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abstract

PURPOSE A large number of targeted treatment options for stage IV nonsquamous non–small-cell lung cancer
with specific genetic aberrations in tumor DNA is available. It is therefore important to optimize diagnostic testing
strategies, such that patients receive adequate personalized treatment that improves survival and quality of life.
The aim of this study is to assess the efficacy (including diagnostic costs, turnaround time (TAT), unsuccessful
tests, percentages of correct findings, therapeutic costs, and therapeutic effectiveness) of parallel next gen-
eration sequencing (NGS)–based versus sequential single-gene–based testing strategies routinely used in
patients with metastasized non–small-cell lung cancer in the Netherlands.

METHODS A diagnostic microsimulation model was developed to simulate 100,000 patients with prevalence of
genetic aberrations, extracted from real-world data from the Dutch Pathology Registry. These simulated patients
weremodeled to undergo different testing strategies composed of multiple tests with different test characteristics
including single-gene and panel tests, test accuracy, the probability of an unsuccessful test, and TAT. Diagnostic
outcomes were linked to a previously developed treatment model, to predict average long-term survival, quality-
adjusted life-years (QALYs), costs, and cost-effectiveness of parallel versus sequential testing.

RESULTS NGS-based parallel testing for all actionable genetic aberrations is on average V266 cheaper than
single-gene–based sequential testing, and detects additional relevant targetable genetic aberrations in 20.5% of
the cases, given a TAT of maximally 2 weeks. Therapeutic costs increased by V8,358, and 0.12 QALYs were
gained, leading to an incremental cost-effectiveness ratio of V69,614/QALY for parallel versus sequential
testing.

CONCLUSIONNGS-based parallel testing is diagnostically superior over single-gene–based sequential testing, as
it is cheaper and more effective than sequential testing. Parallel testing remains cost-effective with an in-
cremental cost-effectiveness ratio of 69,614 V/QALY upon inclusion of therapeutic costs and long-term
outcomes.
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INTRODUCTION

Non–small-cell lung cancer (NSCLC) has the highest
mortality of all types of cancers in the Netherlands. In
49% of patients, NSCLC is detected when it has al-
ready metastasized (stage IV), which has a 1 year
survival rate of 31% in 2018 in the Netherlands.1

However, this outcome may be improved as new
genetic-aberration–tailored therapy options become
available, mostly for nonsquamous NSCLC.

Only specific subgroups of patients who exhibit spe-
cific genetic aberrations benefit from these person-
alized therapies. The Dutch guidelines recommend

testing for 12 predictive markers to select patients who
are eligible for personalized therapies.2 Genetic ab-
errations can be detected with different types of tests,
which may come with different sensitivity, specificity,
turnaround time (TAT), costs, as well as the number of
targets assessed in a single assay.

These different tests can be performed either in par-
allel to reduce TAT, or sequentially to reduce diag-
nostic costs. However, the effect of parallel and
sequential test strategies on outcomes including costs,
TAT, unsuccessful tests, and treatment recommen-
dations is unclear, as it depends on many factors. With
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respect to TAT, guidelines recommend that test results
should be available within 2 weeks.3

In the Netherlands, a variety of predictive molecular testing
strategies for patients with nonsquamous NSCLC are being
used in daily clinical practice.4 To optimize diagnostics testing,
several cost-effectiveness studies have compared next-
generation sequencing (NGS) DNA panels to a combination
of single-gene tests, or to standard of care.5-8 These studies
found NGS strategies to detect a higher number of genetic
aberrations, but differed in conclusions regarding diagnostic
costs. None of these studies specified the timing and order of
single-gene tests performed, although this may vary in clinical
practice and affect both accuracy and TAT of a testing
strategy. Therefore, effect of the timing and order of strategies
requires investigation aiming to improve testing guidelines.

In the current study, a diagnostic microsimulation model
was developed to compare the cost-effectiveness of a
parallel (ie, DNA- and RNA-based NGS) versus a se-
quential (ie, single-gene tests followed by NGS-based ap-
proaches) predictive testing strategy assuming that all
patients with advanced NSCLC are tested until they are
either positive for one marker, or negative for all 12 pre-
dictive markers. The testing strategies combine a number
of molecular diagnostic tests, where each test has its own
specific test characteristics. We first investigated the av-
erage diagnostic costs and the percentage of patients with a
correct test result received within 2 weeks after initiation of
a test strategy. Second, the diagnostic model was linked to
a Dutch treatment model,9 to provide output on total
medical costs and quality-adjusted life-years (QALYs) lived
when patients in the cohort are treated according to the
recommended treatments for each diagnostic strategy.

METHODS

General Approach

To study the cost-effectiveness of diagnostic testing strat-
egies in stage IV nonsquamous NSCLC, a diagnostic model
was developed and coupled to the output of a Dutch

treatment model9 that predicts life-years lived (LY), QALYs,
and costs for each currently used NSCLC drug treatment in
the appropriate patient subgroups. The frequencies of
detected genetic aberrations in the simulated cohort were
determined in the diagnostic model. When combined, the
models can estimate the impact of a diagnostic strategy on
long-term patient outcomes by calculating the average
treatment costs, overall survival, and QALYs for a mixture of
patients with a diversity of molecular diagnoses.

Diagnostic Model

The diagnostic model is a microsimulation model, which
simulates a cohort of 100,000 individual patients as they
undergo a series of tests that are performed in parallel
or sequentially, with each test specified according to its
sensitivity, specificity, probability of unsuccessful testing,
costs, and TAT. In themodel, patients are defined by the true
mutational status of the tumor and programmed death
ligand-1 (PD-L1) status. For each simulated patient,
the model subsequently determines the total testing costs,
the molecular test status (eg, EGFR mutation-positive),
and the testing status (which can take one of the values true
positive, false positive, true negative, false negative, and
unsuccessful tests; including sample depletion, insufficient
quality of the sample, and test failure), and maximum TAT
(TATmax) exceeded (patients in whom the diagnostic test
strategy failed to deliver a test result within the acceptable
time frame according to medical guidelines, ie, 2
weeks).3,10-12

Simulated patients only received one test status. False-
negative results could be overwritten by all other statuses,
because it does not terminate sequential testing strategies.
TATmax is determined after all tests are completed and
overwrites other test statuses.

Individual patient outcomes were pooled per diagnostic
strategy to determine the average diagnostic costs, the
frequency distribution of molecular diagnoses, and the
frequencies of each testing status occurring. The %correct
treatment was subsequently calculated as the combination
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of the proportion of true positives and the proportion of
patients without genetic aberration who also receive correct
treatment on the basis of PD-L1 expression.

Broad Overview of the Treatment Model

The NSCLC treatment model was developed by Mfumbilwa
et al9 (Data Supplement), which allowed investigating the
cost-effectiveness of different test and treatment combi-
nations in patients with NSCLC in a real-world setting. The
allocated therapy for each molecular subgroup was based
on current clinical practice, as described in the Dutch
guidelines2 and discussed with clinical experts. Predicted
average LYs, QALYs, and total therapeutic costs for each
molecular subgroup were obtained (Data Supplement) and
linked to the outcomes of the diagnostic model, to calculate
average LYs, QALYs, and total costs of the total simulated
NSCLC cohort.

For individuals in the diagnostic model with false-positive
mutation tests, it is assumed that the incorrect treatment
recommendation led to LYs and QALYs equal to what would
be achieved under the best supportive care. Patients with
unsuccessful tests and patients for whom TATmax was
exceeded were assumed to be treated according to their
PD-L1 status, or with chemotherapy/immunotherapy (ie,
pembrolizumab and cisplatin) if their PD-L1 status
remained unknown.

Genetic Aberrations and PD-L1 Expression

Therapeutically relevant genetic aberrations defined in the
Dutch Oncology guideline2 were included in the diagnostic
model. These genetic aberrations include common path-
ogenic mutations in EGFR classic (exon 19 deletions,
p.L858R), other EGFR mutations (eg, p.L861Q, exon 20
insertions), KRAS p.G12C, other KRAS mutations, BRAF
p.V600X, ERBB2 mutations (in exon 8, 19, 20), MET
aberrations (ie, amplification and exon 14 skipping), and
gene fusions including ALK, ROS1, RET, or NTRK1/2/3.
Additionally, PD-L1 expression was included. Table 1
shows the frequencies of genetic aberrations in the
model as obtained from patients with nonsquamous NSCLC
in a Dutch real-world data study that underwent NGS panel
testing (N = 3,616).4 Briefly, mutation frequencies and
presence of ALK/ROS1/RET fusions were extracted from
molecular pathology reports obtained from the nationwide
network and registry of histology and cytopathology (Dutch
Pathology Registry [PALGA]). These pathology reports were
collected in selected time intervals between October 2017
and April 2019.4,16 NTRK1,2,3 frequencies were deduced
from pathology reports collected from PALGA between
2017 and 2020.13 In the model, all genetic aberrations are
assumed to be mutually exclusive.17,18 PD-L1 expression
was deduced from pathology reports obtained from PALGA
between July 2017 and December 2018.14

Diagnostic Testing Strategies

The sequential and parallel testing strategies are defined
on the basis of testing patterns commonly observed in
Dutch clinical practice (Fig 1). The sequential testing
strategy starts with testing for the most common mu-
tation types in EGFR and KRAS, using two Idylla assays,
which is a relatively cheap single-gene test with a short
TAT (Table 2). Second, protein expression of ALK,
ROS1, and NTRK1,2,3 is analyzed using immunohis-
tochemistry (IHC). IHC positivity requires confirmation
with fluorescence in situ hybridization (FISH) because of
the high false-positive rates of these IHC tests. In the
absence of gene fusions, the presence of remaining
mutations is examined using a targeted DNA NGS panel.
Finally, RET fusions are studied with FISH, and a pos-
itive test result is confirmed with a RNA sequencing
panel. At each step, testing is only continued in the
absence of molecular aberrations in one of the target
genes, or when a confirmation test is required. PD-L1
expression is separately tested.

In the parallel testing strategy, the most common genetic
aberrations are tested simultaneously with targeted DNA
([hotspot regions of] about 50 genes as described in
Pasmans et al19) and RNA NGS panels (Archer FusionPlex
Lung Panel), and IHC for PD-L1 expression.

TABLE 1. Prevalence of Genetic Aberrations
Genetic Aberrations Prevalence (%) 95% CI Source

KRAS other mutations 25.8 24.5 to 27.0 4

KRAS p.G12C 18.7 17.6 to 19.9 4

EGFR classic
(exon 19, p.L858R)

12.8 11.8 to 13.7 4

BRAF (p.V600E) 6.6 5.9 to 7.4 4

MET (amplification/exon
14 skipping)

3.8 3.3 to 4.4 4

EGFR other mutations
(p.L861, exon 20
insertions)

3.0 2.6 to 3.5 4

ALK fusion 2.9 2.5 to 3.4 4

ERBB2 mutations 2.0 1.6 to 2.4 4

RET fusion 1.4 1.1 to 1.8 4

ROS1 fusion 1.2 0.9 to 1.5 4

NTRK(1,2,3) fusion 0.1 0.1 to 0.3 13

PD-L1 . 50%a 30.9 28.9 to 32.9 14,15

PD-L1 1%-49%a 24.1 22.3 to 26.0 14,15

NOTE. The prevalence of genetic aberrations is the prevalence
estimated for stage IV nonsquamous non–small-cell lung cancer in the
Netherlands.
Abbreviation: PD-L1, programmed death ligand-1.
aPD-L1 expression frequencies were adjusted for false-positive tests

and false-negative tests using a cross-table, and the sensitivity and
specificity of immunohistochemistry.15
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Model Parameters

Allmodel parameters are shown in Tables 1 and2and theData
Supplement. A detailed description of the sources, estimation
methods, and assumptions that were used to determine these
parameters can be found in the Data Supplement.

Additional Analyses

Three additional analyses investigated how the conclusions
of the model were affected by modeling choices made.
First, simulations were performed to observe the impact of
using alternative, mixed, diagnostic testing strategies (Data
Supplement) in combination with the effect of a different
TATmax. Second, the impact of including treatment for
KRAS p.G12C and RET fusions was investigated. Finally, a
one-way sensitivity analysis was performed, to assess the

impact of parameter uncertainty on the difference in %
correct treatment between sequential and parallel testing. A
more extensive description of the additional analyses can
be found in the Data Supplement.

RESULTS

Diagnostic Efficacy of Parallel Versus Sequential Testing

In the sequential strategy, 32.5% of the patients exceed the
TATmax and consequently did not receive a test result in
time (Fig 2). Within this group, most patients harbored
genomic aberrations in BRAF, ERBB2, RET, or MET,
meaning that the TATmax is often reached during the third
step of the sequential test strategy (Fig 1). Parallel testing
significantly reduces the variance in TAT (Data Supple-
ment), and only 1.5% of the patients exceed the TATmax.
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FIG 1. Parallel and sequential testing strategies. Sequential testing starts with tests with short turnaround times for the most common genetic ab-
errations, and continues testing for less frequently occurring genetic aberrations and fusion genes depending on positive (+) or negative (–) test results. A
positive IHC of ALK, ROS1, or NTRK1,2,3 needs to be confirmed with FISH. A positive RET FISH is confirmed with RNA sequencing. PD-L1 expression is
tested in a separate independent track. Parallel testing consists of targeted DNA and RNA next-generation sequencing, and IHC testing for PD-L1
simultaneously. FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; PD-L1, programmed death ligand-1.

4 © 2022 by American Society of Clinical Oncology

Wolff et al



Sequential testing has more false-positive test results
(3.3%) than parallel testing (1.4%), since each additional
tests increases the chance of a false-positive result. Like-
wise, the number of unsuccessful tests increases if more
tests are required (sequential 6.9% v parallel 2.7%). The
proportion of unsuccessful tests in the sequential strategy
in our simulations is slightly higher than observed in our
reference cohort4 (5.7%). However, the reference cohort
contains a broad mixture of sequential strategies unlike the
simulated cohort and sample depletion was difficult to
assess in these data, which might explain this difference.

Differences in PD-L1 test outcomes (data not shown) are
insignificant between both strategies because of the same
strategy to determine the PD-L1 status (ie, separate track).

Costs of Parallel Versus Sequential Testing

The difference between the sequential and parallel testing
strategies in average diagnostic costs isV158,making parallel
testing 17% cheaper (Table 3). Sequential testing is cheaper
for 45.5% of patients who have mutations in EGFR and KRAS
and hence only require Idylla testing. However, the additional
costs for IHC and FISH of ALK, ROS1, and NTRK1,2,3 in the
next steps already exceed the average parallel testing costs.

Cost-Effectiveness of Parallel Versus Sequential Testing

The diagnostic model predicts parallel testing to be able to
correctly identify a substantially higher proportion (20.5%)
of therapeutic targets within the TATmax of 2 weeks
(Table 3). The treatment models shows that parallel testing
obtains an additional 0.17 LY and 0.12 additional QALYs
compared with sequential testing. The treatment costs are

V8,357 higher for parallel testing, resulting in an incre-
mental cost-effectiveness ratio (ICER) of V69,614/QALY.

Additional Analyses

Additional analyses were performed to study the effect of
variations in testing strategies, model parameters, and
inclusions of additional targeted therapies. Details can be
found in the Data Supplement. In brief, we examined
whether alternative testing strategies affected the outcomes
of this study (Data Supplement).

Parallel testing remains the best strategy to detect target-
able genetic aberrations, unless the TATmax is 1 week (Data
Supplement). However, all strategies perform poorly if
TATmax is set at 1 week; it is questionable whether such a
TATmax is necessary. TATmax depends on guidelines, which
in turn are determined by both the clinical urgency for
patients and the feasibility for laboratories.

Sequential DNA-based followed by RNA-based NGS analyses
is the best alternative for the parallel testing strategy. With
DNA-based NGS analyses, often, a driver aberration is de-
tected and therefore the sequential strategy leads to an av-
erage cost reduction of 36% (V280) compared with the
parallel testing strategy. However, this alternative strategy leads
to an increase in TAT, and 5.1% of the test results exceeded
the TATmax, unless the TATmax is increased to 4 weeks.

In addition, the effect of new targeted therapies on the
outcomes was evaluated. Parallel NGS-based testing
remained the dominant strategy upon inclusion of targeted
therapies for KRAS p.G12C mutations and RET fusions in
the model (Data Supplement). Including these therapies
resulted in increased survival of patients and an ICER of

TABLE 2. Test Characteristics
Test Sensitivity Specificity TAT (days)a Costs (V) Source

Idylla KRAS 0.81 (0.65 to 0.93) 0.95 (0.87 to 0.99) 3.85 (1.75 to 8.47) 258 4,19,20

Idylla EGFR 0.98 (0.96 to 0.99) 0.96 (0.93 to 0.98) 3.85 (1.75 to 8.47) 318 4,19,21

IHC ALK 0.94 (0.92 to 0.96) 0.95 (0.94 to 0.95) 1.37 (1.29 to 1.46) 102 4,11,19

IHC ROS1 0.93 (0.86 to 0.98) 0.92 (0.90 to 0.94) 1.37 (1.29 to 1.46) 102 4,11,19

IHC NTRK1,2,3 0.88 (0.79 to 0.95) 0.81 (0.77 to 0.85) 1.37 (1.29 to 1.46) 102 4,19,22

IHC PD-L1 0%b 0.99 (0.94 to 0.97) 0.79 (0.74 to 0.84) 1.37 (1.29 to 1.46) 102 4,15,19

IHC PD-L1 50%b 0.96 (0.93 to 0.98) 0.60 (0.53 to 0.67) 1.37 (1.29 to 1.46) 102 4,15,19

FISH RET 0.94 (0.85 to 0.99) 0.71 (0.57 to 0.84) 1.18 (1.09 to 1.28) 134 4,19,23-26

FISH ALK, ROS1, NTRK1,2,3 0.94 (0.85 to 0.99) 0.92 (0.84 to 0.98) 1.18 (1.09 to 1.28) 134 4,19,23-25

DNA sequencing panel 0.95 (0.90 to 0.99) 0.95 (0.90 to 0.99) 8.68 (7.31 to 10.29) 284 4,19,27

RNA sequencing panelc 0.95 (0.90 to 0.99) 0.95 (0.90 to 0.99) 8.68 (7.31 to 10.29) 407 4,19,28

NOTE. Diagnostic costs are fixed in the model and include capital costs, maintenance costs, software costs, and operational costs. The
sensitivity, specificity, and TAT are reported as mean (95% CI).

Abbreviations: FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; PD-L1, programmed death ligand-1; TAT, turnaround
time.

aThe TATs of tests are drawn from a log-normal distribution.
bPD-L1 expression frequencies were adjusted for false-positive tests and false-negative tests using a cross-table, and the sensitivity and

specificity of IHC.15
cNewly estimated using a bottom-up microcosting calculation for Archer FusionPlex Lung Panel, similar to that described by Pasmans et al.28
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V54,985/QALY. The expansion of the lists of therapeutic
options therefore likely increases the beneficial effect of
correctly identifying therapeutic targets, making parallel
testing and usage of DNA and RNA NGS panel tests an
even more attractive choice.

Finally, we performed a sensitivity analysis with regard to
the prevalence of aberrations and sensitivity, specificity,
and TAT of the different tests (Data Supplement). Uncer-
tainty concerning parameter estimates only had a relatively
small effect on the outcomes of the model. Taken together,
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TABLE 3. Cost-Effectiveness Outcomes for the Comparison of the Parallel and the Sequential Testing Strategy and Their Treatments, Including
All Therapeutic Targets That Are Currently Recommended by the Dutch Guidelines

Strategy

Diagnostic Model Treatment Model

Test Costs (V) % Correct Treatment Total Costs (V) LYs QALYs

Sequential 936 69.4 149,158 2.21 1.56

Parallel 778 89.9 157,515 2.39 1.68

Difference –158 20.5 8,357 0.17 0.12

Additional QALYs per % additional correct treatment: 0.0058

ICER: V69,614/QALY

NOTE. Average test costs per patient and the percentage of patients who received correct treatment with targeted therapy or immunotherapy
using a maximum turnaround time of 2 weeks were compared in the diagnostic model. Subsequently, these results were used in the treatment
model, to calculate the average total costs including therapeutic and test costs, and the average LYs and QALYs per patient (see the Data
Supplement for therapy specific input parameters). The difference between the sequential and the parallel testing strategy and the ICER for
parallel versus sequential testing are found in the lower two rows of the table.

Abbreviations: ICER, incremental cost-effectiveness ratio; LY, life-years lived; QALY, quality-adjusted life-year.
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outcomes remained robust to variations in testing strate-
gies, model parameters, and inclusion of additional targets.

DISCUSSION

Large variation exists in predictive molecular testing strate-
gies for patients with nonsquamous NSCLC in daily clinical
practice. Parallel testing (ie, DNA- and RNA-based NGS
panels) assesses all druggable molecular alterations at the
same time, thereby obtaining a relatively low TAT for
assessing all genetic markers relevant for treatment deci-
sions. Alternatively, molecular testing can also be performed
sequentially (ie, single-gene tests followed by NGS-based
approaches), which aims to save costs and obtain a low TAT
for the most abundant genetic aberrations (ie, EGFR and
KRAS). We performed a microsimulation of a cohort of
100,000 patients with stage IV nonsquamous NSCLC and
showed that parallel testing for genetic aberrations is cost-
effective compared with sequential testing with a cost-saving
of V158 (17%) in diagnostic costs, and 20.5% additional
patients receiving appropriate treatment within 2 weeks after
test initiation. These results were robust to variations in
testing strategies, model parameters, and inclusion of ad-
ditional targets (RET fusions and KRAS p.G12C).

The increase in proportion of correct treatments in the
parallel strategy resulted in additional treatment costs of
V8,357, for an increase of 0.12 QALYs compared with
sequential testing, ie, for each percentage point increase in
correct treatments, 0.0058 QALYs were gained. Parallel
testing showed an ICER of V69,614/QALY upon inclusion
of therapeutic costs and survival benefits in the diagnostic
strategy comparison. This is below the Dutch recom-
mended willingness-to-pay threshold of V80,000/QALY,29

and can therefore be considered cost-effective.

Parallel testing strategies outperformed sequential testing in
the current study for two reasons. First, combining two tests
that focus on the same genetic aberration (Idylla and NGS or
IHC and FISH) affects the false-positive and false-negative
rate, resulting in fewer true positives for the sequential testing
strategy. Second, using multiple sequential tests increased
the total TAT for all biomarkers, risk of sample exhaustion,4

and diagnostic costs. Instead, comprehensive DNA and
RNA NGS panels enable simultaneous detection of all
predictive markers and are therefore cheaper when com-
pared with the average sequential strategy.

Our results are in line with other publications showing that
comprehensive NGS strategies outperformed single-gene
tests with respect to diagnostic yield.5-8,17,18 Differences in
diagnostic costs varied per study. However, these publi-
cations differ from the current study. For example, we
combined different molecular techniques and included
TAT in determining the usefulness of test outcomes.

Some simplifying modeling assumptions had to be made
for this study. First, we assumed that all test results ob-
tained after the TATmax are disregarded and the patient
is treated with immunotherapy or chemotherapy depending

on their PD-L1 status. However, we also show that parallel
testing remained the most effective strategy upon con-
sidering higher TATmax values acceptable. Hence, these
results support our conclusions.

A second assumption involves the sensitivity and specificity
of the molecular tests, which were unknown for targeted
DNA and RNANGS analyses, as there is no gold standard to
compare these tests to. Therefore, we assumed a 95%
sensitivity and specificity, which is a conservative estimate.30

The true sensitivity and specificity may be higher and
therefore would increase the difference in effectiveness
between sequential and parallel testing, favoring parallel
testing.

Third, the probability of unsuccessful tests was simplified in
the model, by assuming that this probability is the same for
all tests. This automatically results in a higher cumulative
probability in the sequential testing strategy. Real-world
data from Dutch clinical practice4 showed that unsuc-
cessful tests are significantly higher for single-gene testing
strategies compared with NGS-based approaches. This
difference might even be larger as sample depletion is
under-reported in this real-world data set. Similarly, Dal-
l’Olio et al6 show that stepwise testing with a higher number
of tests also has a significantly higher sample exhaustion
rate than a large panel testing strategy. Taken together, the
difference in unsuccessful tests between the parallel NGS-
based and sequential single-gene–based testing strategy is
likely larger than assumed in the model, which strengthens
the conclusions of this study.

A fourth simplification is that rebiopsies are not taken into
account. The samples that are obtained at baseline are as-
sumed not to affect the observed differences in outcomes
such as the cost-effectiveness ordering between the different
strategies. Rebiopsies are rarely taken, and the obtained data
on this topic were of poor quality. Rebiopsies are both relatively
expensive and increase the TAT, and would therefore neg-
atively affect the cost-effectiveness of strategies. It is likely that
rebiopsies are more common in strategies with higher fre-
quencies of unsuccessful tests, which is shown to be higher
for single-gene tests. Inclusion of rebiopsies would therefore
further strengthen the conclusions of this study.

The results of the diagnostic model can be generalized to
other countries, although genetic aberration frequencies
might differ. For example, EGFR mutation frequencies are
much lower in Europe than in Asian countries.31 Never-
theless, other studies found that NGS-based DNA-panel
testing is also cost-effective in Asian populations.7

In addition to providing added value for current treatment
recommendations in NSCLC, targeted DNA and RNA NGS
panels have additional benefits. These comprehensive
analyses can potentially detect additional genetic aber-
rations, enabling inclusion into clinical trials. Imple-
mentation of even larger targeted NGS panels or whole
genome sequencing would enable even broader analyses
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(eg, additional targets and tumor mutational burden).
Implementation of such strategies in routine clinical
practice requires a similar evaluation of diagnostic accu-
racy, costs, and test-TAT as presented here. Furthermore,
expertise and volume are important factors to cost-
effectively implement such broad testing strategies.32,33

Sample volume per laboratory, for example, has a large

effect on diagnostic costs and TAT. Centralization of these
sequencing analyses could reduce both costs and TAT.19

In conclusion, parallel testing with targeted DNA- and RNA-
NGS approaches has a higher true-positive testing rate than
sequential testing with multiple single-gene tests in com-
bination with targeted DNA-based NGS, resulting in more
adequate treatment and improved survival.
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