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INTRODUCTION

Mitochondria are the major cellular organelle responsible 
for energy provision when energy needs are to be met. 
In addition, mitochondria have numerous quality-control 
mechanisms by which they protect their molecular ma-
chinery from stress and maintain cellular homeostasis (1). 
Earlier studies showed that infected and damaged mito-
chondria significantly increased their production of reac-
tive oxygen species (ROS) and the oxidant peroxynitrite, 
altering the action of the electron transport chain (2,3). 
Over the last decade, it has been suggested that the in-
flammatory mediator such as tumor necrosis factor (TNF) 
is associated with mitochondrial damage by altering 
mitochondrial ultrastructure, inhibiting the electron trans-

port chain, and presumably by mediating mitochondrial 
production of oxygen radicals (4). Recent compelling evi-
dence suggests that mitochondria are actively involved in 
a multitude of cellular activities including inflammatory 
signaling, cell proliferation, and cell death; these path-
ways are attractive targets in patients with various diseas-
es (5-7). Thus, inflammatory signaling and mitochondrial 
homeostasis may be interconnected. 
  Moreover, mitochondria play important roles in innate 
and adaptive immune responses and in inflammatory 
signaling (8). Mitochondrial danger signals amplify in-
flammatory responses (9). Importantly, metabolic remod-
eling orchestrated by the mitochondria is essential for 
appropriate control of innate and inflammatory responses 
(8,10). In this review, we will discuss the emerging func-
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tions of several mitochondrial components/proteins in 
terms of regulation of innate and inflammatory responses. 
We also present our current understanding of the func-
tions of mitochondrial ROS and DNA in regulating in-
nate immune and inflammatory responses. Particularly, 
the details of the relationship between mitophagy and 
inflammation have been extensively reviewed in recent 
articles (11) Thus, we just briefly mention current views 
on the functional interrelationship between mitochondrial 
dysfunction, inadequate autophagy, and inflammatory pa-
thologies. Another key function of mitochondria is regu-
lation of the immunometabolism characteristic of innate 
immunity. This is beyond the scope of this review and has 
recently been thoroughly addressed (12). 

OVERVIEW OF MITOCHONDRIA

Fundamentally, the mitochondrion is the “powerhouse 
of the cell”, providing energy in the form of adenosine 
triphosphate (ATP). Mitochondria play essential roles in 
interconnecting diverse anabolic and catabolic processes 
including oxidative phosphorylation, glycolysis, the tri-
carboxylic acid (TCA) cycle, and fatty acid b-oxidation 
(7,13). This fundamental role of mitochondria (regula-
tion of metabolism) involves cellular signaling networks 
including those controlling cell survival/death, calcium 
signaling, and the innate and inflammatory responses 
(7,10,13). Indeed, mitochondria contain a specific ge-
nome transmitted through the female germline (14). Some 
mitochondrial DNA (mtDNA)-encoded proteins are struc-
tural subunits of the mitochondrial respiratory chains: in-
cluding NADH dehydrogenase 1 (MTND1–MTND6 and 
MTND4L, complex I); cytochrome b (MTCYB, complex 
III); cytochrome c oxidase I (MTCO1–MTCO3, com-
plex IV); and ATP synthase 6 (MTATP6 and MTATP8, 
complex V) (14). Although the electron transport chain is 
essential for ATP production, harmful mitochondrial ROS 
are generated as by-products of such transport (15,16). 
Accumulation of mitochondrial ROS causes cell damage, 
inflammation, and cell death (15,17).
  Mitochondria are important intracellular organelle which 
constantly undergo dynamic process (mitochondrial 
dynamics) involving fission, fusion and mitochondrial 
autophagy (mitophagy), maintaining mitochondrial func-
tionality and protein quality-control and maximizing the 
oxidative capacity in response to toxic stress (18,19). Mi-
tofusin 1/2-mediated fusion process connect two healthy 
mitochondria, whereas dynamin related protein 1 (Drp1) 
mediated fission process segregates damaged and healthy 

mitochondria to form robust tubular network of mitochon-
dria, ensuring quality control via removal of damaged or-
ganelles (18,19). The continuous changes in mitochondrial 
morphology are metabolically controlled, and are also 
influenced by mitophagy and macroautophagy (18). Main-
tenance of mitochondrial turnover is critical in terms of 
mitochondrial quality control and overall cellular function: 
damaged (potentially harmful) mitochondria that could 
trigger excessive inflammatory responses are cleared (20). 

OVERVIEW OF INNATE IMMUNE SIGNALLING: TLRs, 
NLRs, and RLRs

During invasion of a pathogen or tissue injury, the innate 
immune system senses and responds to a variety of patho-
gen- and danger-associated molecular patterns (PAMPs 
and DAMPs) via diverse pattern-recognition receptors 
(PRRs) (21). Among these, Toll-like receptors (TLRs) are 
the most widely studied: these receptors trigger compli-
cated intracellular signaling cascades and activate host de-
fenses (21,22). The extracellular leucine-rich repeat (LRR) 
domains of TLRs recognize various ligands of bacteria, 
viruses, fungi, and protozoa. To date, 10 functional TLRs 
(TLR1 to TLR10) have been identified in humans (23). 
Mouse TLR11 recognizes protozoan profilin-like proteins 
and uropathogenic bacteria, but is non-functional in hu-
mans (24,25). Unlike TLRs, NOD-like receptors (NLRs) 
sense PAMPs and DAMPs in the intracellular cytosolic 
compartment (26). Many NLRs have been identified: these 
include Nod1, Nod2, NLRP3, NLRC4, NLRP6, NLRX1, 
NLRC3, NLRC5, and NLRP4 (27). Upon binding of 
PAMPs and DAMPs to the innate immune receptors, 
intracellular signaling cascades are activated via recruit-
ment of adaptor proteins and cellular kinases, culminating 
in activation of the nuclear factor (NF)-kB and mitogen-
activated protein kinase (MAPK) pathways (27,28). 
  In addition, several types of NLRs and AIM2-like re-
ceptors (ALRs) including NLRP3 (NOD-, LRR- and 
pyrin domain-containing [protein] 3), NLRP1, NLRP6, 
NLRP7, NLRC4, and AIM2 can form inflammasomes 
(large protein complexes) regulating interleukin-1b (IL-
1b) and IL-18 secretion (27,29,30). Activation of the 
NLRP3 inflammasome complex usually requires a two-
step signal (priming and activation). Upregulated TLR 
signaling activates the NF-kB pathway and induces tran-
scription of pro-IL-1b and NLRP3, thereby serving to 
prime activation of the inflammasome complex (31). Al-
though the second signal induced by a variety of PAMPs 
and DAMPs is not fully characterized, that signal trig-
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gers oligomerization of inflammasome components and 
caspase-1 auto-activation, followed by assembly of the 
NLRP3 inflammasome (32). Importantly, activation of 
NLRP3 and AIM2 induces nucleation of PYD filaments 
and clustering of the CARD proteins of the ASC adaptor, 
completing inflammasome assembly (33).
  Upon viral infection, retinoic acid-inducible gene 1 
(RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 
discriminate between host RNA (self RNA) and viral 
RNA (non-self RNA) and specifically sense viral RNA 
produced by both RNA and DNA viruses at the cytoplasm 
(34,35). Upon RLR signaling, RIG-I and MDA5 specifi-
cally ubiquitinated by TRIM25 and TRIM65 respectively 
(36,37) bind to the common adaptor MAVS/Cardif/IPS-1/

VISA by CARD-CARD interaction leading to activation 
of downstream IKK family (IKKe, TBK1, and IKKa/b/g). 
These kinases next cause activation of downstream NF-
kB signaling pathway and also induce phosphorylation 
and subsequent homodimerization of IFN-regulatory fac-
tors 3 and 7 (IRF3/7) (transcription factors) respectively, 
thereby resulting in nuclear translocation of dimerized 
phosphorylated IRF3 and IRF7, in turn promoting type-
I interferon (IFN-I) synthesis which, finally, transcrip-
tionally activates many IFN-stimulated genes (ISGs) 
(35,38). RIG-I and MDA5 signaling pathways are sum-
marized in Fig. 1. In vivo, the actions of the TLR, NLR, 
and RLR signaling systems are spatially and temporally 
co-ordinated to allow the generation of appropriate and 

Figure 1. Overview of RLRs signaling pathway. Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) recognize the genomic RNA or RNA 
replication intermediates of viruses as cytoplasmic RNA sensors. Following viral infection, melanoma differentiation-associated protein 5 (MDA5) 
recognizes cytoplasmic viral long-scale double-stranded RNA (dsRNA) whereas RIG-I recognizes short viral dsRNA (non-self RNA). Upon 
recognition of viral dsRNA, MDA5 and RIG-I specifically ubiquitinated by TRIM65 and TRIM25 respectively initiate antiviral innate immune 
response via specific interaction with mitochondrial antiviral signaling protein (MAVS) by CARD-CARD interaction. MAVS modulates nuclear 
factor-kB (NF-kB) activity via IKK complex (IKK a/b/g) activation. MAVS also interacts with TRAFs translocated onto mitochondria upon viral 
infection and subsequently induces recruitment of TBK1 and IkB kinase-e (IKKe) to promote phosphorylation of interferon (IFN) regulatory factor 3 
(IRF3) and IRF7. Phosphorylated IRF3 and IRF7 cause their homo-dimerization which is translocated to the nucleus. In the nucleus, homo-dimerized 
IRF3 and IRF7 bind to specific binding sites in the IFNb and IFNa promoter respectively to stimulate type I IFN synthesis. Secreted type I IFNs 
(IFNb and IFNa) binds to interferon alpha and beta receptor subunit 1 (IFNAR1) and subsequently induces phosphorylation of signal transducer 
and activator of transcription 1 (STAT1) and STAT2, leading to the induction of nuclear translocation of IRF7/STAT1/STAT2 complex followed by 
promotion of IFN-stimulated genes (ISGs) transcription. Solid arrows indicate direct signaling. Dashed arrows indicate indirect signaling.
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concerted responses to effectors via integration of many 
immune signal transductions (39). The magnitude of an 
immune reaction must be tightly regulated to avoid im-
munopathologies (39). Uncontrolled activation of innate 
responses is strongly associated with the pathologies of 
various inflammatory and autoimmune diseases (40). 

MITOCHONDRIAL PROTEINS AND INNATE 
IMMUNITY

MAVS protein-mediated regulation of innate immunity
Mitochondrial antiviral signaling (MAVS) protein, an out-
er mitochondrial membrane protein, is the key mediator of 
the innate immune response upon viral infections (41,42). 
Earlier studies showed that the MAVS protein was a piv-
otal signaling adaptor, inducing antiviral and inflamma-
tory pathways via activation of NF-kB and IRF-3 during 
development of innate immune responses to RNA viruses 
(42,43). Such effects seem to be specific to viral infection. 
MAVS protein was not essential for induction of interferon 
production in response to cytosolic DNA or intracellular 
listerial infection (44). Further studies showed that RIG-
I signaling triggered formation of large prion-like MAVS 
protein aggregates on the mitochondrial membrane, ac-
tivating IRF3 responses (45). MAVS protein was also 
required for dsDNA-induced IFN-b transcriptional activa-
tion in a human hepatoma cell line (Huh-7) (46). More-
over, MAVS protein was essential for induction of type 
I IFN and the antiviral response to respiratory syncytial 
virus. MAVS protein acted in concert with the TLR adap-
tor MyD88 (47). Previous studies also showed that MAVS 
protein was required for the antibacterial responses of 
endothelial cells to Chlamydophila pneumoniae infection 
(48). Interestingly, MAVS protein is essential for mainte-
nance of intestinal homeostasis, presumably because the 
protein monitors intestinal commensal bacteria. MAVS 
protein deficiency increased both the severity of the re-
sponse to colitis and mortality (49). Also, RLR activation 
enhanced mitochondrial elongation and fusion, promot-
ing MAVS protein-mediated signaling (50). In addition, 
MAVS protein played critical roles in activation of the 
NLRP inflammasome, and subsequent IL-1b production, 
by mediating NLRP3 recruitment to mitochondria (51). 
Apart from regulating antiviral type I IFN responses, the 
MAVS protein also triggered dsRNA-induced apoptosis 
by interacting with caspase-8; the Bax/Bak pathway was 
not involved (52). Via MAVS-MAPK kinase 7 (MKK7)-
JNK2 signaling, MAVS protein was involved in the 
regulation of Sendai virus-induced apoptosis, and the host 

defense to viral infection (53). Importantly, the MAVS 
protein-dependent type I IFN response was important in 
controlling Plasmodium replication in the liver (54). 

Mechanisms of MAVS protein-mediated immune signaling
Emerging evidence allows us to begin to understand the 
molecular mechanisms by which the MAVS signalosome 
is controlled to regulate antiviral responses. It was earlier 
shown that a TRAF-interaction motif (TIM) within the 
MAVS protein interacted directly with the TRAF domain 
of TRAF3 to activate the antiviral immune response (55). 
Recent studies have shown that the tripartite motif 14 
(TRIM14) interacts with MAVS protein and NF-kB with-
in the MAVS signalosome, thereby mediating the immune 
response during viral infection (56). It was also shown 
that transcription factor ELF4, induced by type I IFN, 
positively regulated IFN production via interaction with 
and activation of the MAVS-TBK1 complex, enhancing 
the response to West Nile virus in mice (57). In addition, 
the tyrosine kinase c-Abl positively regulated MAVS pro-
tein function via physical and functional interaction (58). 
Silencing of c-Abl inhibited the MAVS protein-mediated 
innate immune response via regulation of NF-kB and 
IRF3 signaling (58). Indeed, several TRAF proteins, in-
cluding TRAF2, TRAF5, and TRAF6, were recruited to 
MAVS protein polymers, activating IRF3 signaling and 
the antiviral immune response (59). Although the precise 
mechanism remains unclear, it was recently shown that 
the enzyme, pyruvate carboxylase (PC), is essential for 
virus-triggered activation of the innate immune response; 
the enzyme targets the MAVS signalosome (60).
  On the other hand, poly(RC)-binding protein 2 (PCBP2) 
negatively regulated MAVS protein-mediated antiviral 
signaling (61). The same authors also showed that PCBP1 
(which is functionally similar to PCBP2) inhibited the 
MAVS protein-mediated antiviral immune response by 
triggering MAVS protein degradation via Lys48-linked 
polyubiquitination (62). Notably, PCBP1 and PCBP2 
synergistically inhibited MAVS protein signaling (62). 
In addition, the proteasome PSMA7 (alpha 4) subunit, 
which interacts with the MAVS protein, negatively regu-
lated the RIG-1- and MAVS protein-mediated type I 
IFN responses and antiviral activities (63). Further study 
showed that NLRX1 interfered with the interaction be-
tween the MAVS protein and RIG-I, finely tuning type I 
IFN signaling and the cytokine response (64). Reports on 
how NLRX1 regulates MAVS protein signaling are con-
flicting. However, NLRX1-deficient mice did not exhibit 
alterations in their antiviral or inflammatory responses, as 
compared to control mice (65). 
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  More recently, the cytochrome c oxidase (CcO) complex 
subunit, COX5B, a component of the mitochondrial elec-
tron transport system, was shown to be physically associ-
ated with the MAVS protein and to inhibit MAVS protein-
mediated antiviral immunity via autophagy- and ROS-
dependent pathways (66). The UBX-domain-containing 
protein UBXN1 inhibited RNA virus-mediated antiviral 
signaling by binding to the MAVS protein, preventing 
oligomerization thereof (67). Further study showed that 
the Smad ubiquitin regulatory factor (Smurf) 2 negatively 
regulated antiviral type I IFN responses by interacting 
with the MAVS protein, triggering proteasome-mediated 

degradation (68). Recent studies have revealed the auto-
inhibitory mechanisms by which MAVS protein-mediated 
antiviral activity is tightly regulated even under unstimu-
lated conditions, to prevent spontaneous RIG-I activation 
(69). Very recently, the NS3 protein of dengue virus has 
been shown to bind to 14-3-3e, an essential cellular pro-
tein mediating the cytosol-to-mitochondrial membrane 
translocation of RIG-I, thereby preventing translocation 
of RIG-I to the MAVS protein, which would inhibit anti-
viral immunity (70).
  Another recent study reported a novel function of the 
insulin receptor tyrosine kinase substrate (IRTKS), which 

Figure 2. Positive and negative regulation of MAVS-mediated antiviral signaling pathway. Upon viral infection, sensing of viral dsRNA by RLRs 
induces the formation of MAVS signalosome on mitochondria followed by promotion in downstream IFN synthesis. TNF receptor-associated factor 
6 (TRAF6), TNFR1‑associated death domain protein (TRADD), tripartite motif 14 (TRIM14) and pyruvate carboxylase (PC) modulates canonical 
NF-kB signaling pathway. Activated IkB kinase (IKK) complex (IKK a/b/g) induces phosphorylation of NF‑kB inhibitor‑a (IkBa), resulting in 
NF‑kB nuclear translocation and transcriptional activation of proinflammatory cytokines gene expression. MAVS also interacts with TRAF2/3, 
TANK, IKKe and TBK1. TBK1-mediated phosphorylation of IRF3 and IRF7 and subsequent their dimerization promotes type I IFN gene expression 
through nuclear translocation. Various molecules are involved in negative regulation of MAVS signaling. Poly(RC)-binding protein (PCBP) 1 and 
PCBP2 induces Lys48-linked polyubiquitination of MAVS, resulting in its proteasomal proteosomal degradation. Also, Smad ubiquitin regulatory 
factor 2 (Smurf2) binding to MAVS reduces antiviral type I IFN production through proteosomal degradation of MAVS. 20S proteasomal subunit 
PSMA7 negatively regulates MAVS signaling by promoting degradation, NLR family member X1 (NLRX1) downregulates type I IFN production 
by inhibiting between MAVS and RIG-I direct interaction. Cytochrome c oxidase (CcO) complex subunit (COX5B) downregulates type I IFN 
production by physical interaction with MAVS. UBX-domain-containing protein UBXN1 inhibit MAVS oligomerization, resulting in inhibition of 
antiviral signaling pathway. 
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plays crucial roles in actin bundling and insulin signaling. 
IRTKS negatively regulated MAVS protein signaling by 
sumoylation of PCBP2, which then interacted with MAVS 
protein to trigger degradation thereof (71). Moreover, the 
mitochondrion-resident E3 ligase, MARCH5, inhibited 
MAVS protein-mediated antiviral immune responses and 
excessive inflammatory reactions by binding to the pro-
tein, promoting proteasome-mediated degradation (72). 
In addition, a recent study has shown that protein phos-
phatase magnesium-dependent 1A (PPM1A; also known 
as PP2Ca) acts on the MAVS protein, inhibiting RLR-
MAVS protein signaling by targeting and dephosphorylat-
ing both MAVS protein and TBK1/IKKe (73). Another 
MAVS protein-interacting protein, the adaptor TAX1BP1, 
negatively regulated apoptosis triggered by infection 
with RNA viruses including vesicular stomatitis virus 
and Sendai virus (74). TAX1BP1 recruited the E3 ligase 
Itch to the MAVS protein, triggering ubiquitination and 
proteasomal degradation (74). In summary, many positive 
and negative regulators co-ordinate the antiviral immune 
responses by interacting with and post-translationally 
modifying the MAVS protein of the mitochondrion (Fig. 2).

Other mitochondrial proteins regulating innate immune 
responses
Several mitochondrial proteins involved in controlling 
mitochondrial morphology are also known to play roles in 
the fine-tuning of innate immune responses (75). Earlier 
studies showed that the mitochondrial adaptor protein, 
ECSIT (evolutionarily conserved signaling intermediate 
in Toll pathways), interacted with tumor necrosis factor 
receptor-associated factor 6 (TRAF6), resulting in upreg-
ulation of mitochondrial ROS production in macrophages, 
which is essential for bactericidal activity (76). A recent 
study showed that kinases Mst1 and Mst2 promoted TLR-
induced assembly of the TRAF6-ECSIT complex via Rac 
activation, thus triggering recruitment of mitochondria 
to phagosomes and enhancing bactericidal activity (77). 
Indeed, the ECSIT-TAK1-TRAF6 complex was essential 
for activation of TLR4-induced NF-kB signaling and cy-
tokine production in monocytic cells (78). Another study 
found that ECSIT became associated with MAVS protein 
on the mitochondrial surface, mediating bridging of the 
MAVS protein to RIG-I or MDA5, in turn inducing acti-
vation of the antiviral response via upregulation of IFN-
regulatory factor 3 (IRF3) and increased expression of 
IFNB1 during viral infection (79). 
  The mitochondrial outer membrane protein voltage-
dependent anion channel 1 (VDAC1) protein is essential 
for mitochondrial ROS production and NLRP3 inflam-

masome activation (80). Previous studies showed that 
MARCH5 (a mitochondrial outer membrane protein) and 
E3 ligase activated TLR7 signaling via an interaction with 
TANK. The interaction involved catalysis of K63-linked 
TANK poly-ubiquitination on lysines 229, 233, 280, 302, 
and 306 (75). As mentioned above, MARCH5 serves as a 
negative regulator of MAVS protein activity by interacting 
with and ubiquitinating the MAVS protein, promoting pro-
teasome-mediated degradation, thus inhibiting excessive 
immune responses (72). The ubiquitin ligase PARKIN, 
which is essential for mitochondrial protein ubiquitina-
tion, was also found to be essential for ubiquitin-mediated 
autophagy and LUBAC-mediated MAVS ubiquitination 
followed by attenuation in downstream IFN signaling in 
HBV infected cells (81), and mounting of a host defense 
against Mycobacterium tuberculosis (82).
  In contrast, several mitochondrial proteins have been 
shown to negatively regulate inflammasome activation. 
Previous work explored the regulatory role played by the 
anti-apoptotic Bcl-2 protein during such activation. Both 
Bcl-2 transgenic macrophages, and macrophages in which 
Bcl-2 was overexpressed, exhibited significantly reduced 
IL-1b production in response to NLRP3-mediated stimuli, 
suggesting that inhibition of apoptosis affected IL-1b 
maturation and secretion triggered by NLRP3 activation 
(83). Also, the anti-apoptotic proteins, Bcl-2 and Bcl-X(L), 
suppressed activation of the NALP1 inflammasome (84). 
Indeed, mitochondria contain a signaling platform, the 
mitoxosome, which integrates the multiple signaling path-
ways associated with viral recognition and cellular stress 
to co-ordinate the antiviral response; the mitoxosome is 
the point of convergence of the relevant pathways (20). 

MITOCHONDRIAL ROS AND DNA IN REGULATION 
OF INNATE IMMUNITY

Mitochondrial ROS have been suggested to be key signal-
ing activators of the innate immune responses triggered 
by TLR agonists. Earlier studies found that lipopolysac-
charide (LPS)-induced synthesis of proinflammatory cy-
tokines (including TNF and IL-6) was modulated by scav-
enging of mitochondrial ROS (85). Enhancement of the 
innate immune response in patients with TNF receptor-
associated periodic syndrome (TRAPS), an autoinflam-
matory disorder caused by missense mutations in the type 
1 TNF receptor (TNFR1), is at least partially attributable 
to increased mitochondrial ROS generation (85). Previ-
ous studies showed that both mitochondrial- and Duox2-
generated ROS were essential for reduction of influenza 
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A virus titers, and induction of antiviral innate immune 
responses, via regulation of IFN-l secretion by normal 
human nasal epithelial cells (86). We recently found that 
upregulation of TLR4-induced proinflammatory cytokine 
production in small, heterodimer partner-deficient mac-
rophages was mediated via mitochondrial ROS (87). In 
microglia, LPS-induced inflammatory signaling and cyto-
kine production are mediated by mitochondrial ROS (88).
  As mentioned above, the kinases Mst1 and Mst2, the 
closest mammalian homologs of the Drosophila kinase 
Hippo, are critically involved in the optimal generation 
of mitochondrial ROS in phagocytes responding to TLR 
signaling, thus regulating antimicrobial responses (77). 
A very recent study found that increased mitochondrial 
ROS generation after succinate oxidation triggered IL-1b 
synthesis attributable to HIF-1a stabilization (89). Previ-
ously, mtDNA was shown to be spared during autophagy, 
followed by induction of TLR9-mediated inflammatory 
responses in cardiomyocytes, in turn triggering myocardi-
tis and dilated cardiomyopathy (90). After injury or septic 
shock, mitochondrial DAMPs (including mtDNA and 
peptides) are released into the circulation, causing cellu-
lar injury and pathological endothelial permeability (91). 
mtDNA has recently been shown to exert an antiviral 
function. MtDNA released to the cytosol is recognized by 
the DNA sensor cGAS (also termed MB21D1) and acti-
vates STING (also termed TMEM173)-IRF3 signaling to 
enhance the expression of interferon-stimulated genes and 
the type I interferon responses (92).
  Many studies have defined the critical roles played 
by mitochondria in inflammasome activation. Notably, 
mitochondrial ROS play a critical role in activation of 
the NLRP3 inflammasome complex (7). Stimuli of the 
NLRP3 inflammasome include ATP, alum, nigericin, and 
Chlamydia pneumoniae; all irreversibly reduce the mito-
chondrial membrane potential and oxygen consumption 
rate (OCR), but increase mitochondrial ROS generation 
(83). mtDNA released into the cytosol by apoptotic sig-
naling during apoptosis bound to NLRP3 and activated 
the NLRP3 inflammasome (83). Interestingly, the AIM2 
inflammasome was activated by exogenous, but not en-
dogenous, mtDNA, suggesting that cytosolic transloca-
tion of mtDNA activates the NLRP3 inflammasome in a 
specific manner (83,93). In addition, rotenone-induced 
impairment of the mitochondrial electron transport chain 
and mitochondrial hyperpolarization constitute priming 
signals for caspase-1 processing and NLRP3 inflamma-
some activation only in the presence of ATP (94). 
  Recent studies have shown that inducers of NLRP3 in-
flammasome activation alter mitochondrial homeostasis 

and reduce the concentration of the coenzyme NAD(+), 
triggering accumulation of acetylated a-tubulin and 
dynein-dependent mitochondrial transport (95). The cited 
author argued that microtubule-dependent transport of mi-
tochondria to NLRP3 on the endoplasmic reticulum was 
essential for assembly of the NLRP3 inflammasome com-
plex (95). Secondary NLRP3 signals, including ATP, also 
induce the release of oxidized mtDNA, which can bind to 
the NLRP3 inflammasome and directly induce activation 
(83). In macrophages, both LPS and ATP (NLRP3 in-
flammasome stimuli) significantly increased the cytosolic 
accumulation of mtDNA, which acted as a co-activator 
of caspase-1 (93). No cytosolic translocation of mtDNA 
was observed in NLRP3- or ASC-knockout macrophages, 
suggesting that inflammasome activation per se medi-
ates release of mtDNA into the cytosol (93). In addition, 
macrophages of the mitochondrial DNA-depleted Rho 0 
(r0) phenotype exhibited significant attenuation of cas-
pase-1 activation and IL-1b cleavage, but did not contain 
reduced levels of pro-IL-1b (83,93). Thus, mitochondrial 
ROS production and DNA translocation into the cytosol 
play key roles in the innate regulation and control of in-
flammatory responses. 

MITOCHONDRIA, AUTOPHAGY, AND INFLAMMATION

Autophagy is a lysosome-mediated intracellular degrada-
tion pathway allowing removal of damaged organelles. 
The selective or non-selective autophagic removal of im-
paired mitochondria (selective or non-selective mitopha-
gy) controls mitochondrial quality which is indispensable 
to sustain cell homeostasis. This mitophagic process may 
affect the formation of inflammasome followed by activa-
tion of inflammatory responses (96). Growing evidences 
suggest that defective or incomplete mitophagic process 
may lead to aberrant activation of inflammatory response 
(11,97). In the present review, we will only briefly discuss 
recent progress regarding autophagic/mitophagic modula-
tion of various functions of mitochondria associated with 
regulation of innate immune response. 
  Selective or non-selective mitophagic process is com-
pleted by lysosomal delivery of autophagosome engulf-
ing impaired mitochondria (98). Several evidences have 
shown that incomplete autophagic clearance of damaged 
mitochondria may trigger aberrant inflammasome activa-
tion and lead to a variety of human inflammatory diseases 
(11,98). In macrophages, autophagy blockade increases 
the production of mitochondrial ROS which induces mi-
tochondrial damage, in turn activating the inflammasome 
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(80,99). In LC3- or Beclin1-deficient cells, even the basal 
mtROS levels were elevated, and cytosolic leakage of 
mtDNA induces activation of the NLRP3 inflammasome 
and subsequent increase of IL-1b secretion (93). 
  During RLR signaling, autophagy-defective cells accu-
mulate damaged mitochondria, triggering amplification of 
inflammatory signaling (20). In this condition, a couple of 
suppositions might be considered: 1) Increase of MAVS 
concomitant with accumulation of damaged mitochon-
dria in autophagy deficient MEFs and macrophages; 2) 
Maintenance of high levels of mtROS concomitant with 
accumulation of damaged mitochondria, in turn activating 
inflammatory signaling (20,100).
  Recent studies have shown that autophagy is essential 
for the clearance of damaged mitochondria, and that scav-
enging of mitochondria-associated ROS increased the 
survival of virus-specific natural killer cells (101). The 
mitochondrial proteins BCL2/adenovirus E1B 19-kDa 
interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L, 
NIX) play critical roles in this form of this protective mi-
tophagy. The pro-survival signals facilitate formation of 
memory NK cells (101). Another study showed that ini-
tiation of autophagy by FoxO1 mediates NK cell develop-
ment and effective antiviral functionality (102). Together, 
these data strongly suggest that activation of autophagy, 
which is essential to ensure mitochondrial homeostasis, 
is also critical in terms of the fine-tuning and appropriate 
induction of innate immune activation.

CONCLUSION

It is becoming apparent that mitochondria are crucial or-
ganelles, not only because of their essential role in energy 
production but also because they co-ordinate the signal-
ing networks associated with innate immunity, autophagy, 
and inflammation. We have focused on the essential roles 
played by mitochondrial proteins in regulating innate 
immunity and inflammatory responses. Of the various 
mitochondrial components, the MAVS protein is key in 
terms of regulation of RLR signaling and antiviral im-
mune responses. Many positive and negative regulators 
of the MAVS protein have been identified; these act as 
fine modulators of innate antiviral immune responses. 
Other mitochondrial proteins, including VDAC, ECSIT, 
and MARCH5, have been suggested to be associated with 
the immune and inflammatory responses. Identification of 
further relevant proteins, coupled with an understanding 
of how they regulate innate immune responses, will in-
crease the number of useful targets for therapies aimed at 

treating infectious and inflammatory diseases. In addition, 
mitochondria control many innate signaling pathways via 
ROS and mtDNA. Emerging evidence suggests that both 
autophagy and mitophagy play crucial roles in the control 
of mitochondrial homeostasis and regulation of innate and 
inflammatory responses. An intricate interplay is evident 
between mitochondria, autophagy, and the inflammatory 
response. A fuller understanding of this process will lead 
to the definition of new therapeutic strategies for acute 
and chronic pathological and inflammatory disorders.
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