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Abstract

Background: One of the most common types of brain-computer interfaces (BCIs) is called a P300 BCI, since it relies on the
P300 and other event-related potentials (ERPs). In the canonical P300 BCI approach, items on a monitor flash briefly to elicit
the necessary ERPs. Very recent work has shown that this approach may yield lower performance than alternate paradigms
in which the items do not flash but instead change in other ways, such as moving, changing colour or changing to
characters overlaid with faces.

Methodology/Principal Findings: The present study sought to extend this research direction by parametrically comparing
different ways to change items in a P300 BCI. Healthy subjects used a P300 BCI across six different conditions. Three
conditions were similar to our prior work, providing the first direct comparison of characters flashing, moving, and changing
to faces. Three new conditions also explored facial motion and emotional expression. The six conditions were compared
across objective measures such as classification accuracy and bit rate as well as subjective measures such as perceived
difficulty. In line with recent studies, our results indicated that the character flash condition resulted in the lowest accuracy
and bit rate. All four face conditions (mean accuracy .91%) yielded significantly better performance than the flash
condition (mean accuracy = 75%).

Conclusions/Significance: Objective results reaffirmed that the face paradigm is superior to the canonical flash approach
that has dominated P300 BCIs for over 20 years. The subjective reports indicated that the conditions that yielded better
performance were not considered especially burdensome. Therefore, although further work is needed to identify which face
paradigm is best, it is clear that the canonical flash approach should be replaced with a face paradigm when aiming at
increasing bit rate. However, the face paradigm has to be further explored with practical applications particularly with
locked-in patients.
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Introduction

Brain-computer interface (BCI) systems allow for communica-

tion without movement. Users perform specific mental tasks that

each has distinct patterns of brain activity. An artificial system

categorizes these patterns to identify the associated mental tasks

and thereby infer the messages or commands that the user meant

to convey. Most modern BCIs rely on the EEG, which is recorded

noninvasively via electrodes on the surface of the head [1]. While a

variety of mental tasks have been explored for BCI control, most

BCIs rely on motor imagery or visual attention ([2–3], [4], [5], [6],

[7], [8]).

‘‘P300’’ BCIs
One type of BCI that usually relies on visual attention is called a

P300 BCI ([9], for review, see [10], [11], [12]). This BCI is so

named because it relies heavily on the P300, which is a well-known

component of the event-related potential (ERP) that is largest

when elicited by events that the subject considers important ([13],

[14]). Therefore, subjects can generate larger, more distinct P300s

by choosing to pay attention to specific events while ignoring
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others. For example, a user who wants to spell the letter ‘‘P’’ could

silently count each time the ‘‘P’’ flashes while ignoring any flashes

that do not include the ‘‘P’’. If the BCI signal processing software

correctly recognizes that the largest P300 is elicited whenever the

‘‘P’’ flashes, then the BCI system would spell the letter ‘‘P’’ on a

monitor and move on to the next letter. Although spelling is the

most common application, P300 BCIs have been used to control

other applications such as a ‘‘BrainPainting’’ system, internet

browser, robot arm, or environmental control ([15], [16], [17],

[18]). Recently, different P300 BCI systems have even been

implemented with standard assistive technology (AT) software for

text entry, emailing, and internet surfing and evaluated by severely

impaired end-users in terms of effectiveness (accuracy), efficiency

(bit rate and subjective workload) satisfaction and other factors

([19], [20], [21]). The P300-BCI driven AT software proved

effective and efficient was judged reliable and easy to learn, and

users were satisfied with the BCI. However, the low information

transfer rate limited the practical use of the system by end-users.

Thus, improving speed while maintaining reliability is a major

issue when bringing BCIs to the patients’ bedsides [22].

P300 BCIs could be improved by enhancing the difference

between attended and ignored events - which could entail more

recognizable differences in the P300 and/or other components. In

the past few years, different groups have focused on changes to

stimulus presentation paradigms that generally seek to increase

other components of the ERP that occur before or after the P300.

P300 BCIs typically rely on not only the P300, but also other visual

ERPs such as the N100, N200, and N400 components ([23], [24],

[25], [26], [27], [28]).

For example, one study proposed a P300 BCI with stimuli that

move instead of flash, which could elicit motion visual evoked

potentials (M-VEPs) [29]. Hong et al. (2009) developed an offline

M-VEP based spelling system, and showed that it might offer

superior performance to a conventional P300 BCI [30]. Liu et al.

(2010) validated the first online M-VEP BCI [31]. Jin et al. (2012)

developed a combined system using moving flashes to improve the

P300 BCI [32].

Another example of a study that focused on non-P300

components is Kaufmann et al. (2011b), which introduced stimuli

that are transparently overlaid with famous faces. This approach

accentuated the N170 and in particular the N400f, an ERP

component involved in face recognition [28]. The resulting ERPs

had a higher signal to noise ratio, which significantly improved

classification accuracy. Zhang et al. (2012) reported that N170 and

vertex positive potentials (VPP) also improve classification

accuracy in a P300 BCI with stimuli that change to faces [33].

In addition to changing characters to faces, other types of changes

may also offer advantages over the conventional ‘‘flash’’ approach

in P300 BCIs ([25], [34], [35], [36], [37]).

The primary goal of this study was to parametrically compare a

canonical ‘‘flash’’ condition with two other conditions in which the

characters move or change to faces. Extending prior work, we

explored both objective factors such as bit rate and classification

accuracy as well as subjective factors such as whether subjects

considered each condition difficult or tiring. This addressed the

need for a direct, within-subject comparison of the two new types

of stimulus changes that have gained the most attention in the

literature (flashing, moving, and changing to faces), with consid-

eration of personal preferences as well as performance. A

secondary goal was to explore three new conditions in which the

characters change to different types of faces. We hypothesized that

faces that move and/or have an emotional expression could result

in performance differences, with face stimuli leading to signifi-

cantly better performance.

Methods

Subjects
Ten healthy subjects (6 male, aged 21–26 years, mean 24)

participated in this study. All subjects signed a written consent

form prior to this experiment and were paid for their participation.

The local ethics committee approved the consent form and

experimental procedure before any subjects participated. All

subjects’ native language was Mandarin Chinese, and all subjects

were familiar with the Western characters used in the display. Four

subjects had used a BCI before this study.

The face images were obtained by photographing the first

subject. All subjects were familiar with this face, since subject 1 was

a fellow student of subjects 2–9. This face was chosen partly

because pilot testing using the same face as in Kaufmann et al.,

(2011) (Albert Einstein presenting his tongue) indicated that some

subjects preferred the face of the first subject [28]. Subject 1

provided written consent to use his images within the study and in

Figure 1 of this article, and understood that his face images would

be published.

Stimuli and procedure
After being prepared for EEG recording, subjects were seated

about 105 cm in front of a monitor that was 30 cm high (visual

angle: 16.3 degrees) and 48 cm wide (visual angle: 25.7 degrees).

During data acquisition, subjects were asked to relax and avoid

unnecessary movement. Figure 1 shows the display presented to all

subjects, which was a 666 matrix with gray English letters and

other characters against a black background. There were six

conditions in the study, which differed only in the way that these

characters changed. In different conditions, some of the characters

would change by changing color, moving, and/or changing to

different types of faces. We use the term ‘‘sub-trial’’ throughout

this paper to refer to each individual event, such as a flash in the

flash condition. The six conditions changed the stimuli as follows:

(1) In the flash paradigm, the characters became white for 200 ms

and then reverted to gray. (See Figure 1. Flash).

(2) In the moving paradigm, each character became white and

immediately moved 1 cm (visual angle: 0.5 degrees) to the

right for 200 ms at a constant speed of 2.5 degrees/s. Next,

the characters immediately reverted back to their original

positions and reverted to gray. (See Figure 1. Flash, Move-

Early and Move-Final).

(3) In neutral face paradigm, each character changed to the

‘‘neutral face image’’ for 200 ms. (See Figure 1. Face-Neutral),

and then reverted to gray characters.

(4) In the smiling face paradigm, the only difference from the

neutral face paradigm was that the ‘‘smiling face image’’ was

used instead of the ‘‘neutral face image’’. (See Figure 1. Face-

Smiling).

(5) In the shaking neutral face paradigm, the face rotated from

the left to its front (see Figure 1. Face-Neutral-R1, Face-

Neutral-R2, Face-Neutral-R3, Face-Neutral-R4 and Face-

Neutral). Specifically, five images were shown, each for 25 ms,

and each successive image was rotated 18 degrees toward the

left side of the monitor. Hence, the rotation lasted 125 ms,

after which the front face (see Figure 1. Face-Neutral) was

shown for 75 ms.

(6) In the shaking smiling face paradigm, the only difference from

the shaking neutral face condition was the ‘‘smiling face

image’’ was used instead of the ‘‘neutral face image’’. (See

Figure 1, Face-Smiling).

P300 Brain-Computer Interface Using Face Stimulus
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In all six conditions, after the 200 ms sub-trial, all characters

reverted to their usual background state for 50 ms before the next

flash began. Hence, in all conditions, there were four flashes per

second.

Three of these conditions corresponded to conditions in our two

previous papers ([28], [32]). The flash condition was similar to the

flash condition in these papers, as well as the canonical flash

condition in nearly all P300 BCI papers (e.g., [9], [23], [38]). The

moving condition was similar to the ‘‘flash and move’’ condition in

[32], and the neutral face condition was similar to the face

conditions in [28]. The remaining three conditions modified this

neutral face condition by modifying two independent variables:

emotion (joy vs. neutral) and motion (motionless vs. shaking).

Instead of grouping the flashed characters into rows and

columns, we developed an alternate flash pattern approach based

on binomial coefficients ([35], [39]). In this paper, we used the set

of k combinations (k~2) from set n = 12. Hence, there were twelve

flash patterns, and between four and seven characters changed

during each flash. Please see our prior work for additional details

[25].

Experiment set up, offline and online protocols
EEG signals were recorded with a g.USBamp and a g.EEGcap

(Guger Technologies, Graz, Austria) with a sensitivity of 100 mV,

band pass filtered between 0.1 Hz and 30 Hz, and sampled at

256 Hz. We recorded from EEG electrode positions Fz, Cz, Pz,

Oz, F3, F4, P3, P4, P7, P8, O1, and O2 from the extended

International 10–20 system.

In contrast to other P300 BCI approaches, the F3 and F4

channels were additionally selected since it was reported that F3

and F4 contain large N400 waves called fN400 [40].

The right mastoid electrode was used as the reference, and the

front electrode (FPz) was used as a ground. Data were recorded

and analyzed using the ECUST BCI platform software package

developed through East China University of Science and

Technology.

As noted, each sub-trial reflected each time a stimulus

changed form a background stimulus, such as each flash in the

flash condition. One trial contained all sub-trials with each of the

twelve flash patterns. Since all conditions had 200 ms sub-trials

followed by a 50 ms delay, each trial lasted three seconds. A trial
block referred to a group of trials with the same target character.

During offline testing, there were 16 trials per trial block. During

online testing, the number of trials per trial block was variable,

because the system adjusted this number to optimize performance

as described in part 2.7. Each run consisted of five trial blocks,

each of which involved a different target character. Subjects had a

five minute break after each offline run, and a two minute break

between each online run, since each online run was about more

than four minutes shorter than each offline run.

There were six conditions, which were presented to each subject

in pseudorandom order. For each condition, each subject first

participated in three offline runs. Subjects had five minutes rest

between each offline run. After the three offline runs, there were

four online runs for each condition, which were presented in the

same order as the offline runs. Each subject participated in the

online and offline runs within each condition on the same day, and

Figure 1. The display during the online runs. The five-letter target sequence is presented at the top of the screen, and the feedback is
presented below it. Please see the text for a description of the different panels in this figure.
doi:10.1371/journal.pone.0049688.g001
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each subject participated in three conditions in each day to

decrease fatigue. Hence, each subject participated in two

sessions that each consisted of nine offline runs followed by

twelve online runs.

At the beginning of each run, subjects viewed a 666 matrix

containing gray English letters and other characters against a black

background (see Figure 1). The top of the screen presented a five-

character sequence containing the five targets for that run. The

subject’s task was to silently count each time the target character

flashed. In the offline runs, subjects never received feedback. In the

online runs, whenever the classifier identified the target character,

the system displayed it in the ‘‘Feedback’’ line on the top left of the

screen, then the run ended. After a run ended, the matrix

remained on the screen without any changes for one second.

Feature extraction procedure
A third order Butterworth band pass filter was used to filter the

EEG between 0.1 Hz and 12 Hz. Although the P300 is primarily

in the band 0.1–4 Hz [41], it can also be found in higher bands

[42]. The EEG was downsampled from 256 Hz to 36.6 Hz by

selecting every seventh sample from the filtered EEG. Single sub-

trials lasting 800 ms were extracted from the data. The size of the

feature vector was 12629 (12 channels by 29 time points).

Classification scheme
Bayesian linear discriminant analysis (BLDA) is an extension of

Fisher’s linear discriminant analysis (FLDA) that avoids over

fitting. The details of the algorithm can be found in [43]. BLDA

was selected because of its demonstrated classification perfor-

mance in P300 BCI applications [43]. Data acquired offline were

used to train the classifier using BLDA and obtain the classifier

model. This model was then used in the online system.

Practical bit rate
In this paper, we used two bit rate calculation methods called

practical bit rate (PBR) and raw bit rate (RBR). The PBR is used

to estimate the speed of the system in a real-world setting. Unless

otherwise stated, all analyses in this paper are based on PBR; we

only present RBR to facilitate comparisons with other studies.

These two bit rate measures differ from each other in two ways.

First, the PBR incorporates the fact that every error requires two

additional selections to correct the error (a backspace followed by

the correct character). The practical bit rate is calculated as

RBR*(1–2*P), where RBR is the raw bit rate and P is the online

error rate of the system [39]. Second, the RBR and PBR also

incorporate the time between selections (1 second). Raw bit rate

calculated with selection time was used to show the online

information transfer rate of P300 BCIs which use other error

correction methods [44] except ‘‘Backspace’’.

Adaptive system settings
The number of trials per average was automatically selected

based on the classifier output. After each trial, the classifier would

determine the target character based on data from all trials in that

run block. If the classifier decided on the same character after two

successive trials, then no new flashes were presented, and that

character was presented as feedback to the subject.

For example, assume that the classifier decided that the letter

‘‘J’’ was the target based on the data from the first trial. The system

would then present a second trial. The data from the first and

second trials would be averaged, and the classifier would again

decide which character was the target. If the classifier again

selected ‘‘J’’, then the BCI assumed that ‘‘J’’ was the correct target,

and presented that feedback to the user. If the classifier did not

select the ‘‘J’’, then another trial would begin, and so on until the

classifier chose the same letter two consecutive times or until 16

trial blocks elapsed. That is, after 16 trials with the same intended

target letter, the classifier would automatically select the last output

of classifier as the target character [45].

Subjective report
After completing the last run, each subject was asked three

questions about each of the six conditions. These questions could

be answered on a 1–5 scale indicating strong disagreement,

moderate disagreement, neutrality, moderate agreement, or strong

agreement. The three questions were:

1) Was this paradigm annoying?

2) Did this paradigm make you tired?

3) Was this paradigm hard?

Statistical analysis
Before statistically comparing classification accuracy and

practical bit rate, data were statistically tested for normal

distribution (One-Sample Kolmogorov Smirnov test) and spheric-

ity (Mauchly’s test). Consecutively, repeated measures ANOVAs

with stimulus type as factor were conducted. Post-hoc comparison

was performed with Tuckey-Kramer tests. The alpha level was

adjusted according to Bonferoni-Holm with a = .0083 (significant).

Non-parametric Kruskal-Wallis tests were computed to statistically

compare the questionnaire replies.

Results

Online performance
Table 1 shows the results from the online runs. Classification

accuracy (F(5,45) = 7.78, p,.0001, g2 = 0.46) and practical bit

rate (F(5,45) = 8.54, p,.0001, g2 = 0.49) were significantly differ-

ent across the six conditions.

A direct comparison of the three established paradigms within

subjects (flash-only condition [9], moving-flash condition [32], and

neutral face condition [27]), revealed significant differences for

classification accuracy (F(2,18) = 9.61, p,.0015, g2 = 0.52) and

practical bit rate (F(2,18) = 10.74, p,.0010, g2 = 0.54). Post-hoc

comparison of the neutral face and flash-only condition showed

significant differences in terms of classification accuracy (p,.0017)

and significant differences in terms of PBR (p,.0083). No

significant difference was found between the moving flash and

flash-only condition as well as between moving flash and neutral

face condition (all p..0083; classification accuracy and PBR).

However, average classification accuracy and both bit rate

measures were larger for moving flash than flash-only (see Table 1).

In a separate comparison, we compared the four different face

conditions to each other to explore the secondary goal of

investigating the effect of movement and emotion in face stimuli.

Neither comparison was significant (F(3,27) = 0.12, p = 0.9500,

g2 = 0.01 for classification accuracy and F(3,27) = 0.80,

p = 0.5000, g2 = 0.08 for practical bit rate).

Non-P300 components
Figure 2 shows that grand averaged ERPs across subjects 1–10

over sites F3, Fz, F4, Cz, P7, P8, O1, Oz and O2. Figure 3 and

Figure 4 clearly indicate that non-P300 components play an

important role in classification, as expected. Because this work

entails numerous issues with different ERP components, we have

submitted these results separately, as a companion paper. This

P300 Brain-Computer Interface Using Face Stimulus
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paper includes a review of relevant literature, peak amplitude and

latency measurements for different ERP components, statistical

analyses, and discussion.

However, we did conduct another type of analysis within this

study to explore the importance of different time periods within

each ERP. We performed 15-fold cross validation with three

offline data sets. Figure 4 shows the results obtained from data

which was extracted from 0–299 ms, 300–450 ms, 451–700 ms,

700–1000 ms, 0–800 ms, and 0-1000 ms after flash onset. These

results indicate that data before and after the P300 contribute to

correct classification. This outcome supports our assertion that

non-P300 components are underappreciated in so-called ‘‘P300’’

BCIs.

Target to target interval
Target to target interval (TTI) is a critical determinant of P300

amplitude [46]. The TTI typically varies within P300 BCIs, and

these variations can affect performance ([47], [48]). Furthermore,

with very short TTIs, late components might actually reflect

activity from subsequent trials.

In this study, very few ERPs were influenced by a second target

stimulus that occurred during the 1000 ms after each target flash.

With the flash pattern approach used here, the minimum TTI was

500 ms. Table 2 shows the distribution of TTIs. 99% of TTIs are

longer than 750 ms, and 86% of TTIs are longer than 1000ms (see

Table 2). This reflects that ERPs evoked by current stimulus are

rarely influenced by the ERPs evoked by next stimulus.

Subjective report
Table 3 presents the subjects’ responses to the three questions.

None of the participants reported any of the stimulus conditions as

tiring, difficult or annoying, since they reported neutrality,

moderate disagreement or strong disagreement with these

questions. No significant difference was found between conditions

(H(5) = 7.37, p = .19 for annoying; H(5) = 3.93, p = .56 for difficult;

H(5) = 13.66, p = .02 for tired; adjusted alpha level: a= .0083).

Discussion

The primary goal of this study was to compare two emerging

stimulus approaches with each other and with a canonical ‘‘flash

only’’ stimulus approach. In line with previous results, the moving-

flash [32] and face stimuli [28] improved classification accuracy

and bit rate relative to flash-only, and the face stimulus was the

most effective approach. Our moving flash condition did not

significantly differ from the flash only condition. However, we

previously reported that the moving-flash condition was signifi-

cantly better than the flash-only condition [32]. Unlike that study,

we did not use a blue/green paradigm in the current study, and we

did not improve the moving and flash times through pilot testing.

Instead, to facilitate comparison to other conditions, we used a

Table 1. Performance from online feedback runs.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average

Flash Acc (%) 60 55 50 80 85 80 90 80 95 75 75615.1

Move 65 90 75 95 90 95 80 85 90 75 8469.9

N_face 90 80 85 100 100 100 90 100 85 95 92.567.5

S_Face 90 80 90 90 95 100 80 90 100 100 91.567.5

SN_Face 95 90 90 100 85 100 100 90 95 85 9365.9

SS_Face 100 90 90 90 90 100 90 85 90 95 9264.8

Flash RBR (bit/min) 8.0 9.7 7.8 23.2 26.1 22.6 27.9 21.1 33.7 14.6 19.569.0

Move 9.8 29.9 15.4 26.4 25.0 26.1 22.8 23.3 26.2 14.5 21.966.5

N_face 25.4 24.0 28.1 46.0 29.1 38.3 34.9 25.2 27.6 30.8 30.966.9

S_Face 27.0 25.8 27.5 34.2 28.9 40.5 18.8 21.2 37.6 33.4 29.566.9

SN_Face 30.8 27.4 26.2 44.0 26.6 46.0 46.0 27.5 40.2 28.6 34.368.6

SS_Face 47.0 29.4 32.2 34.9 29.4 46.0 34.2 25.7 37.2 32.5 34.966.9

Flash PBR (bit/min) 1.5 0.9 0 12.5 16.4 14.4 20.1 11.5 27.0 6.8 11.168.9

Move 2.7 21.4 7.1 21.7 18.2 21.4 12.3 14.8 19.0 6.7 14.567.0

N_face 18.4 12.9 17.5 40.0 26.6 34.1 24.5 23.1 17.2 25.0 23.968.2

S_Face 19.5 13.8 19.8 24.1 23.6 35.9 10.3 15.6 33.5 30.1 22.668.5

SN_Face 25.0 19.8 19.0 39 16.7 39.3 40.0 19.8 31.6 17.8 26.869.7

SS_Face 40.8 21.0 22.8 24.5 21.0 40.0 24.1 16.2 25.9 26.2 26.368.0

Flash Avt 5.35 3.9 4.1 3.0 2.9 3.6 3.0 3.25 2.75 4.2 3.660.8

Move 5.0 2.8 4.0 3.5 3.35 3.6 3.05 3.25 3.2 4.25 3.660.7

N_face 3.3 2.8 2.7 2.3 3.6 2.7 2.4 4.1 2.75 3.0 3.060.6

S_Face 3.1 2.7 3.05 2.5 3.2 2.6 3.65 3.95 2.75 3.1 3.160.5

SN_Face 3.0 3.1 3.2 2.4 2.9 2.30 2.25 3.05 2.3 2.65 2.760.4

SS_Face 2.2 2.9 2.6 2.4 2.9 2.25 2.45 2.95 2.25 2.85 2.660.3

‘‘Flash’’ is the flash-only paradigm, ‘‘Move’’ is moving-flash paradigm, ‘‘N_Face’’ is neutral face paradigm, ‘‘S_Face’’ is smiling face paradigm, ‘‘SN_Face’’ is neutral shaking
face paradigm and ‘‘Face_SS’’ is smiling shaking face paradigm. ‘‘Acc’’ is classification accuracy, ‘‘RBR’’ is raw bit rate and ‘‘PBR’’ is practical bit rate (bits/min). ‘‘Avt’’ is
average trials used for average.
doi:10.1371/journal.pone.0049688.t001
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Figure 2. Grand averaged ERPs. Grand averaged ERPs across subjects 1–10 over sites F3, Fz, F4, Cz, P7, P8, O1, Oz and O2, LP_ERP is late positive
ERP.
doi:10.1371/journal.pone.0049688.g002
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white/grey pattern, and the movement duration was as long as the

flash duration. The present results suggest that these modifications

might be crucial for further enhancing performance in the

moving-flash condition.

The secondary goal was to compare an established face

paradigm with three novel face paradigms. We hypothesized that

manipulating facial emotion (smiling faces) or motion (shaking

faces) might lead to more distinct ERPs and thereby improve

performance. Although these manipulations did appear to

influence the expected ERP components with some subjects, any

ERP differences were not robust enough to lead to statistically

significant performance differences within the face conditions.

However, the results do not necessarily discourage future

research involving facial movement and/or emotion. For exam-

ples, angry faces elicit larger ERPs than happy faces [49], and

inverted faces could evoke a larger N170 and thereby improve the

performance of a BCI [33]. Other paradigmatic changes could

improve performance by eliciting more ERP differences between

attended and ignored stimuli.

For example, presenting new faces or other stimuli with each

flash might enhance the P3a or other components ([14], [50],

[51]). Presenting the same face each time could yield a small

reduction in negative potentials, but could enhance positive

potentials. The merits of novel face presentation should be

explored in an online BCI study, since (at least) P300 habituation

from offline non-BCI studies may differ from habituation in online

studies with feedback ([24], [52]). Different instructions to subjects

could also encourage more attention to faces and thus enhance

face related components. For example, instead of counting stimuli,

subjects could be asked to count only certain types of faces, such as

happy, male, or familiar faces. These possibilities underscore that

further research is needed to translate these speculative options

into actual research results.

As none of the subjects considered any of the conditions

especially tiring, annoying, or difficult, we conclude that the new

stimulus material is feasible for BCI use. However, non-significant

trends indicated a slight preference for simpler conditions, and that

the smiling face condition was more tiring. These trends should be

explored in further studies. Some types of subjects, such as elderly

users or persons with attentional disorders, might have more

trouble with some conditions.

This work is significant for two general reasons. First, we

provide further support for an increasingly obvious conclusion: the

canonical ‘‘flash-only’’ paradigm, which has dominated P300 BCIs

for almost 25 years, does not outperform other approaches.

Alternate paradigms are superior in terms of objectively measur-

able dependent variables like accuracy and bit rate, and do not

differ significantly in terms of subjective report. Since these

approaches can be easily implemented, there seems to be no

reason to continue using ‘‘flash-only’’ P300 BCIs, specifically with

Figure 3. R-squared values of ERPs. R-squared values of ERPs from all paradigms at 0-1000ms averaged from subject 1–10 on site F3, Fz, F4, Cz,
P7, P3, Pz, P4, P8, O1, Oz, O2.
doi:10.1371/journal.pone.0049688.g003
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Figure 4. Classification accuracy and bit rate based on offline data. The two columns from left to right present the classification accuracy
and bit rate based on offline data. The four rows from top to bottom present these measures based on data from 0–299 ms, 300–450 ms, 451–
700 ms, 701–1000 ms, 0–800 ms and 0–1000 ms after flash onset, respectively.
doi:10.1371/journal.pone.0049688.g004

Table 2. The percentages of TTIs between sub-trials.

TTI (ms) 500 750 1000 1250 1500 1750 2000 2250

(%) 0.42 12.9 13.1 16.9 12.9 17.1 13.3 13.3

doi:10.1371/journal.pone.0049688.t002
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patients. While this work helps elucidate the objective and

subjective effects of different approaches, further research is

needed to better identify which alternate approaches are most

effective.

This work is also significant in drawing attention to the

importance of non-P300 components. Consistent with earlier

work, this article also shows that the ‘‘P300’’ BCI could be

improved when other ERP components are included. Indeed,

numerous distinct ERPs, both before and after the P300, can

improve classification accuracy.

Conclusion

This paper further investigated how P300 BCIs could be

improved when combined with other ERPs. Face emotion and

motion were not found to increase performance as compared to

neutral face stimulation; however, faces significantly outperformed

other stimulation approaches. Future work should further explore

ways to enhance any differences between target and non-target

flashes. This major challenge could entail not only ERP

components but other differences such as alpha power ([23],

[53]). Future work could also assess whether adding alternate tasks

(such as imagined movement) can further improve performance in

a hybrid BCI ([54], [55]). The next practical step should be

implementing faces in ERP-based applications such as text entry,

emailing and internet surfing with standard assistive technology

[56].
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