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Abstract Deficient motivation contributes to numerous psychiatric disorders, including

withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has

been implicated in motivated behavior, but it remains unclear whether motivational drive is linked

to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of

Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial

variability in willingness to exert effort for reward was not associated with operant responding

under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a

divergent NAc shell transcriptome with differential regulation at potassium and dopamine signaling

genes. Functionally, motivation was inversely related to excitability of NAc principal neurons.

Furthermore, neuronal and behavioral outputs associated with low motivation were linked to faster

inactivation of a voltage-gated potassium channel, Kv1.4. These results raise the prospect of

targeting Kv1.4 gating in psychiatric conditions associated with motivational dysfunction.

DOI: https://doi.org/10.7554/eLife.47870.001

Introduction
Dysregulated motivation to pursue previously rewarding stimuli is a feature of multiple psychiatric

disorders, including depression, schizophrenia, and withdrawal from substance use. Indeed,

response to positive motivational situations has been proposed as one of only five behavioral dimen-

sions that link the entire range of psychiatric diagnoses with underlying neurobiological mechanisms

(RDoC framework; Cuthbert, 2015). Daily fluctuations in motivation for reward is a regular and

familiar feature of human experience. However, chronically and persistently low motivation is associ-

ated with vulnerability to mental illness, including substance use disorders (Carroll et al., 2002;

Janowsky et al., 2003; Perry et al., 2007; Radke et al., 2015; Brennan et al., 2001). Despite prog-

ress in understanding the neurobiology of reward over the last two decades, it remains unclear

whether neuronal activity underlying persistent differences in motivation is functionally distinct from

a broader spectrum of signaling events mediating reward processing.

The mesolimbic reward circuit is central to the processing of rewarding environmental stimuli. At

the center of this circuit is the nucleus accumbens which integrates affective, spatial, and cognitive

signals with approach to reward (Mogenson et al., 1980; Di Chiara, 2002; Di Chiara et al., 2004;

Wise, 2004; Saddoris et al., 2015). The principal cells of the nucleus accumbens, striatal projection

neurons (SPNs), regulate their firing patterns in a manner that predicts locomotion toward rewards

as well as reward omission (Peoples and West, 1996; Nicola et al., 2004a; Roitman et al., 2005;

Wan and Peoples, 2006). Action potential output of SPNs is modulated by dopamine, a molecule
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consistently implicated in behavioral response to motivationally salient stimuli, including action-out-

come associations as well as reward avoidance (Akaike et al., 1987; Nicola et al., 2000; Ji and Mar-

tin, 2012; Ortinski et al., 2015). Dopamine modulates firing of SPNs in the nucleus accumbens via

intracellular messengers coupled to the associated G-protein signaling cascades (Yang et al., 2013;

Perez et al., 2006; Valdés-Baizabal et al., 2015; Cantrell et al., 1999; Schiffmann et al., 1995;

Bender et al., 2010). Among the prominent dopamine targets are the voltage-gated potassium

channels, canonical regulators of action potential output.

Voltage-gated potassium channels comprise the most diverse family of ion channels with over a

hundred genes coding for potassium channel subunits in addition to multiple channel regulators.

These channels are notably capable of suppressing, facilitating, and shaping action potentials and

rhythmic activity throughout the central nervous system (Perez et al., 2006; Ji and Martin, 2014;

Jan and Jan, 1997; Kimm et al., 2015; Johnston et al., 2010). For example, in principal neurons of

the medial nucleus of the trapezoid body, activation of Kv1 channels increases firing threshold and

inhibits firing, while activation of Kv3 channels accelerates action potential repolarization and pro-

motes high firing rates (Johnston et al., 2010). In midbrain dopaminergic neurons, inhibition of Kv2

channels increases action potential firing and decreases afterhyperpolarization (AHP), while activa-

tion of the large conductance Ca2+-activated K+ (BK) channel decreases AHP, but has no effect on

action potential firing (Kimm et al., 2015). In the striatum, dopamine depletion increases SPN intrin-

sic excitability and decreases AHP by accelerating the inactivation of the A-type (IA) K+ current

(Azdad et al., 2009). The kinetic properties of potassium channel gating have been a subject of

intense interest over many decades as the timing of channel activation and inactivation affects potas-

sium channel interactions with other ionic conductances to determine membrane excitability and

action potential generation.

Recent evidence suggests a prominent role for K+ channels in reward and motivated behaviors

(Han et al., 2013; Gelernter et al., 2014; Cadet et al., 2017). For example, several studies indicate

that G protein-gated inwardly rectifying K+ (GIRK) channels regulate neuronal firing and behavioral

response to addictive drugs (McCall et al., 2017; Rifkin et al., 2017). In the NAc, where GIRK

expression is very low or absent, chronic cocaine treatment has been shown to increase IA and BK

channel currents (Hu et al., 2004). Similarly, decreased activation of small-conductance calcium-acti-

vated K+ channels in the NAc core has been reported to increase spike output and facilitate motiva-

tion to seek alcohol after abstinence (Hopf et al., 2010), while microinjection of a Kv7 agonist into

the nucleus accumbens core has been found to reduce alcohol seeking (McGuier et al., 2016).

Finally, a genome-wide analysis found rats that compulsively self-administer methamphetamine

despite negative consequences (foot shocks) are segregated from non-compulsive methamphet-

amine takers by both differential RNA expression and DNA hydroxymethylation at a number of

genes encoding voltage-gated K+ channels (Cadet et al., 2017). Despite this substantial body of evi-

dence that Kv channels play a role in individual responding for drug reward, it remains unclear

whether Kv-regulation of neuronal excitability may account for variability in responding to naturally

reinforcing stimuli.

In this study, we test the hypothesis that individual heterogeneity in effort-based motivation is

linked to altered intrinsic excitability of nucleus accumbens shell SPNs. We find that the spectrum of

behavioral performance on a classical test of effort-based motivation is mirrored by genome-wide

transcriptional differences with a major contribution of voltage-gated K+ channels and dopamine

related transcripts. Our electrophysiological analyses provide evidence for a specific voltage-gated

K+ channel subtype, Kv1.4, as a channel species with potential to specifically target the low motiva-

tion phenotype.

Results

Individual differences in motivation for sucrose reward
We began by establishing a behavioral profile of motivation for sucrose reward using a PR schedule

of reinforcement in seven cohorts totaling 111 rats (Figure 1, Figure 1—figure supplement 1A).

This revealed dramatic variability in PR breakpoints. Across all cohorts, the animals in the top 25% of

interquartile distribution (highS rats) reached a mean breakpoint of 270.4 ± 11.3 lever presses,

whereas the animals in the bottom 25% of interquartile distribution (lowS rats) reached a mean
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Figure 1. Characterization of behavioral variability on a progressive ratio task. (A) Scatterplot: Individual breakpoints of rats tested on the PR schedule

of reinforcement (N = 111. Black bar: median. Red bars: upper and lower interquartile ranges. Bar histograms: Breakpoints were significantly different

between rats in the lowest breakpoint quartile (lowS, N = 23) and rats in the highest breakpoint quartile (highS, N = 21). (B) Averaged over the last

three days of the PR schedule, the rats in the lowS group pressed the active lever significantly fewer times and (C) earned significantly fewer pellets. (D)

Stability of active lever presses in lowS rats over last 3 days on PR schedule. (E) Stability of active lever presses in highS over last 3 days on PR schedule.

(F) Rats in the lowS and highS groups acquired the sucrose self-administration task (FR1fiFR3fiFR10 schedule) at a similar rate. (G) Mean active lever

presses over the last three days of FR10 schedule were not different between groups. (H) Mean pellets earned over the last three days of FR10 schedule

were not different between groups. **, p<0.01.

DOI: https://doi.org/10.7554/eLife.47870.002

Figure 1 continued on next page
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breakpoint of 57.4 ± 4.6 lever presses for a single sucrose reward (Figure 1A; t(42)=26.35 p<0.0001,

unpaired t-test). Consistent with this, the total number of active lever presses per session also dif-

fered between highS and lowS rats. HighS rats pressed the active lever an average of 1462 ± 59.2

times, while lowS rats pressed the active lever an average of 296.6 ± 21.2 times per single operant

session (Figure 1B; t(42)=26.49 p<0.0001, unpaired t-test). This difference in operant responding cor-

responded to an average of nine extra sucrose pellets earned in a single session by highS, relative to

lowS, rats (Figure 1C; highS: 19.25 ± 0.16 pellets; lowS: 10.9 ± 0.46 pellets, t(42)=16.36 p<0.0001,

unpaired t-test). To ensure that responding on PR was a stable behavior, animals were assigned to

categories following 3 days of stable responding (<10% variability in active lever presses) on the PR

schedule (Figure 1D,E).

Although classically defined as a test of effort-based motivation, variability in PR performance

could reflect differences in ability to learn stimulus-reward associations or locomotor differences in

rates of lever responding. To examine this, we analyzed behavioral performance during the fixed-

ratio (FR) stage of operant training. The rats that would go on to form lowS and highS group

acquired the self-administration task with a similar time course as the FR training progressed from 1

to 3 to 10 lever presses per reward (Figure 1F; [Main group effect: F(1,42)=2.13, p=0.1] two-way

ANOVA). Similarly, the animals did not differ in the number of active lever presses (Figure 1G;

t(42)=0.62, p=0.5442, unpaired t-test) and total pellets earned (Figure 1H; t(42)=0.93, p=0.36,

unpaired t-test) over the final 3 days of FR10 training. There was also no correlation between active

lever presses on FR10 and breakpoints achieved on the PR schedule (Figure 1, Figure 1—figure

supplement 1B). This indicates that behavioral variability was specific to the high effort conditions

imposed by the PR task. Inactive lever presses were not different between lowS and highS rats on

either the FR (lowS: 1.1 ± 0.52; highS: 0.75 ± 0.37; t(42)=0.54 p=0.59, unpaired Student’s t-test) or

the PR (lowS: 2.9 ± 0.6; highS: 3.9 ± 0.7; t(42)=1.07 p=0.29, unpaired Student’s t-test) schedules of

reinforcement suggesting a lack of locomotor differences in approach to lever not associated with

reward.

In a subgroup of 16 rats, we also examined whether baseline variability in stress levels may have

contributed to PR performance by measuring levels of the stress marker, corticosterone.

Figure 1 continued

The following figure supplement is available for figure 1:

Figure supplement 1. Cohort to cohort variability and FR-PR correlation.

DOI: https://doi.org/10.7554/eLife.47870.003

Figure 2. Progressive ratio performance does not depend on individual stress levels. (A) Plasma corticosterone levels do not differ between lowS,

highS, and intermediate performance (midS) rats. (B) Breakpoint values on the PR schedule do not correlate with plasma corticosterone levels (N = 5/

group).

DOI: https://doi.org/10.7554/eLife.47870.004
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Corticosterone levels did not differ between rats (Figure 2A) and there was no correlation between

individual corticosterone levels and PR breakpoints (Figure 2B; Pearson’s r2 = 0.0005, p=0.93).

Altogether, these data indicate that individual variability in motivation for sucrose is dissociable

from performance on low-effort, fixed ratio tasks. Furthermore, variability in motivation that we

report is not due to differences in acquisition of stimulus-reward associations, locomotor ability, or

baseline differences in HPA axis function.

Divergent transcriptome profile in highS and lowS rats
Seeking of natural rewards and behavioral performance on progressive ratio schedules of reinforce-

ment critically relies on activity of the NAc shell (Basso and Kelley, 1999; Reynolds and Berridge,

2001; Kelley and Swanson, 1997; Wirtshafter and Stratford, 2010). To gain a comprehensive

view of molecular drivers of individual variability in motivation for sucrose, we performed genome-

wide RNA sequencing of NAc shell tissue. Similar levels of genetic variability could be expected

among individuals from a single strain of rats. However, we found that the transcriptome profile

diverged between, but not within, groups of rats characterized by their behavioral performance on

the PR task. The most pronounced differences appeared between lowS and highS rats, while the

transcriptome of animals with intermediate performance on the PR schedule (midS) aligned closer to

highS, rather than lowS, rats (Figure 3A). Between the lowS and highS groups, a total of 231 tran-

scripts were differentially regulated (Figure 3, Figure 3—source data 1; log2fold values � 0.5

or��0.5). We conducted pathway analysis using Reactome (Fabregat et al., 2018; Milacic et al.,

2012) for a more mechanistic insight into the function of differentially expressed transcripts. This

analysis indicated that dopamine and K+ channel-related transcripts accounted for 3 of the top five

gene pathways with significant differences in expression between lowS and highS groups. The other

two Reactome pathways identified genes associated with extracellular matrix reorganization and cell

growth/division (Figure 3C). The volcano plot in Figure 3B shows differentially enriched genes

color-coded in red (upregulated in lowS) and blue (downregulated in lowS) with FDR < 0.05 (horizon-

tal line). Within this pool, we highlight genes known to regulate neuronal activity in the NAc: four

genes related to dopamine signaling (Pdyn, Drd1, Penk and Drd2), expressed at significantly lower

levels in the lowS group, and six genes related to K+ channel signaling (Hcn4, Kcna4, Kcnab1, Kcnc4,

and Kcnv1) that were bi-directionally regulated in the lowS relative to highS group. Overall, RNA

sequencing data indicated that behavioral differences in motivation for reward are linked to genomic

variability. Particularly prominent were the genes expected to influence NAc neuronal activity and

(as in the case of extracellular matrix transcripts) organization of the NAc circuitry.

Low motivation for sucrose is linked to increased NAc spike output
Our sequencing data indicate a prominent involvement of voltage-gated K+ channels, powerful reg-

ulators of neuronal excitability. In vivo studies from other groups suggest an inverse relationship

between NAc spiking activity and reward-oriented behavior (Peoples and West, 1996;

Nicola et al., 2004a; Roitman et al., 2005; Wan and Peoples, 2006) (see Discussion). Therefore,

we speculated that low effort-based motivation occurred on a background of increased membrane

excitability. Using electrophysiological recordings in brain slices we found that indeed, SPNs of lowS

rats fired significantly more action potentials across a range of depolarizing current injections than

SPNs of highS rats (Figure 4A, [Main group effect: F(1,215)=22.52, p=0.01], two-way RM ANOVA).

Other measures of excitability, including membrane resistance, resting membrane potential, rheo-

base, latency to first spike, spike threshold, spike amplitude and spike half-width did not differ

between the groups (Figure 4—figure supplement 1). However, action potential waveform analysis

did show decreased spike afterhyperpolarization in cells from lowS animals (Figure 4B; t(16)=2.41

p=0.028, unpaired t-test), consistent with a role for voltage-gated K+ channels.

Sequencing data highlighted six K+ channel transcripts differentially expressed in lowS and highS

rats, four of which (Kcnab1, Kcna4, Kcnc4, and Kcnv1) code for subunits or regulators of K+ channels

underlying A-type (IA) currents (Rettig et al., 1994; Tseng-Crank et al., 1990; Dallas et al., 2008;

Hugnot et al., 1996). We isolated IA currents using their characteristic property of fast inactivation

at depolarized potentials and detected a substantial contribution of these currents to SPN excitabil-

ity in both lowS and highS groups of animals. Peak IA amplitude was not significantly different

between lowS and highS groups (Figure 4C; [Main group effect: F(1,28)=2.64, p=0.12], two-way RM
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Figure 3. Divergent transcriptome profile in lowS and highS rats. (A) A clustergram summary of top differentially expressed genes (DEGs) between

lowS, highS, and midS rats. Each column represents RNA sequencing of NAc tissue from a single animal. Log2fold values are color coded red for

upregulated genes and blue for downregulated genes. (B) Volcano plot highlighting genes related to K+ channel activity and dopamine signaling in

lowS versus highS transcriptome. (C) Pathway analysis showing top mechanistic networks related to divergent motivation for sucrose in lowS and highS

rats (N = 3, 4 and 3 for lowS, midS and highS, respectively).

Figure 3 continued on next page
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ANOVA) across a range of holding potentials indicating a similar number of channels underlying

A-type currents and a similar profile of voltage-dependent activation of these channels. However,

action potential output is strongly sensitive to IA inactivation kinetics (Zemel et al., 2018) with faster

inactivation expected to increase action potential frequency similarly to the effect of reduction in the

number of underlying channels (see Discussion). We found that the decay time of inactivation was

27% faster in lowS relative to highS animals (Figure 4D; t(26)=2.1, p=0.047 t-test). We then looked at

currents mediated by the large-conductance Ca2+-activated potassium (BK) channels since they have

been shown to interact with IA to influence both afterhyperpolarization and neuronal firing

(Kimm et al., 2015; Storm, 1987; Zhang and McBain, 1995). Our slice recordings indicated no dif-

ference in BK current amplitude (IBK) between lowS and highS groups (Figure 4E; [Main group

effect: F(1,12)=0.04, p=0.83], two-way RM ANOVA). There was also no difference in the total outward

K+ conductance measured after application of TEA and 4-AP (Figure 4F; Total K+: [Main group

effect: F(1,13)=0.12, p=0.31], two-way RM ANOVA). Finally, recordings from midS animals aligned

with findings in highS subjects: spike frequency was lower than the lowS group, but did not differ

from highS animals, while IA amplitude, IBK, and total K+ currents did not differ between lowS, midS

and highS groups (Figure 4—figure supplement 2). Notably, IA decay time in the midS group was

intermediate to that of lowS and highS animals and not significantly different from either group (Fig-

ure 4—figure supplement 2C). Overall, our results suggest that a low motivation phenotype is

linked to increased spiking of NAc principal neurons. This increased spiking is consistent with faster

A-type current inactivation and decreased spike afterhyperpolarization, but is not related to avail-

ability of IA and BK channels or overall ion permeability through voltage-gated K+ channels.

Kv1.4 channels modulate SPN excitability selectively in lowS animals
Fast-inactivating A-type currents are mediated by K+ channel proteins encoded by Kcna4, Kcnc4, or

Kcnd1-3 genes (Coetzee et al., 1999). The first two of these genes were represented in our

sequencing results and code for Kv1.4 and Kv3.4 channels, respectively. Our IA recording protocol

does not distinguish between these two IA channels. However, since only Kv1.4, but not Kv3.4, is

strongly expressed in the NAc shell (Pessia et al., 1996; Weiser et al., 1994), we profiled Kv1.4

activity using an antagonist, UK-78,282. UK-78,282 exhibits ~200 fold selectivity at Kv1.4 over Kv3.4

and 10- to 700-fold selectivity at Kv1.4 over other closely related channels (Kues and Wunder,

1992). The overall effect of acute application of UK-78,282 (100 nM) was to suppress action poten-

tial output in lowS, but not highS, SPNs (Figure 5A). This differential effect reversed the excitability

profile of lowS relative to highS neurons such that in the presence of UK-78,282, lowS SPNs fired

fewer action potentials than highS SPNs (Figure 5B, [Main group effect: F(1,12)=5.819, p=0.032] two-

way RM ANOVA); cf. Figure 4A). UK-78,282 had a similar effect on afterhyperpolarization area in

both lowS and highS animals (Figure 5C), suggesting that Kv1.4 activity does not account for differ-

ences in afterhyperpolarization between lowS and highS group at baseline (cf. Figure 4B). Addition-

ally, UK-78,282 application did not result in significant differences between lowS and highS groups

across a battery of excitability measures (Figure 5—figure supplement 1). Similar to highS animals,

spike frequency in midS animals was not affected by UK-78,282 (Figure 5—figure supplement 2A).

AHP in the midS group and IBK in either lowS, midS, or highS groups was also unaffected (Figure 5—

figure supplement 2B–E).

We then evaluated contribution of Kv1.4 to A-type K+ currents. Application of UK-78,282 signifi-

cantly reduced amplitude of the IA in lowS, highS, and midS rats (lowS: [Main drug effect: F(1,

12)=14.03, p=0.0028]; highS: [Main drug effect: F(1, 13)=17.19, p=0.001] two-way RM ANOVAs;

Figure 5D, Figure 5—figure supplement 2F). This was an unexpected result suggesting that

reduced Kcna4 transcript in lowS animals did not reduce availability of Kv1.4 at the cell surface rela-

tive to highS group. We did observe a difference in voltage-dependence of recorded currents

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.47870.005

The following source data is available for figure 3:

Source data 1. Divergent transcriptome profile in highS and lowS rats.

DOI: https://doi.org/10.7554/eLife.47870.006
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Figure 4. Low motivation for sucrose is associated with increased SPN excitability. (A) Left, representative traces from NAc SPNs in lowS and highS

animals at a depolarizing (+200 mV) current step. Right, action potential output across a range of injected current steps is significantly elevated in the

lowS group (**, p<0.01, n = 9 N = 5/group). (B) Decreased afterhyperpolarization area in SPNs from lowS animals is consistent with increased action

potential firing (n = 9, N = 5/group; *, p<0.05). (C) Left, representative traces of A-type (IA) currents in lowS and highS rats (n = 16 and 14 for lowS and

highS, respectively; N = 5/group). Current amplitude was measured at the peak (red arrow). Right, Current-voltage relationship for IA is similar between

groups. (D) Top, representative IA traces from lowS and highS animals are amplitude-scaled and overlaid to highlight differences in inactivation kinetics.

Bottom, faster IA inactivation kinetics in the lowS animals in a scatterplot of decay times measured from the largest depolarizing peak in each group. (E)

Top, representative traces of IBK currents isolated by paxilline. Current amplitude was measured at steady-state (red arrow). Bottom, there is no

Figure 4 continued on next page
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between groups: lowS neurons displayed sensitivity to UK-78,282 across all voltages, including the

voltage range subthreshold to action potential firing, whereas IA in highS neurons was suppressed

by UK-78,282 only at higher depolarizing voltages (Figure 5D). To follow-up on the observation that

A-type currents display faster inactivation kinetics in lowS cells, we measured decay times of UK-

78,282-sensitive currents. In lowS animals, application of UK-78,282 increased the time constant of

inactivation from 7.32 ± 0.7 ms to 10.57 ± 1.5 ms (Figure 5E, t(17)=3.5, p=0.003, paired t-test). In

neurons from highS animals, IA inactivation was insensitive to UK-78,282 with the time constant of

9.07 ± 1.3 ms at baseline and 8.9 ± 1.3 ms after UK-78,282 application (Figure 5E, t(13)=0.35,

p=0.73, paired t-test). There was no effect of UK-78,282 on IA decay time in midS animals (Figure 5—

figure supplement 2G,t(6)=0.35, p=0.74, paired t-test). We conclude that differences in Kv1.4 gat-

ing, rather than number of available channels alters firing of NAc shell SPNs in a manner that may

discriminate between behavioral extremes on a progressive ratio task.

Kv1.4 blockade improves PR performance in lowS animals
Given the selective effect of UK-78,282 on neuronal excitability in lowS rats, we investigated whether

a similar selectivity can be observed at the behavioral level. To examine this, we microinfused UK-

78,282 into the NAc shell of lowS, midS and highS rats and measured its effect on PR performance.

A two-way ANOVA with group (lowS, midS, highS) and UK-78,282 concentration (1 nM, 100 nM)

as variables revealed a significant effect of group (F(2,16)=153.6, p<0.0001), a significant effect of

drug concentration (F(1.97,31.5) = 3.9, p=0.03) and significant interaction (F(4,32)=5.1, p=0.003). To fur-

ther explore these effects, we analyzed the effect of UK-78,282 infusion on each separate group.

The low dose of UK-78,282 (1 nM) had no significant effect on sucrose self-administration in any

group. A higher dose of UK-78,282 (100 nM), however, significantly increased breakpoints in the

lowS, but not the highS or midS groups (lowS: F(2,21)=9.5, p=0.001; midS: F(2,25)=0.198, p=0.82;

highS: F(2,21)=0.5, p=0.64; one-way ANOVAs Figure 6Ai,Bi;Ci). Similarly, active lever responding and

pellets earned were increased specifically in the lowS rats (Figure 6Aii,iii, Bii,iii; Cii,iii; active lever

lowS: F(2,21)=10.8, p=0.0006; active lever midS: F(2,25)=0.1, p=0.9; active lever highS: F(2,21)=0.05,

p=0.95; pellets lowS: F(2,21)=6.3, p=0.007; pellets highS: F(2,25)=0.15, p=0.86; pellets highS:

F(2,21)=0.5, p=0.61; one-way ANOVAs). There was no difference in inactive lever presses between

UK-78,282 concentrations in the lowS or midS groups (lowS: F(2,21)=0.75, p=0.5; midS: F(2,25)=0.14,

p=0.86, one-way ANOVAs), although inactive lever pressing was significantly reduced by UK-78,282

(100 nM) in highS rats (F(2,21)=6.1, p=0.008, one-way ANOVA; Figure 6Aiv, Biv, Civ). The reason for

the latter finding is unclear, but it was strongly driven by a single rat robustly responding at baseline

(15 inactive lever presses), but not after UK-78,282 treatment (one inactive lever press). Exclusion of

this animal did not meaningfully affect highS breakpoint values, number of active lever presses, or

pellets earned. Overall, these data show that an antagonist of Kv1.4 channels elevates willingness to

exert effort for reward selectively in rats displaying lower motivation.

Discussion
Our results show that a lower baseline motivation to expend effort for naturally reinforcing stimuli is

linked to altered kinetics of a voltage-gated potassium channel, Kv1.4, in the NAc shell. Faster Kv1.4

inactivation accelerates action potential output of NAc SPNs, despite an apparent lack of changes in

the number of functional Kv1.4 channels. Suppression of Kv1.4 activity by UK-78,282 selectively

Figure 4 continued

difference in IBK current-voltage relationship between lowS and highS animals (n = 7, N = 4/group). (F) Top, representative traces of total K+ current

blocked by combination of 4-AP and TEA. Bottom, there is no difference in current-voltage relationship for total K+ current amplitude between lowS

and highS animals (n = 7, N = 4/group).

DOI: https://doi.org/10.7554/eLife.47870.007

The following figure supplements are available for figure 4:

Figure supplement 1. Membrane excitability measures do not differ between lowS and highS groups.

DOI: https://doi.org/10.7554/eLife.47870.008

Figure supplement 2. Spike output and K+ currents in midS animals align closely with the highS group.

DOI: https://doi.org/10.7554/eLife.47870.009
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Figure 5. NAc neurons from lowS animals are uniquely sensitive to Kv1.4 antagonist, UK-78,282. (A) Action potential frequency was measured after

application of UK-78,282 (100 nM) and expressed as percent change from frequency before UK-78,282 in the same cell (n = 7, N = 4/group). UK-72,282

suppresses firing in the lowS group to levels significantly different from baseline (Main drug effect: F(1,6) = 3.7, p=0.024, two-way RM ANOVA). In the

highS group, firing after UK-72,282 application is not significantly different from baseline (Main drug effect: F(1,6) = 0.99, p=0.36, two-way RM ANOVA).

(B) Firing frequency-current relationship highlights decreased action potential output in the lowS group after UK-78,282 application (*, p<0.05, two-way

RM ANOVA). (C) UK-78,282 did not have an effect on AHP area in neurons from either the lowS or the highS groups. (D) Top, Representative traces of

Figure 5 continued on next page
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decreases SPN spiking and facilitates motivated behavior in subjects with a lower baseline motiva-

tion for reward.

Selective effect of UK-78,282 on lowS Kv1.4
The lowS, but not the highS, phenotype that we describe was sensitive to the microinfusion of 100

nM concentration of UK-78,282 into the NAc. At this concentration, UK-78,282 is expected to be

highly specific for Kv1.4. The target with the next nearest affinity, Kv1.3 channel, is blocked by UK-

78,282 with an IC50 of 280 nM (Hanson et al., 1999) and is not expressed in the striatum (Kues and

Wunder, 1992). We were initially puzzled by the discordant electrophysiological findings with UK-

78,282. The compound selectively suppressed action potential firing in the lowS group, but was

equally efficacious at blocking the peak of A-type currents in both lowS and highS animals. Our

observation that faster inactivation of A-type currents is also uniquely sensitive to UK-78,282 in the

lowS group provided clues as to the potential mechanisms involved. For example, inactivation of

Kv1.4 is regulated by phosphorylation via the calcium/calmodulin-dependent kinase II (CaMKII) that

prolongs inactivation time course (Roeper et al., 1997). We detected no significant differences in

expression of any of the four major CaMKII isoform genes (Camk2a, Camk2b, Camk2d, and Camk2g)

in the RNA sequencing data. However, a number of reports indicate that D2 dopamine receptors

stimulate CaMKII activity (Takeuchi et al., 2002; Shioda and Fukunaga, 2017). If this mechanism

were to be involved, then decreased D2 receptor stimulation would lead to decreased CaMKII activ-

ity and faster A-type current inactivation. Further, activity of CaMKII is sensitive to the inhibitor pro-

teins encoded by the Camk2n1 and Camk2n2 genes. Increased expression of these genes in the

lowS animals would promote faster inactivation. Consistent with this, our sequencing data show sig-

nificant downregulation of Drd2 and upregulation of Camk2n2 (but not Camk2n1), transcripts in the

lowS, relative to the highS, NAc tissue (Figure 3A, Figure 3—source data 1).

Differential assembly of the Kv1 channel tetramer may also play a role in regulating KV1.4 signal-

ing. For example, hetero-tetrameric assembly of Kv1.4 with the delayed rectifier subunits, Kv1.1 or

Kv1.2, leads to slower inactivation relative to the Kv1.4 homomer (Po et al., 1993). Kv1.1 and Kv1.2,

encoded by Kcna1 and Kcna2 genes, are both expressed in the rat striatum, albeit at lower levels

than Kv1.4 (62). Neither Kcna1 nor Kcna2 were differentially expressed in the lowS vs highS sequenc-

ing data. However, expression of the regulatory subunit Kvb1 (Kcnab1 gene) that promotes cell sur-

face expression of Kv1.x heterotetrameric complexes (Manganas and Trimmer, 2000) was markedly

lower in the NAc of lowS animals. Lower expression of Kvb1 is expected to decrease availability of

Kv1.x hetero-tetramers and contribute to faster Kv1.4 channel inactivation reported here.

Both behavioral and electrophysiological effects of UK-78,282 in midS animals were aligned

closely with effects observed in the highS group. It is intriguing that with regard to possible regula-

tors of Kv1.4 function discussed above, RNA sequencing data from midS animals indicated signifi-

cantly lower levels of Kcna1 and Kcnab2 transcripts expected to lead to faster inactivation, but

decreased Camk2n1 (no change in Camk2n2) levels expected to lead to slower inactivation (Fig-

ure 3—source data 1). Electrophysiological data indicated that IA decay time in midS animals at

baseline was intermediate to that of lowS and highS groups (Figure 4—figure supplement 2C),

however midS animals were insensitive to UK-78,282 at both the IA kinetics and behavioral levels.

Figure 5 continued

IA before and after UK-78,282 (100 nM) application in lowS (left, n = 13, N = 6) and highS (right, n = 14, N = 6) animals. Bottom, Current-voltage

relationships indicate suppression of IA current amplitude by UK-78,282 in both groups (**, p<0.01, two-way RM ANOVA). (E) Left, representative IA
traces before (baseline) and during UK-78,282 are amplitude-scaled and overlaid to highlight UK-78,282 effect on inactivation kinetics. Right, UK-78,282

increases IA inactivation time constant (t) in lowS (top, n = 18, N = 6), but not highS (bottom, n = 16, N = 6), group. **, p<0.01, paired Student’s t-test;

ns, not significant. The highS data excludes two cells where UK-78,282 increased decay times to anomalous levels (cell 1: from 20.1 ms to 34 ms; cell 2:

from 17.4 ms to 49.8 ms). Including these two cells in the analysis did not change statistical interpretation (p=0.23, paired Student’s t-test).

DOI: https://doi.org/10.7554/eLife.47870.010

The following figure supplements are available for figure 5:

Figure supplement 1. UK-78,282 effects on membrane excitability measures.

DOI: https://doi.org/10.7554/eLife.47870.011

Figure supplement 2. UK-78,282 effects on spike output, AHP, and potassium channel currents.

DOI: https://doi.org/10.7554/eLife.47870.012
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Figure 6. Selective effect of Kv1.4 antagonism on PR performance in lowS animals. (A) In lowS animals (N = 6), microinjection of UK-78,282 into the NAc

shell dose-dependently increased: i) breakpoints, ii) active lever presses and iii) pellets earned, but not iv) inactive lever presses. (B) In midS animals

(N = 7) neither 1 nM nor 100 nM concentration of UK-78,282 had an effect on i) breakpoints, ii) active lever presses, iii) pellets earned or iv) inactive lever

presses following 100 nM UK-78,282 microinjection. (C) In highS animals (N = 6) neither 1 nM nor 100 nM concentration of UK-78,282 had an effect on i)

Figure 6 continued on next page
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These findings highlight remarkable flexibility and multiple redundancies that can impact activity of a

single channel with possible behavioral consequences. Other possibilities for regulation of Kv1.4

inactivation include interactions with intracellular heme, intracellular pH, protein phosphatases, and

membrane lipids (Roeper et al., 1997; Sahoo et al., 2013; Padanilam et al., 2002; Oliver et al.,

2004). Direct examination of each of these mechanisms is outside the scope of this work. We can

conclude, however, that unique sensitivity of lowS NAc neurons to UK-78,282 is likely conferred by

differential interaction of Kv1.4 channels with binding partners or phosphorylation mechanisms rather

than functional availability of Kv1.4 channels on the cell surface.

Kv1.4 regulation of neuron firing
Application of UK-78,282 suppressed peak IA amplitude in both lowS and highS animals (Figure 5D).

However, there was a difference in voltage-dependence of the enhancement. In the lowS animals,

our results indicate equal availability of Kv1.4 across potentials, including in the zone subthreshold to

action potential firing. In the highS animals, Kv1.4 availability is greater at suprathreshold potentials.

It is not clear what contributes to this difference. The voltage-dependence of activation kinetics of

Kv1 family members has been shown to shift in the depolarizing direction by assembly with Kv1.2

subunit (Baronas et al., 2015). Moreover, Kv1.2 has been shown to enhance activation of Kv1.4/1.2

heterotetramers following depolarizing pre-pulses, a phenomenon termed use-dependent activation

(Baronas et al., 2015). Such use-dependence may play a role in suppressing action potentials during

spike trains and contribute to lower action potential spike frequency observed in highS animals.

Slower inactivation of IA in highS animals, discussed above, will also tend to suppress action poten-

tial output.

The effect of constitutive Kv1.4 deletion on action potentials has been examined in two previous

studies. The first one of these found that cortical pyramidal neurons of Kv1.4
-/- mice have shorter

action potential width, but similar resting membrane potential, input resistance and rheobase rela-

tive to wild-type controls (Carrasquillo et al., 2012). Blockade of Kv4 channels in this study, how-

ever, unmasked differences across a broader range of membrane properties, indicating involvement

of Kv4-mediated compensatory mechanisms. The second report, found increased firing of supra-

chiasmatic nucleus neurons using the same line of knock-out mice, but did not evaluate other meas-

ures of membrane excitability (Granados-Fuentes et al., 2012). In a study of NAc neurons,

suppression of A-type currents by dopamine was also linked to increased firing, although contribu-

tion of Kv1.4 to these currents was not specifically examined (Hopf et al., 2003). Increased action

potential frequency in Kv1.4
-/- mice is consistent with our recordings from SPNs of the NAc in lowS

animals, given the RNA sequencing data that indicates decreased levels of Kcna4 transcript in this

group. However, we find no differences in action potential width between lowS (1 ± 0.04 ms) and

highS (0.99 ± 0.07 ms) groups. Indeed, we observe that lowS and highS groups are similar across a

broad spectrum of action potential and intrinsic excitability measures both in the absence and in the

presence of UK-78,282 (Figure 4—figure supplement 1, Figure 5—figure supplement 1). Taken

together, these observations argue for brain-region specific impact of Kv1.4 on neuronal output that

is additionally guided by interactions with other channels or modulatory mechanisms.

Spike frequency and motivation for reward
The relationship between NAc spiking and reward seeking has been a subject of intense interest for

decades. There is general support from behavioral pharmacology studies that inhibition of NAc shell

promotes seeking of natural reward (Basso and Kelley, 1999; Reynolds and Berridge, 2001;

Kelley and Swanson, 1997). There are also strong indications that NAc firing may be modulated by

Figure 6 continued

breakpoints, ii) active lever presses, or iii) pellets earned. There was a significant reduction in iv) inactive lever presses following 100 nM UK-78,282

microinjection. **, p<0.01, one-way ANOVAs.

DOI: https://doi.org/10.7554/eLife.47870.013

The following figure supplement is available for figure 6:

Figure supplement 1. Histological verification of placements for UK-78,282 microinjection experiments.

DOI: https://doi.org/10.7554/eLife.47870.014
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reward-associated cues. For example, reward consumption has been shown to inhibit firing of NAc

shell neurons in vivo, but only in the presence of cues predicting reward, whereas sustained increase

in NAc firing has been proposed to inhibit operant responding for natural reward (Nicola et al.,

2004a). Multiple other behavioral cues regulate NAc firing in vivo, including timing of reward deliv-

ery, magnitude of reward, and reward identity (Nicola et al., 2004a; Nicola et al., 2004b;

Taha et al., 2007; Krause et al., 2010). Our data are unique in that we report SPNs from animals

less motivated to pursue reward to be biased toward higher firing in the slice, in the absence of

external behavioral cues.

An obvious suspect for differences in spike output in our lowS and highS datasets is relative abun-

dance of D1-expresing and D2-expressing neurons. D1- and D2-expressing SPNs display distinct

electrophysiological properties with D2 neurons showing greater excitability and lower threshold for

action potential firing than D1 neurons (Cepeda et al., 2008; Gertler et al., 2008; Ade et al.,

2008). Meanwhile, behavioral data provides mixed clues with some evidence supporting D1 SPNs as

mediators of positive aspects of reward, and D2 SPNs as mediators of behavioral aversion

(Kravitz et al., 2012; Hikida et al., 2010), while others report that signaling at both D1 and D2

SPNs enhances motivation for natural rewards (Soares-Cunha et al., 2016). Relative contribution of

D1- and D2- SPNs to our data is not known and we have not directly addressed this question. How-

ever, several considerations argue against biased sampling, including random selection of SPNs

from the pool of visually identified neurons and similar input resistance and rheobase values, hall-

marks of D1 or D2 identity (Gertler et al., 2008; Janssen et al., 2009), between groups. RNA

sequencing results indicated reduced expression of both D1 dopamine receptor and D2 dopamine

receptor encoding genes in lowS relative to highS animals, rather than a selective reduction of one

receptor population. If maintained at the protein level, this reduction highlights additional possibili-

ties for regulation of neuronal output as a function of effort-based motivation.

Effort-based motivation for natural reward is unlikely to depend on a uniformly sustained increase

or decrease in firing across all NAc shell SPNs. During a progressive ratio task for a cocaine rein-

forcer, a transient increase in NAc firing in vivo has been proposed to serve as a behavioral break-

point signal, potentially driven by cocaine-induced increases in dopamine levels (Nicola and

Deadwyler, 2000). However, behavioral output during progressive ratio for cocaine involved some

neurons that are excited and others that are inhibited throughout the different phases of a behav-

ioral task (Nicola and Deadwyler, 2000). Indeed, responses combining both excitation and inhibi-

tion have been observed in the NAc across many reward-seeking behaviors examined with in vivo

electrophysiology. It is possible that such dynamic responses are guided by interactions with a dis-

tinct pattern of inputs to or outputs from the NAc and our experiments do not address this contin-

gency. Our data do support the idea that any behavior encoded by NAc shell output will be biased

by greater intrinsic likelihood of generating such output by SPNs in lowS, relative to highS, animals.

Conclusions
In summary, we describe a set of neuronal and genetic features associated with motivation to exert

effort for natural reward. Lower motivation is linked to a divergent transcriptome profile, and

increased SPN output in the NAc shell. Increased SPN output depends on faster inactivation kinetics

of Kv1.4 and blockade of Kv1.4 activity selectively increases effort for natural reward in animals dis-

playing low motivation. These results point to modulators of Kv1.4 gating as potential targets in a

broad spectrum of psychiatric disorders associated with deficits in motivation.

Materials and methods

Subjects
Male Sprague-Dawley rats (Rattus norvegicus), weighing between 250–300 grams (Taconic Laborato-

ries, Germantown, NY, USA) were individually housed in a colony room, rats were food restricted (20

g normal chow per day) with ad libitum water access and were maintained on a 12 hr/12 hr light/

dark cycle, with lights on at 0700 hr. All experimental procedures were followed in accordance with

the University of South Carolina School of Medicine and University of Kentucky Institutional Animal

Care and Use Committees.
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Sucrose self-administration
Self-administration experiments were conducted in ventilated, sound attenuating operant chambers,

equipped with a house light, active and inactive response levers, a pellet dispenser and a food

receptacle (Med-Associates Inc, East Fairfield, VT, USA). During the experiment, rats had ad libitum

access to water and were fed 20 g of normal chow per day after the operant session. All subjects

were trained daily on a fixed-ratio one (FR1) schedule of reinforcement, in which each active lever

press delivered a single 45 mg sucrose pellet. Presses on the inactive lever had no programmed con-

sequences. Each sucrose pellet was followed by a 20 s timeout period during which house light went

off and lever responses had no scheduled consequences. Once stable responding was achieved

under the FR1 schedule, the rats progressed to the FR3 schedule (three active lever presses for one

sucrose pellet) and then to FR10 (ten active lever presses for one sucrose pellet). Once stable under

the FR10 schedule, subjects were placed on a progressive ratio (PR) schedule of reinforcement dur-

ing which successive reinforcements could be earned according to an increasing number of lever-

presses based on the formula: [5e(pellet # * 0.2)] – 5 (Richardson and Roberts, 1996). The session

ended when rats failed to reach the next lever-press criterion within 1 hr. The final ratio achieved

was recorded as the ‘breakpoint’ value. Rats were run on the PR schedule until stable responding

was achieved. Stable responding under both FR and PR schedules was defined as <10% variability in

active lever responses over three consecutive daily sessions.

Tissue collection
Tissues were harvested from animals 24 hr after the final behavioral session. Trunk blood and tissue

punches from the NAc shell region were collected. Punches were flash frozen on dry ice and plasma

was separated from trunk blood after centrifugation (3200 rpm) at 4˚C. Tissue and plasma were

stored at �80˚C.

Plasma corticosterone analysis
Plasma corticosterone was measured using a corticosterone ELISA kit (Enzo Life Sciences, Farming-

dale, NY). Plasma was diluted 1:40 and run according to manufacturer’s protocol. Plates were read

using a Synergy 2 Multi-Mode plate reader (Bio Tek, Winooski, VT) with Gen5 software (Bio Tek,

Winooski, VT).

RNA sequencing
Total RNA was extracted using TRIzol (Life Technologies) and a RNeasy Mini Kit (Qiagen) according

to manufacturer’s instructions. Samples were homogenized and incubated in TRIzol for 5 min before

addition of chloroform and vigorous shaking for 30 s. Following a 3 min incubation, samples were

centrifuged at 4˚C for 10 min at maximum speed (�10,000 rpm). The aqueous phase was aspirated

and transferred to a microcentrifuge tube before addition of 70% EtOH, centrifugation at �10,000

rpm for 15 s, and collection of the precipitate from the RNeasy mini column. This step was repeated

after adding 700 mL Buffer RW1 and, next, 500 mL Buffer RPE to the mini column. Another 500 mL of

Buffer RPE was centrifuged for 2 min before the sample/mini column underwent a 2 min ‘dry’ spin

and transferred to the final collection tube. Last, 30 mL DEPC water was used to elute the sample.

RNA samples were quantified using NanoDrop Spectrophotometer ND-2000 (Nanodrop Technolo-

gies) and checked for quality and degradation by Agilent 2100 Bioanalyzer. All samples were of high

quality (RNA integrity numbers between 9.9 and 10). Strand-specific mRNA libraries were prepared

using the TruSeq Stranded mRNA Library Prep Kit (Set B, Illumina Inc) and sequenced on the Illumina

NextSeq500 in a paired-end mode with read length of 2 � 75 bp.

Sequencing data preprocessing and analyses
To ensure there were no sequencing errors, raw sequences were checked for quality using FastQC,

and then aligned to the rat genome (downloaded from iGenomes, Illumina) using the STAR aligner

program (Dobin et al., 2013). Aligned SAM files from STAR were converted to BAM files using

SAMtools (Li et al., 2009). BAM files were processed for read summarization using featureCounts

(Liao et al., 2014), and the resulting read counts were preprocessed by filtering out low read counts

(read counts < 5) in R software. Processed data were then analyzed for differential expression using

DESeq2 (Love et al., 2014) in R software. False discovery rate (FDR < 0.05) was used to determine
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the threshold of p- value for the analysis. Functional annotation/gene ontology analyses for biologi-

cal function were conducted using the Reactome classification system (https://reactome.org/)

accessed in February-March, 2018. Reactome is an open-source, curated database of biological

pathways and processes (Fabregat et al., 2018; Milacic et al., 2012).

Electrophysiology
Rats were decapitated following isoflurane anesthesia 24 hr after the last behavioral session. Brains

were rapidly removed and coronal slices (300 mm-thick) containing the NAc were cut using a Vibra-

tome (VT1200S; Leica Microsystems) in an ice-cold aCSF solution in which NaCl was replaced with

an equiosmolar concentration of sucrose. ACSF contained the following (in mM): 130 NaCl, 3 KCl,

1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 1 MgCl2, and 2 CaCl2; pH 7.2–7.4, when saturated with

95% O2 and 5% CO2. Slices were incubated in aCSF at 32–34˚C for 45 min and kept at 22–25˚C

thereafter, until transfer to the recording chamber. All solutions had osmolarity between 305 and

315 mOsm. Slices were viewed under an upright microscope (Olympus BX51WI) with infrared differ-

ential interference contrast optics and a 40 � water immersion objective. For recordings, the cham-

ber was continuously perfused at a rate of 1–2 ml/min with oxygenated aCSF heated to 32 ± 1˚C

using an automated temperature controller (Warner Instruments). Recording pipettes were pulled

from borosilicate glass capillaries (World Precision Instruments) to a resistance of 4–7 MW when filled

with the intracellular solution. The intracellular solution contained the following (in mM): 145 potas-

sium gluconate, 2 MgCl2, 2.5 KCl, 2.5 NaCl, 0.1 BAPTA, 10 HEPES, 2 Mg-ATP, and 0.5 GTP-Tris; pH

7.2–7.3, with KOH; osmolarity 280–290 mOsm.

NAc shell SPNs were identified by their morphology and low resting membrane potential (RMP,

�70 to �85 mV) and voltage-clamped at �70 mV. Current step protocols (from �500 to +500 pA;

20 pA increments; 500 ms step duration) were run to determine action potential frequency versus

current (f-I) relationships. K+ currents were recorded in voltage-clamp mode with 1 mM QX-314

added to the intracellular solution. Following seal rupture, series resistance was compensated (65–

75%). Outward currents were evoked by incrementing holding voltage from �90 mV to +40 mV in

10 mV steps. This protocol was then repeated with a 100 ms pre-step to a depolarized potential

(�40 mV) at which IA currents are inactivated. Currents recorded after the �40 mV pre-step were

subtracted from those recorded without the pre-step in the same cell, yielding IA that was measured

at the peak of subtracted current. BK currents were measured at steady-state after subtracting mem-

brane current responses in the presence of BK channel antagonist, paxilline (10 mM), from responses

recorded in the absence of paxilline in the same cell. Total K+ currents were defined as those sensi-

tive to combined application of 4-AP (0.5 mM) and TEA (10 mM) as previously described (Ji and

Martin, 2014) and measured at steady-state. Drugs were applied via the Y-tube perfusion system

modified for optimal solution exchange in brain slices (Hevers and Lüddens, 2002). All data were

collected after a minimum of 2 min of drug exposure. Currents were low-pass filtered at 2 kHz and

digitized at 20 kHz using a Digidata 1440A acquisition board (Molecular Devices) and pClamp10

software (Molecular Devices). Access resistance (10–30 MW) was monitored during recordings by

injection of 10 mV hyperpolarizing pulses; data were discarded if access resistance changed >25%

over the course of data collection. All analyses were completed using Clampfit 10 (Molecular

Devices).

In vivo microinjections
A subset of rats was implanted with guide cannulas targeting the NAc shell prior to training on a PR

schedule of reinforcement. Following isoflurane anesthesia (2–5% isoflurane in O2) animals were

placed in a stereotaxic instrument (Kopf Instruments, Tujunga, CA, USA), and guide cannulas target-

ing the NAc shell were positioned using the following stereotaxic coordinates (in mm from bregma):

+1 AP, ± 1 ML, �5 DV. Guide cannulas were fixed to the skull with dental acrylic and stainless-steel

obturators were placed inside the cannulas to prevent occlusions. Following a 7 day recovery period,

animals proceeded to PR training and once stable PR responding was achieved, they underwent two

microinjection sessions. During the first session, animals received a bilateral infusion of either UK-

78,282 (1 nM) or UK-78,282 (100 nM) into the NAc shell through microinjectors extending 2 mm

below tips of the guide cannulas. Microinfusions were at 0.5 ml/side over 2 min plus one minute of

passive diffusion away from cannula tips. The criterion performance on the PR schedule was then re-
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established over consecutive daily sessions. After that, the animals underwent a second test session

during which they received microinjection of a different UK-78,282 concentration. Microinjections of

the two UK-78,282 concentrations were counterbalanced between animals and no animal received

more than two microinjections. Cannula placements were confirmed histologically by cresyl violet

staining (Figure 6—figure supplement 1).

Statistics
Statistical analyses were performed with Excel 2016 (Microsoft) or GraphPad Prism 6 (GraphPad soft-

ware). For behavioral and electrophysiological experiments, Students t-tests, one-way ANOVAs, or

two-way repeated measures ANOVAs followed by Bonferroni post hoc tests were performed as indi-

cated in the text. Sample sizes were determined using G power 3.1.9.4 (effect size = 0.5,

alpha = 0.05, power = 0.8). Throughout the manuscript, cell numbers are designated ‘n’, while ani-

mal numbers are designated ‘N’. Data were reported as mean ± standard error of the mean and sta-

tistical significance thresholds were set at p<0.05.
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