Moreover, these lncRNAs might be valuable diagnostic 
candidates and prognostic biomarkers, as well as poten-
tial therapeutic targets for LUAD.
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