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Abstract
Gemcitabine is a cytidine analogue frequently used in the treatment of various cancers. However, the development 
of chemoresistance limits its effectiveness. Gemcitabine resistance is regulated by various factors, including 
aberrant genetic and epigenetic controls, metabolism of gemcitabine, the microenvironment, epithelial-to-
mesenchymal transition, and acquisition of cancer stem cell properties. In many situations, results using cell lines 
offer valuable lessons leading to the first steps of important findings. In this review, we mainly discuss the factors 
involved in gemcitabine metabolism in association with chemoresistance, including nucleoside transporters, 
deoxycytidine kinase, cytidine deaminase, and ATP-binding cassette transporters, and outline new perspectives 
for enhancing the efficacy of gemcitabine to overcome acquired chemoresistance.

Keywords: Gemcitabine, chemoresistance, deoxycytidine kinase, human equilibrative nucleoside transporter 1, 
cytidine deaminase, ATP-binding cassette transporters, metabolism

INTRODUCTION
Gemcitabine [2’,2’-difluoro-2’-deoxycytidine (dFdC)], was first described by Eli Lilly and Company in 
1986[1] and is the most important deoxycytidine nucleoside analogue with fluorine substituents at the 2’ 
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position of the pentose ring [Figure 1][2]. Its metabolic pathway is illustrated in Figure 2. This molecule 
is hydrophilic, and can be transported into cells by nucleoside transporters (hNTs), including both 
sodium-dependent concentrative nucleoside transporters (hCNTs) and sodium-independent equilibrative 
nucleoside transporters (hENTs). hCNTs mediate unidirectional transportation of nucleosides. hENT1 can 
uptake gemcitabine with high affinity but low capacity, whereas hENT2 can uptake gemcitabine with low 
affinity but high capacity. The intracellular uptake of gemcitabine is mainly mediated by hENT1 in cancer 
cells. In hepatocytes, the uptake of gemcitabine is mainly mediated by low affinity hENT2[3,4]. 

Gemcitabine is a prodrug which requires intracellular phosphorylation for activation. Inside the cell, 
gemcitabine is phosphorylated to its monophosphate form (dFdCMP) by deoxycytidine kinase (DCK) and 
is then further phosphorylated to its diphosphate (dFdCDP) and then triphosphate forms (dFdCTP), as 

Figure 1. Structures of cytidine, deoxycytidine and gemcitabine

Figure 2. Metabolism and action of gemcitabine [difluoro 2’-deoxycytidine (dFdC)]. dFdC is transported into the cell through nucleoside 
transporters (hNTs), then stepwise phosphorylated by deoxycytidine kinase (DCK), nucleoside monophosphate kinase (NMPK), 
and nucleoside diphosphate kinase (NDPK), to form active triphosphate metabolite (dFdCTP). This molecule then inhibits DNA and 
RNA synthesis. Diphosphate metabolite (dFdCDP) inhibits ribonucleotide reductase (RR), an enzyme that catalyses the conversion 
of ribonucleotide (CDP) to deoxyribonucleotide (dCDP). The majority of dFdC is inactivated mainly by cytidine deaminase (CDA) 
mediated conversion to difluorodeoxyuridine (dFdU) and then excreted through the ABC transporter. Deamination of dFdCMP to 
dFdUMP by deoxycytidylate deaminase (dCMP deaminase) and subsequent dephosphorylation forms dFdU; this is another inactivation 
pathway of dFdC. dFdUMP inhibits thymidylate synthase (TS), resulting in the depletion of the dTMP pool. dFdCTP inhibits dCMP 
deaminase
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shown in Figure 2. The resulting dFdCTP is incorporated into DNA and then the DNA strand synthesis 
is terminated after incorporation of another nucleotide, hiding dFdCTP from DNA repair enzymes[5]. 
dFdCTP is also incorporated into RNA[6,7], and sensitivity to gemcitabine is related to differences in RNA 
incorporation[8]. RNA incorporation of gemcitabine may play an important role in its activity. dFdCDP is 
an effective inhibitor of ribonucleoside-diphosphate reductase, an enzyme that transforms CDP into dCDP; 
this results in a decrease of the dCTP pool. Deamination of dFdCMP by dCMP-deaminase forms dFdUMP. 
Thymidylate synthase, which plays a key role in the synthesis of thymidine monophosphate (TMP)[9], is 
another target for gemcitabine, via dFdUMP. The natural substrate of TS, 2’-deoxyuridine monophosphate 
(dUMP), resembles dFdUMP, and it inhibits TS resulting in a depletion of the TMP pool. 

Evidence for the usefulness of gemcitabine as a potent anti-tumour reagent has been reported; it is used 
either alone, or in combination with other agents for patients with pancreatic ductal adenocarcinoma 
(PDAC)[10] and several other human cancers, such as non-small cell lung cancer, breast cancer, ovarian 
cancer, and bladder cancer[11] (approved by FDA). However, acquisition of chemoresistance against 
gemcitabine significantly limits its effectiveness. Chemoresistance can be divided into two categories, 
intrinsic and acquired, in the course of drug treatment[12]. Activities of drug transporters and metabolizing 
enzymes have been considered to be strongly involved in the chemoresistance to gemcitabine. Epithelial-
to-mesenchymal transition (EMT) is not only related to a phenotypic change in the tumour cells; it also 
contributes to gemcitabine resistance[13]. Based on gene expression profiles of pancreatic cancer cell lines, 
gemcitabine-resistant cells contain many features consistent with EMT[14]. Exosomes have shown to be 
involved in gemcitabine resistance by delivering miRNAs. Exosomal miR-106b from cancer-associated 
fibroblasts[15] and miR-210 from cancer stem cells[16] both promote gemcitabine resistance. However, these 
areas are beyond the focus of this review, and we will discuss the challenges of remodelling the gemcitabine 
metabolizing pathway to overcome acquired chemoresistance against gemcitabine.

IMPROVEMENT OF GEMCITABINE UPTAKE
The membrane permeability of gemcitabine is poor in human cells. It is mediated by five distinct hNTs 
with different affinities; two equilibrative-type (hENT1, hENT2) and three concentrative-type transporters 
(hCNT1, hCNT2, hCNT3)[17-19]. Among these, hENT1 functions as the major gemcitabine transporter; 
in vitro experiments have demonstrated that increased expression of hENT1 is the critical factor for 
sensitivity to gemcitabine[20]. Restriction of intracellular uptake of gemcitabine by suppressed expression 
of hENT1 is one of the established mechanisms of drug resistance[19,21]. The majority of studies on patients 
with resected pancreatic cancer have suggested that high expression of this hENT1 may be predictive of 
improved survival in patients treated with gemcitabine[22-24]. Disrupted expression of hENT2 on the plasma 
membrane causes impaired uptake of gemcitabine, resulting in acquired chemoresistance of pancreatic 
cancer cells[25].

Currently, several approaches to enhancing the efficacy of gemcitabine uptake or to bypass the hNTs 
have been introduced. hCNT1 is frequently diminished in pancreatic cancer cells compared with 
normal pancreatic ductal epithelial cells[26], so drug inhibition or degradation of hCNT1 can increase the 
transportation of gemcitabine, and thus improve its efficacy[27]. A recent study indicated that mucin 4 
(MUC4) suppresses hCNT1 expression and that inhibition of MUC4 enhances gemcitabine sensitivity[28].

NEO6002 is a gemcitabine modified cardiolipin [Figure 3A]. This molecule entes the cell independently of 
hNT, and exerts higher activity, with lower toxic adverse side effects in mouse tumour xenograft model[29]. 
Another lipophilic prodrug, gemcitabine-elaidic acid conjugate CP-4126 [Figure 3A], also known as CO-101, 
is transported into the cells independently of hENT1 and has been demonstrated to be effective in vitro 
and in various human cancer models[30]. However, a long-term survival analysis found that the survival rate 
of patients using CP-4126 was not superior to gemcitabine in patients with low expression of hENT1 in 
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Figure 3. Structures of NEO6002 and CP4126, the gemcitabine-modified compounds that can bypass hNT-mediated introduction 
inside the cell (A); structures of NUC-1031 and NUC050, gemcitabine-modified compounds that can bypass the deoxycytidine kinase-
mediated activation pathway of gemcitabine (B) 
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of gemcitabine is inactivated mainly by CDA [Figure 2], that mediates conversion from gemcitabine to 
difluorodeoxyuridine (dFdU)[38]. After deamination of gemcitabine, the metabolite is not further degraded 
but excreted from the cell[39]. CDA is activated in many organs, and dFdU is the major form of in vivo 
clearance which is the sole metabolite in the urine[40]. CDA is released from the cell and is found in the 
serum[41]; CDA has been detected in patients with several cancer types and correlates with responses to 
chemotherapy[42,43]. The CDA gene is affected by several genetic alterations, and marked variations in 
function ranging from null to increased activity have been observed[44]. A study conducted on pancreatic 
cancer patients with gemcitabine treatment demonstrated a correlation between CDA activity and 
chemoresistance and concluded that patients with 6U/mg or higher of CDA activity showed progression 
of disease by five-fold or more[45]. A recent systemic review concludes that CDA 79A > C polymorphism is 
a potential biomarker for toxicity of gemcitabine-based chemotherapy and that CDA testing is preferential 
before administration of gemcitabine[46].

CDA upregulation decreases the cellular gemcitabine concentration [Figure 4], and several studies have 
reported that increased CDA activity associates with gemcitabine resistance in cancer cells. A hematopoietic 
cell line with overexpression of CDA showed resistance to gemcitabine (2.4-fold in IC50 and 2.5-fold in 
IC80)

[47]. On the other hand, studies using human tumour cell lines and tumour xenografts reported no 
association between chemoresistance and CDA activity[48,49]. These data showed that CDA is not the only 
determining factor for gemcitabine sensitivity in vivo, but its modulation may defeat chemoresistance. 

In cancer cells, aberrations of the copy number of the CDA gene are not reported. CDA expression is 
mainly regulated transcriptionally and/or post-transcriptionally. CDA expression in most cancers is lower 
than in corresponding normal tissues because of DNA methylation in the promoter region[50,51]. miRNAs 
also regulate CDA expression; miR-484 directly inhibits CDA translation by targeting CDA 3’UTR and 
induces chemoresistance in breast cancer cells[52], and decreased expression of miR-608 correlates with 
upregulation of CDA to induce chemoresistance in pancreatic cancer cells[53]. Albumin-conjugated 
paclitaxel (nab-paclitaxel) was shown to reduce the CDA protein by producing reactive oxygen species 
in a mouse pancreatic cancer model; this evidence may explain the usefulness of gemcitabine plus nab-
paclitaxel (GnP)[54].

Pharmacological inhibitors of CDA include zebularine, 3,4,5,6-tetrahydrouridine (THU) and 1, 
3-diazepinone riboside (DR) [Figure 4]. Zebularine was first described in 1980[55]; it blocks CDA by way of 
a tetrahedral intermediate using the proton at C4 of pyrimidine ring[56]. However, zebularine also interacts 
with DNA methyltransferase; zebularine is not specific to CDA[57]. THU was first identified and purified 

Nanoparticle Ingredient Outcome Ref.

GEM-HSA-NP albumin in vitro Inhibited cell proliferation, arrest cell cycle and induced apoptosis in 
pancreatic cancer cell lines. 

[33]in vivo More effective than gemcitabine when inhibiting tumour growth 
whether the expression levels of hENT1 were high or low in PDX models. 
The biotoxicity did not increase compared with gemcitabine.

SQdFdC squalene in vitro Exhibited superior anticancer activity in human cancer cells and 
gemcitabine-resistant murine leukaemia cells.

[34]
in vivo Exhibited superior anticancer activity in experimental leukemic mouse 

modes both after intravenous and oral administration.
PEG-PCC GEM PEG-PCC in vitro Induced cell apoptosis in pancreatic cancer cell lines

[36]
in vivo Significantly inhibited tumour growth in xenograft bearing mice

PLGA-b-PEG-OH GEM PLGA-b-PEG-OH in vitro Effectively delivered gemcitabine into hCNT-decreased ovarian cancer 
cells and showed significant cytotoxicity compared to free gemcitabine. [37]

Table 2. Examples of gemcitabine-containing nanoparticles and their effects

hENT1: human equilibrative nucleoside transporter 1; hCNT: human concentrative nucleoside transporters
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in 1967 using an affinity capture method with CDA as bait[58]. The inhibitory action of THU is based on its 
C4 hydroxyl group in the pyrimidine ring. Since the bioavailability of THU is weak[59], a new fluorinated 
version of this drug termed (4R)-2’-deoxy-2’,2’w-difluoro-3 4, 5, 6-tetrahydrouridine [Figure 4] has been 
developed with better oral bioavailability[60]. DR was discovered in 1981; it cannot interact with CDA 
through the water/zinc complex. Its inhibitory activity instead results from an electrostatic interaction 
utilizing π electrons of the DR ring and the benzene ring of the F137 of CDA, the catalytic site of the 
enzyme[61]. However, no results of DR effectiveness have yet been reported even in cultured cells.

As mentioned before, CDA high-expressing tumours are theoretically more resistant to cytidine-based 
therapies, including gemcitabine. With this assumption, several studies combining various chemotherapies 
and CDA inhibitors have been conducted to date. A Phase II clinical trial (ClinicalTraials.gov: 
NCT00978250, see Table 1), combining treatment with 5-fluoro-2’-deoxcytidine and THU, has just been 
completed; all 93 patients eligible for the study were assessed as PFS, including patients with advanced non-
small cell lung cancer, breast cancer, bladder cancer, or head and neck cancer (https://www.clinicaltrials.
gov/ct2/show/results/NCT00978250). Weizman et al.[62] suggested that tumour infiltrating macrophages 

Figure 4. CDA-mediated processing of gemcitabine for excretion, and CDA inhibitors Zebularine, 3,4,5,6-Tetrahydrouridine (THU), 
1,3-Diazepinone riboside (DR), and (4R)-2’-deoxy-2’,2’-difluoro-3 4, 5, 6-tetrahydrouridine. CDA: cytidine deaminase 
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were responsible for stimulating the upregulation of CDA and acquisition of chemoresistance against 
gemcitabine in pancreatic cancer cells. Modulation of macrophage trafficking may offer a new strategy for 
response of cancer cells to gemcitabine[62,63]. Therefore, although CDA does not appear to be the only factor 
determining sensitivity to gemcitabine, its modulation remains a common strategy to overcome resistance.

TRANSPORTERS INVOLVED IN EFFLUX OF GEMCITABINE AND ITS METABOLITES
ATP-binding cassette (ABC) transporters are known to translocate a wide variety of substrates across the 
cell membrane and to mediate resistance against many therapeutic drugs, including anti-neoplastics and 
anti-infectives[64]. In addition, ABC transporters associate with a fraction of stem-like cells called side 
population (SP), refractory to Hoechst 33342 dye staining. This subpopulation was first isolated from 
murine hematopoietic cells[65] and then from human cells. Isolated SP cells from various kinds of human 
solid cancers escape from chemotherapy due to overexpression of the ABC transporters[66], and Borst 
reviewed pan-resistance and ABC transporters[67].

Several studies examining the importance of ABC-transporters in gemcitabine resistance have confirmed 
that the abnormal expression of ABCB1, ABCC, and ABCG2 is associated with multidrug-resistance in 
pancreatic cancer[68]. On the other hand, MDR variants in two cell lines of small cell lung cancer showed 
increased DCK activity[69], and human cancer cell lines overexpressing ABCB1 or ABCC1 showed 
increased sensitivity to gemcitabine[70]. Overexpression of ABCC4 and ABCC5 confer resistance to 
cytrabine and troxacitabine, but not gemcitabine[71]. Inhibition of one or even several ABCC transporters 
(ABCC3, ABCC5 and ABCC10) did not efficiently or completely inhibit efflux of gemcitabine[72]. Thus, the 
contribution of ABC transporters for gemcitabine resistance warrants further investigation.

PRODRUGS OF DCK FOR BYPASSING THE INTRACELLULAR PHOSPHORYLATION STEP
Once gemcitabine is transported into cells, phosphorylation by DCK is considered to be the major 
rate-limiting factor for activation. DCK has a Km value of 4.6 μmol/L for gemcitabine compared to 
1.5 μmol/L for deoxycytidine, which makes this drug an appropriate substrate[73]. Gemcitabine is also 
phosphorylated by thymidine kinase 2. This is a mitochondrial enzyme which phosphorylates a broad 
range of natural nucleosides[74], but its precise role for both gemcitabine host toxicity and anti-tumour 
activity is unclear[7]. Inactivation of DCK has been shown to be one of the key mechanisms for acquisition 
of gemcitabine resistance. The DCK gene is inactivated in all of the seven obtained gemcitabine-resistant 
cancer cell lines[75,76]. Knockdown of DCK leads to gemcitabine resistance in gemcitabine sensitive cell 
lines, while re-expression of DCK restored the chemo-sensitivity of gemcitabine in gemcitabine-resistant 
cell lines[75,77,78]. Clinical studies have shown that the DCK expression level in pancreatic cancer tissue is a 
reliable prognostic indicator of PFS, suggesting that DCK is a good biomarker of gemcitabine sensitivity for 
pancreatic cancer patients treated with gemcitabine[79,80]. Hu antigen R (HuR) is an RNA-binding protein 
that regulates DCK post-transcriptionally. HuR is strongly associated with the DCK mRNA level, and HuR-
overexpressing cancer cells have been shown to be more sensitive to gemcitabine treatment[81,82].

Modification of phosphorylated gemcitabine to bypass DCK-mediated activation may be an effective way 
to improve its function. NUC-1031 [Figure 3B] is a gemcitabine phosphoramidate prodrug that is produced 
by ProTide Technology[83]. NUC-1031 enters into the cell independently of the hENT1 transporter and 
does not require activation by DCK. Similar to the phosphorylated forms of gemcitabine, NUC-1031 is 
not subject to breakdown by CDA. In a Phase I study (NCT01621854), NUC-1031 demonstrated clinically 
significant anti-tumour activity even in patients with prior gemcitabine exposure and in cancers not 
traditionally perceived as gemcitabine-responsive [Table 1][84]. A global randomized study (NuTide:121) 
including 828 patients with untreated advanced biliary tract cancer is ongoing[85]. NUC-1031 is the first 
anti-cancer drug with which ProTide has achieved initial success in clinical trials.
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Δ-Tocopherol-monophosphate gemcitabine (NUC050) is a vitamin E phosphate nucleoside prodrug 
[Figure 3B] designed to bypass two mechanisms of gemcitabine resistance: downregulation of hNTs, 
and downregulation of DCK. Incorporation of NUC050 is not affected by hNTs, suggesting that it can 
bypass them. NUC050 retains most of the activity in DCK deficient cells, indicating that gemcitabine 
monophosphate is delivered in the cell[86].

Further formulation development will increase the safety and efficacy of these prodrugs to overcome the 
cancer chemoresistance induced by the down-regulation of DCK.

RADIATION-INDUCED ACTIVATION OF DCK
Most studies searching for synergism of radiation in combination with chemotherapeutic agents, including 
nucleoside analogues have been attempted to achieve radiosensitization of cancer cells. Gemcitabine is 
also employed clinically as a radiosensitizer[87]. The contribution of nucleoside analogues to synergic effects 
is thought to involve inhibition of DNA repair and modulation of nucleotide synthesis and availability. 
An alternative explanation for the synergism between radiation and nucleoside analogues is radiation-
mediated chemosensitization. A number of studies have demonstrated that radiation alone can enhance the 
activity of DCK[88-90]. One previous study showed that DCK is phosphorylated at S74 by the DNA damage 
responsive kinase ATM, and may be activated[91]; this indicates a direct link between radiation and DCK 
activation. Another study showed that the ATM related kinase ATR is also involved in phosphorylation 
of DCK at S74[92]. S74Q mutation of DCK increases Kcat values by 11-fold for deoxycytidine and 3-fold for 
gemcitabine[93]. This in turn would explain the higher levels of active gemcitabine.

Recently, neoadjuvant therapy including radiation concurrent with gemcitabine has been conducted 
for borderline resectable pancreatic cancer[8]. Radiation may improve the cytotoxicity of gemcitabine by 
enhancing DCK activation. 

CONCLUSION
Gemcitabine-based chemotherapy remains a cornerstone of treatment for patients with advanced 
cancers. Chemoresistance against gemcitabine is multifaceted; therefore, pursuing the improvement of 
this chemotherapy is still an important challenge. Novel methodologies are required to improve patients’ 
prognoses.

In order to achieve an effective gemcitabine concentration within tumour cells, several considerations 
are needed. Nanoparticle-based medicine (nanomedicine) has numerous advantages compared with 
conventional medicines, including being able to protect gemcitabine from degradation, and provide a 
targeting delivery system. Some nanomedicines can accumulate inside tumour cells by the incorporation 
of ligands that target molecules overexpressed on the cancer cell surface[94]. Elechalawar et al.[95] developed 
a targeted drug delivery system to pancreatic cancer using gold nanoparticles as the delivery vehicle, the 
anti-EGFR antibody cetuximab (C225/C) as the targeting agent, gemcitabine as the effective drug, and 
polyethylene glycol (PEG) as the stealth molecule. This nanoconjugate, termed ACG44P1000, showed 
enhanced cellular uptake and cytotoxicity to pancreatic cancer cell lines in vitro study. Although the effect 
of this nanoconjugate may be limited, further investigations will lead to more effective improvements.

Tumours are heterogeneous and exhibit molecular complexity, with significant variation among patients. 
Treatments of cancer patients require precision medicine-based genetic and biomolecular characteristics. 
The traditional chemotherapeutic approach (one-size-fits-all) can lead to unnecessary exposure to 
adverse side effects without the anticipated survival benefits[96]. In the last decade, improvements in high-
throughput sequencing methods and profiling of transcripts have led to the discovery of many new targets 
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for treatments. The identification of receptor overexpression in cancer cells will lead to the development of 
nanomedicines to improve the selectivity to the cancer cells and reduce off-target toxicities of gemcitabine. 
Further studies are needed for gemcitabine-based treatment to be included in personalized medicine 
tailored for numerous molecular therapeutic targets in multiple pathogenic pathways.
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