
ARTICLE

Increased expression of peptides from non-coding
genes in cancer proteomics datasets suggests
potential tumor neoantigens
Rong Xiang1,2, Leyao Ma2,3, Mingyu Yang2, Zetian Zheng2, Xiaofang Chen2, Fujian Jia2, Fanfan Xie2,

Yiming Zhou4, Fuqiang Li 2,5, Kui Wu 2,5 & Yafeng Zhu 4✉

Neoantigen-based immunotherapy has yielded promising results in clinical trials. However, it

is limited to tumor-specific mutations, and is often tailored to individual patients. Identifying

suitable tumor-specific antigens is still a major challenge. Previous proteogenomics studies

have identified peptides encoded by predicted non-coding sequences in human genome. To

investigate whether tumors express specific peptides encoded by non-coding genes, we

analyzed published proteomics data from five cancer types including 933 tumor samples and

275 matched normal samples and compared these to data from 31 different healthy human

tissues. Our results reveal that many predicted non-coding genes such as DGCR9 and

RHOXF1P3 encode peptides that are overexpressed in tumors compared to normal controls.

Furthermore, from the non-coding genes-encoded peptides specifically detected in cancers,

we predict a large number of “dark antigens” (neoantigens from non-coding genomic

regions), which may provide an alternative source of neoantigens beyond standard tumor

specific mutations.
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Recently, many mass spectrometry-based proteomics studies
have reported the identification of peptides from noncod-
ing regions of the human genome1–5. Some peptides have

been identified from genomic regions in close proximity to
protein-coding genes, indicating incorrect annotation of exon
boundaries or exons. Other noncoding gene-encoded peptides
have been identified from currently annotated noncoding
sequences, such as pseudogenes, long noncoding RNAs
(lncRNAs), protein-coding gene untranslated regions, alternative
reading frames, or the antisense strand.

It is conventionally believed that pseudogenes have lost their
protein-coding functions due to accumulated deleterious
mutations6. Recently, the analysis of RNA-seq data from cancer
cell lines and tumors has shown active transcription of pseudo-
genes in different cell lineages and cancer types, and some
pseudogenes have shown cancer-specific expression patterns
when compared to normal tissues7–9. In addition to RNA level
detection of pseudogene expression, several independent pro-
teomics studies have identified peptide evidence of pseudogene
and lncRNA translation in normal tissues and cancer cell lines1–3.
However, it has not been systematically investigated if predicted
noncoding genes encode peptides that can be found in tumor
tissues or whether translation of noncoding genes is a sporadic
event, or if it is specifically regulated in different types of tumors.

Here, we analyzed publicly available proteomics data from 5
cancer types, including 933 tumor samples and 275 matched
normal samples, and 31 different healthy human tissues using a
previously developed proteogenomics pipeline4. With these data,
we aimed to identify which noncoding sequences, including
pseudogenes and lncRNAs, are actively translated in healthy and
tumor tissues and if they exert tissue-specific or cancer-specific
expression. Secondly, a published study by Laumont et al.10

detected more tumor-specific antigens from noncoding regions
compared to mutations in protein-coding regions. They are
in vivo mouse experiments demonstrated that immunization
against these noncoding region peptides could prevent tumors in
mice that had been transplanted with oncogenic cancer cells.
Inspired by this, our second goal was to investigate whether these
non-coding region-encoded peptides have any predicted affinity
with MHC class I molecules as potential new cancer neoantigens.

Results
Construction of a proteogenomics search database. We down-
loaded proteomics data collected from 40 normal samples from
31 healthy tissues, 933 tumor samples, and 275 tumor-adjacent
normal samples from the PRoteomics IDEntifcations (PRIDE)
database and National Cancer Institute Clinical Proteomic Tumor
Analysis Consortium (CPTAC) Data Portal11,12. The five types of
cancer investigated were breast cancer (BRCA), clear cell renal
cell carcinoma (CCRCC), colon cancer (COAD), and ovarian
cancer, and uterine corpus endometrial carcinoma (UCEC). The
number of samples in each dataset is presented in Fig. 1a. The
detailed annotations of the downloaded datasets and sample
information are included in Supplementary Data 1 (Table 1).

To search the proteomics data, we first constructed a core
database, including ENSEMBL human proteins, CanProVar 2.0
variant peptides, and peptide sequences from three frame
translations of annotated pseudogenes from GENCODE v28
and lncRNA from LNCpedia 4.113–16. This core database was
used as a search database for the proteomics data of healthy
tissues. As for different cancer datasets, a collection of cancer
mutations was downloaded from the CGDS17. These mutations
were then converted to mutant protein sequences using
customized scripts and supplemented to the search database of
the corresponding cancer type (see details in “Methods”). The

proteogenomics search was performed using an updated version
based on our previously published pipeline4 (Supplementary
Fig. S1).

Majority of novel peptides identified from pseudogenes are
homologous to house-keeping genes. In total, we identified 7882
and 9013 novel peptides from 31 normal tissues and five cancer
types at a 1% class-specific false-discovery rate (FDR), respec-
tively. Novel peptides/coding loci were defined as peptide/geno-
mic sequences that are absent in annotated protein/coding gene
databases (Uniprot human reference proteome plus GENCODE
v28 human protein database)18. We summarized the number of
unique peptides per novel coding locus for 31 healthy tissues, and
the CPTAC datasets (including both 933 tumor samples and 275
tumor-adjacent normal samples), respectively (Fig. 1b, c). We
then divided the novel loci into three groups according to the
number of unique peptides by which they were supported. After
removing loci supported by only a single peptide, in total 220 and
687 novel coding loci (corresponding to 603 and 2320 unique
peptides) were identified in the healthy tissue data and CPTAC
datasets (Fig. 1d), respectively (detailed annotations of novel
coding loci are provided in Supplementary Data 1 (Table 2 and
Table 3)).

Next, we annotated the identified novel peptides detected from
the healthy tissues dataset and CPTAC datasets based on their
origin, including pseudogenes; lncRNAs; untranslated regions,
introns, and exons of protein-coding genes (alternative reading
frame); upstream and downstream regions (1 kb distance to
closest UTR) of protein-coding genes; spanning intron–exon
junctions of protein-coding genes; and retroelements (Fig. 1e). In
a paired t-test comparison, the CPTAC datasets and the healthy
tissues showed no significant difference in the percentage of novel
coding loci detected in different genomic regions. Further,
consistent with the findings in Kim et al.19 and our previous
work4, the majority of novel peptides were from translating
pseudogenes. LncRNAs were the second major source of
identified novel peptides. The low percentage of novel peptides
detected from lncRNAs is in line with a previous study by
Guttman et al.20, in which a comprehensive analysis of ribosomal
profiling data provided supporting evidence that the large
majority of lncRNAs do not encode proteins.

Because pseudogenes have high sequence similarity to their
parental genes, we annotated the translated pseudogenes based on
the functions of their parental genes (Fig. 1f, Supplementary
Fig. S2a). Consistent with the findings revealed by a previous
RNA-seq data analysis7, the frequently detected pseudogenes in
healthy tissues and CPTAC datasets were homologous to house-
keeping genes such as cytoskeleton proteins (actin, keratin, and
tubulin), ribosomal proteins, nuclear ribonucleoproteins, heat
shock proteins, and eukaryotic translation elongation factor,
peptidylprolyl isomerase (Fig. 1f, Supplementary Data 1, Table 4).
These pseudogene peptides included 428 and 1970 novel peptides,
comprising 70.9% and 84.9% total novel peptides, detected from
the healthy tissues and CPTAC datasets, respectively.

Proteomics detects ubiquitous and tissue-specific translation of
pseudogenes and lncRNAs. Previous proteogenomics studies
have mainly characterized protein level alterations from genomics
aberrations including copy number variations and missense
mutations21–23. Our recent work investigated the tissue-specific
expression of noncoding gene-encoded peptides in five different
human tissues4. Here, we extended this analysis in a compre-
hensive proteomics dataset of 31 different tissues5. We quantified
the identified novel peptides by extracting MS1 maximum peak
intensity using moFF24. We limited the analysis to novel coding
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loci with at least two unique peptides. Our analysis identified
three groups of novel coding loci expression: 12 ubiquitous
(expressed in at least 15 tissues), 93 nonspecific (expressed in
2–15 tissues, robustly translated in one or two tissues but fre-
quently translated at lower levels in other tissues), and 114 with

tissue-specific expression (Fig. 2). The pseudogene expression
profile we observed was different from the RNA-seq study, where
the majority of expressed pseudogenes were identified as
nonspecific7. We speculated that many non-specific and lowly
expressed pseudogenes were stochastically detected in tissues with
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only one sample analyzed (24 of 31 tissues have only one sample),
consequently increasing the number of tissue-specific pseudo-
genes here (see Supplementary Data 1, Table 2, with repre-
sentative tissue-specific pseudogenes/lncRNAs highlighted).

From the 31 healthy tissues dataset, we detected two previously
reported tissue-specific non-coding gene translation products:
testis-specific TATDN2P1 (TatD DNase domain-containing 2
pseudogene 1, supported by two unique peptides) and placenta-
specific lncRNA lnc-CACNG8-28:1 (supported by eight unique
peptides)4. In addition, several new tissue-specific non-coding
genes were discovered (see Supplementary Data 1, Table 2). For
example, ten unique peptides encoded by a lncRNA, lnc-AFF3-
13:1, located in the 5′ UTR of gene TSGA10 were detected in
fallopian tissue. Six unique peptides from a PRH1-PRR4 read-

through transcript were detected in the salivary gland. Pseudo-
gene CCDC150P1 was detected with five unique peptides in testis,
and this pseudogene CCDC150P1 transcript is also specifically
expressed in testis according to GTex data (Supplementary
Fig. S2b). Interestingly, in both pituitary tissue samples, peptides
were identified from a lncRNA that overlaps with the coding
region of a pituitary specific protein-coding gene, GH1, but in a
noncanonical reading frame (see annotated spectra in Supple-
mentary Data 2). Our data indicate that GH1 may have dual
coding frames that encode unknown new proteins.

We compared our proteomics results with two recent studies
that used ribosomal profiling and full-length mRNA sequencing
to search translated noncoding genes in multiple cell types and
cancer cell lines25,26. Lu et al. identified 2969 translating non-

Fig. 1 Noncoding gene-encoded peptides detected from normal tissues and CPTAC datasets. a Type and number of samples used in this study. b The
number of novel coding loci detected in CPTAC datasets. c The number of novel coding loci detected in 31 healthy tissues (peptides are grouped to one
locus if they are encoded by the same noncoding gene). d Venn diagram shows the overlap of novel coding loci (≥2 unique peptides detected) between
healthy tissues and CPTAC datasets. e Annotation of genomic positions where noncoding gene-encoded peptides are detected. Pseudogene: all categories
of pseudogene (if novel peptide belongs to pseudogene, we will not count it again in other categories). lncRNA: ncRNA. Exonic: coding gene’s exon, not at
the canonical reading frame. Intronic: coding genes intron. Intronic–exonic boundary: peptide spanning over coding gene’s exon–intron boundary. UTR
region: untranslated region of the coding gene. Upstream: upstream of the coding gene. Downstream: downstream of the coding gene. f Annotation of
parental genes’ function of translated pseudogenes.
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coding genes from mRNA sequencing and ribosomal profiling
data, and mass spectrometry detected 10% (308) noncoding gene-
encoded new proteins (372 unique peptides). Among these new
proteins, 59 were also identified in our results (See Supplementary
Data 1, Table 5). These include MCTS2P, MKKS 5′ UTR ORF,
LINE-1 ORF1, and PA2G4P4. In comparison, only eight novel
CDS were found in common between Chen et al.27 and our
current study. This could be due to the sample difference since
their novel CDS were identified from induced pluripotent stem
cells (iPSCs), iPSC-derived cardiomyocytes, and human foreskin
fibroblasts. Of note, these common novel CDS include MCTS2P,
STARD10 5′ UTR ORF, and TSGA10 5′ UTR ORF.

Overlap of detected non-coding gene translation in different
samples and datasets. We analyzed the overlap of detected novel
coding loci in different samples within each study (Fig. 3a). We
divided the novel coding loci into four groups by the percentage
of samples in which they were identified. For example, the dataset
PXD002619 produced the largest number of novel coding loci,
but two-thirds were identified in fewer than 25% of samples. On
average, one-third of all novel loci were identified in more than
50% of samples.

Among different CPTAC datasets (in total 13 datasets covering
five cancer types), 46% of pseudogene identifications were
repeatedly detected in at least two datasets. In comparison, only
16% of non-pseudogenes were detected in more than one dataset.
Further analysis showed that 93% of pseudogenes that were
identified commonly in 8–13 different datasets belong to
housekeeping genes, which suggests pseudogenes derived from
house-keeping genes are also ubiquitously expressed in different
cancer types (Fig. 3b).

Apart from the ubiquitously expressed pseudogenes, many
pseudogenes were recurrently detected in specific cancers. The
notable examples were RHOXF1P3 (Rhox homeobox family
member 1 pseudogene 3) and MCTS2P (malignant T cell
amplified sequence 2 pseudogenes) which were repeatedly
detected from independent datasets of breast and ovarian cancers
(Fig. 3c). The parental gene of RHOXF1P3, RHOXF1, is thought
to inhibit cell apoptosis by activation of BCL-228. MCTS2 is an
imprinted gene and only paternally expressed retrogene copy29.

In addition to pseudogenes, we also found several long
noncoding RNA-encoded peptides that were detected in specific
cancers. For example, lncRNA lnc-SERPIND1-41:10 were detected
with ten unique peptides from different samples in CCRCC
(Fig. 4c, Supplementary Data 1, Table 3). This lncRNA is located
in the last intron of the noncoding RNA gene DGCR9 (DiGeorge
Syndrome Critical Region Gene 9, located on chromosome 22q11,
see Supplementary Fig. S3). Our results present the first evidence
to our knowledge that a potential novel coding locus in DGCR9’s
last intron may encode a protein product in CCRCC.

Since pseudogene expression has been extensively analyzed at
the transcript level using RNA-seq data7,8 and the major
biological functions of pseudogenes have been revealed at the
RNA level, we wondered whether any pseudogenes expressed at
the RNA level are translated into proteins. Therefore, we
compared pseudogenes detected in our proteomics analysis with
two major studies in which the expression of pseudogenes was
investigated through RNA-seq analysis7,8. We found that the
pseudogenes commonly detected in RNA and protein level are
pseudogenes of house-keeping genes such as ribosomal proteins,
GAPDH, cytokeratin, eukaryotic translation initiation factors,
and heterogeneous nuclear ribonucleoprotein. In addition,
pseudogenes corresponding to cancer-associated genes HMGB1,
VDAC1, and PTMA reported in a previous RNA-seq study7 were
detected both in the healthy tissues and cancers in our proteomics

analysis (Supplementary Data 1, Tables 2 and 3). In comparison,
many of the known functional pseudogenes such as PTENP1 were
not detected in these proteomics data. This was not unexpected
since they are functional as ceRNA molecules regulating the
expression of their parental genes30. Another example is the
BRCA pseudogene ATP8A2P1, which showed high expression at
the RNA level7,8 but was not detected at the protein level in any
of the BRCA proteomics data, suggesting this pseudogene may
only exert functions at the RNA level.

Differential expressed noncoding gene-encoded peptides
between tumor and normal tissue. We investigated if certain
pseudogene/lncRNA-encoded peptides had elevated expression in
tumors in the colorectal cancer (CRC) dataset with 8 paired CRC
samples and matched normal tissues (PXD002137)27. In this
dataset, 73 pseudogenes and lncRNAs identified were supported
by multiple peptides. Unsupervised clustering of these 73 pseu-
dogenes and lncRNAs by the centered log2 intensity is shown in
Fig. 4a. A paired t test analysis found 11 of the pseudogenes/
lncRNAs were significantly upregulated in tumors compared to
matched normal tissues. For example, lnc-KMT5B-20:1, lnc-
NANOGP8-26:6, and RP11-351N4.2 are upregulated in CRC
compared to matched normal tissues (Fig. 4b).

In other cancer datasets, we also detected several noncoding
gene-encoded peptides with increased expression in tumors. For
example, the peptides encoded by lncRNA lnc-SERPIND1-41:10
(DGCR9 intron) showed significantly higher expression levels in
CCRCC compared to adjacent normal tissues (Fig. 4c). In UCEC,
peptides detected from the 5′ UTR or noncanonical reading frame
of the protein-coding genes TSGA10, NPLOC4, MKKS, and
MUC1 were more abundant in tumors compared to normal
tissues (Fig. 4d). Similarly, increased expression of peptides from
MKKS 5′ UTR was also detected in another CRC dataset (Fig. 4e).

In the two CPTAC BRCA datasets, the pseudogene RHOXF1P3
was identified with eight and seven unique peptides, respectively,
covering 89% of amino acid sequences of the open reading frame
encoded by this pseudogene (Fig. 5a). More interestingly, the
peptides encoded by pseudogene RHOXF1P3 were upregulated
(2- to 16-fold) in a subset of BRCA patients both in the CPTAC
BRCA Discovery and Confirmatory cohorts (Fig. 5b, c)21. In
addition, RHOXF1P3-encoded peptides were also detected in two
ovarian cancer patients (Fig. 5d). We then analyzed the
expression of RHOXF1P3 in a published RNA-seq dataset
including 63 breast tumors and 10 adjacent normal tissues,
which also showed upregulated expression of RHOXF1P3 in
tumor samples (Fig. 5e). Together, our results demonstrated that
pseudogene RHOXF1P3 is not only translated, but also
upregulated in a subset of breast tumors.

Finally, we detected peptides from the 5′ UTR of STARD10,
which also displayed higher abundance in a subset of breast
tumors (Fig. 5f). STARD10 is a lipid transfer protein and this
protein has been previously reported to be overexpressed in
BRCAs and correlate with ErbB2/Her2 status31. Our data suggest
that this gene may use an upstream non-AUG start codon to
initiate translation in a subset of breast tumors.

LINE-1 retrotransposon ORF1 encoded peptides show higher
expression in tumors. As evidenced in many studies, cellular
mechanisms that repress the expression of repetitive DNA are
disrupted in cancer cells. Overexpression of satellite repeats was
previously observed in pancreatic and other epithelial
cancers32,33. This phenomenon correlates with the overexpression
of the long interspersed nuclear element 1 (LINE-1) retro-
transposon, which is suggested as a hallmark of many cancers33.
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Fig. 4 Differential expressed noncoding gene-encoded peptides between tumor and normal. a Heatmap of colorectal cancer (PXD002137). Heatmap
was scaled by row value. b Boxplot of noncoding genes significantly differentially expressed between tumor and normal (paired t test, p.value < 0.05).
c Relative expression of the ten unique peptides detected from DGCR9 in tumor (CCRCC) and normal (t test p.adjust < 0.01). d Relative expression of
peptides detected at 5′ UTR in tumor (UCEC) and normal. e Relative expression of peptides detected from MKKS 5′ UTR in tumor (COAD) and normal.
CCRCC clear cell renal cell carcinoma, UCEC uterine corpus endometrial carcinoma, COAD colon cancer.
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In previous proteogenomics studies, peptides mapped to
multiple genomic locations were often neglected. In our analysis,
LINE-1 retrotransposon ORF1-encoded peptides were detected in
different cancer datasets. LINE-1 RNA contains two non-
overlapping open reading frames, encoding two proteins ORF1p
and ORF2p. The expression level of ORF1p is 1000-10,000 times
higher than ORF2p34. In the analyzed proteomics datasets, we
detected ORF1p peptides from all five cancer types (Supplemen-
tary Data 1 Table 3). The quantitative analysis showed higher
expression of the LINE-1 ORF1p encoded peptides in UCEC,
ovarian cancer and COAD compared to their respective normal
samples (Fig. 6). In comparison, LINE-1 ORF2p was not detected
in our analysis. It corroborates findings from an antibody-based
study which concluded that LINE-1 ORF2p expression is hardly
detectable in human cancers35. Surprisingly, we also detected
peptides of LINE-1 ORF1 in healthy tissues, including lung, ovary,
and prostate (Supplementary Data 1, Table 2). Another
independent study using RNA-sequencing data also observed
widespread expression of retroelements in human somatic
tissues36. This may be explained by a recent finding that LINE-1
activity becomes derepressed in senescent cells and healthy tissues
could have senescent cells at old age37.

Noncoding region encoded peptides as a new class of cancer
neoantigens. Laumont et al.10 demonstrated noncoding region
encoded peptides can be used as a cancer vaccine to prevent
tumor progression. Here, we try to predict if any of noncoding
region-encoded peptides can be used as potential cancer neoan-
tigens. T cells recognize and bind to a peptide–MHC complex in a
complex process with many crucial steps. First, the abnormal
proteins are hydrolyzed by proteases into peptide fragments in
the cytoplasm, and then peptide fragments transported by the
transporter associated with antigen processing (TAP) protein into
the endoplasmic reticulum, where the peptide bind to an MHC
molecule38. The NetCTLpan server integrates predictions of
proteasomal C terminal cleavage, TAP transport efficiency, and
MHC class I binding affinities, which take into account antigen
processing and presentation39. Therefore, we used the NetCTL-
pan server to predict the neoantigens.

We selected neoantigen candidates based on the following
criteria: (1) The average expression of novel loci in tumor tissue
was upregulated by 1.5 times compared with matched normal
tissue (restricted to the datasets in which matched normal tissues
are available); (2) peptides were supported by NetCTLpan
predictions. By NetCTLpan prediction, 64 pseudogenes or
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lncRNAs had at least one 9-mer peptide with predicted affinity
ranked at threshold ≤0.5% (Supplementary Data 1, Table 6).
These results suggest that there are a large number of candidate
neoantigens in the noncoding regions. Of note, the 9-mer peptide
(HEDTGNPGL) encoded by pseudogene RHOXF1P3, and the
peptide (RLQEGLAAV) encoded by lncRNA lnc-SERPIND1-
41:10 (DGCR9 intron) were predicted as neoantigens.

Discussion
Protein-coding genes have been predominantly annotated based
on RNA-level data40. Several studies integrating the ribosome
profiling data to unbiasedly search all potential coding sequences
led to the findings that many of the predicted non-coding regions
of the human genome are translated25,26,41–44. Since then, non-
coding region-encoded peptides have been detected in several
large-scale mass spectrometry-based proteomics studies4,45. Here,
we analyzed large datasets of high-quality mass spectrometry
proteomics data from 31 healthy tissues and five cancer types. In
summary, we detected peptide evidence of 220 and 687 novel
coding loci in the healthy tissues and CPTAC datasets, respec-
tively. To avoid potential false positives, we only analyzed novel
coding loci supported by at least two peptides, resulting in a
majority of the identifications being removed (Fig. 1). The inter-
patient overlap of identified novel loci within each study showed
approximately one-third of them were detected in over 50% of
samples (Fig. 3). Since false positives could be still present, we
thus annotated MS2 spectra of 87 peptides from major findings
described in the manuscript (Supplementary Data 2). The
annotated spectra revealed several suspicious identifications, but
most of them have well-matched fragment ions.

According to our analysis, the majority of novel peptides were
identified from pseudogenes, which can be categorized into eight
major functional classes of house-keeping genes based on par-
ental genes (Fig. 1). The quantitative analysis of 31 healthy tissue
proteomics data revealed ubiquitous, nonspecific, and tissue-
specific expression of translated non-coding genes (Fig. 2). We
acknowledge the limitation that it is not a complete representa-
tion of all tissue types and most of the tissue types have only one
sample. Thus, some tissue-specific pseudogenes detected here
may arise stochastically.

The role of pseudogenes in cancer development and progres-
sion has been increasingly investigated, with some of them pro-
posed as diagnostic and prognostic markers46. In our analysis,
several peptides encoded by non-coding gene lnc-SERPIND1-
41:10 (DGCR9 intron) were detected in CCRCC and showed
higher expression compared to normal tissues. In addition, sev-
eral pseudogenes have been identified repeatedly in specific
cancers and supported by multiple unique peptides, such as
RHOXF1P3 and MCTS2P. Our results provide evidence that
pseudogene RHOXF1P3 is not only translated (identified with
eight unique peptides) but also showed increased expression in a
subset of breast tumors compared to normal tissues (Fig. 5).
Whether these non-coding gene-encoded proteins/peptides are
crucial for cancer cell survival requires further studies to inves-
tigate their biological roles. During the revision of this paper, a
study using CRISPR-based screening by Prensner et al.47 revealed
that hundreds of functional proteins encoded by noncanonical
open reading frames are essential for cancer cell survival. To
enable others to explore our data for further research, we have
shared all identified noncoding genes encoded peptides in the
healthy tissues and CPTAC datasets.

Mutation-derived tumor-specific neoantigens could be recog-
nized by infiltrated T cells to trigger their cytotoxic activity against
tumor cells. Neoantigen-based immunotherapy has been tested and
shown promising results in clinical trials48. However, missense

mutation-derived neoantigens may have limited immunogenicity as
their non-self feature relies on only one amino acid difference. In
comparison, neoantigens derived from non-coding gene-encoded
peptides termed as “dark antigens”, that possess larger sequence
differences to hold greater promise due to their high potential
immunogenicity49. According to our analysis by the NetCTLpan,
there are a large number of potential dark antigens predicted from
the noncoding gene-encoded peptides. In the aspect of clinical
applications, these potential dark antigens from noncoding regions,
especially the ones specific to tumors, may provide a new class of
tumor neoantigens possessing more potent immunogenic activity to
be explored as cancer vaccine10.

Methods
Data sets. Liquid chromatography–mass spectrometry/mass spectrometry (MS)
raw files of 40 normal samples from 31 healthy tissues, 933 cancer samples of five
cancer types, and 275 tumor-adjacent normal samples were obtained from the
PRIDE database and CPTAC Data Portal11,12. See Supplementary Data 1 and
Table 1 for details.

Database construction. To search the proteomics data of the healthy tissues, we
used a core database which contains the human protein database of Ensembl 92,
CanProVar 2.0 variant peptides, and peptide sequences from the three-frame
translation of annotated pseudogenes and lncRNAs13,14. Pseudogenes were
downloaded from GENCODE v28 including both annotated and predicted15.
LncRNAs were downloaded from LNCpedia 4.116. For each cancer type, a col-
lection of cancer mutations detected from previous whole genome sequencing and
whole exome sequencing studies were downloaded from the Cancer Genomics
Data Server (CGDS, http://www.cbioportal.org/datasets) and then converted to
mutant peptide sequences using customized scripts and supplemented to the search
database of corresponding cancer type17,50.

Identification and quantification of novel peptides by IPAW. The proteoge-
nomics search was performed using a previously published pipeline4. We made the
following adjustments. (1) database indexing. Previously, database indexing is per-
formed separately for each spectra input file. Database indexing is done only once in
the new workflow, and all parallel processes share the same indexed database at the
search step. It reduces many intermediate indexing files and searching time. (2)
returning hg38 genomic coordinates. Previously, all peptides were mapped to hg19
genome assembly, now peptides are mapped to hg38 assembly. The pipeline and
description is shared at Github (https://github.com/yafeng/pan-cancer-
proteogenomics-analysis). Briefly, all MS/MS spectra were searched by MSGFPlus51

in the target and decoy combined database. The decoy peptide was produced by
reversing protein sequences in the target database. Target and decoy matched to
known tryptic peptides (from Ensembl92 human proteins) were discarded before
FDR estimation of novel peptides. Peptide matches to known proteins were removed
through BLASTP analysis using a more complete known protein database
(ENCODE28+ Ensembl92+Uniprot.2018April)52. Peptides matched to mutant
peptide sequences from non-synonymous SNPs or cancer mutations were removed
and not treated as novel peptides. Then peptides mapping to multiple genomic loci
were annotated using BLAT53. The retained novel peptides were considered for
further analysis. Peptides detected from 31 healthy tissues were quantified by moFF
tool24, which extracts apex MS1 intensity from raw spectral files. Annotated spectra
of peptides of interest (in total 123 spectra of 87 unique peptides) were provided as
supplemental material (Supplementary Data 2). One can search specific peptide
sequences and genes of interest in the PDF to inspect their MS2 spectra.

BRCA RNA-seq data for orthogonal evidence. We search orthogonal evidence of
BRCA peptides in BRCA RNA-seq. A Python script (https://github.com/yafeng/
proteogenomics_python/scam_bams.py) searches the number of reads that overlap
(minimum 1 bp) the genomic region of novel peptides from BAM files (maximum
mismatch =1). This script reads the GFF3 format file of identified peptides and
BAM files as input files and outputs a count table. The RNA-seq BAM files (63
BRCA samples and 10 normal adjacent tissues) were downloaded from TCGA
(Supplementary Data 1, Table 7)54. The GFF3 files of all BRCA datasets were
merged into one.

Quantification of novel coding loci. For label-free quantification, the identified
novel peptides were quantified by extracting MS1 maximum peak intensity using
moFF22. Specifically, for the CRC dataset (PXD002137) which used label-free
quantification, the log2 MS1 intensity of peptides belonging to a particular novel
coding locus was summed, and paired t test was performed for matched samples. For
other datasets based on TMT relative quantification, the peptide log2 ratio was cal-
culated using internal reference as the denominator and was summarized into novel
loci log2 ratio by taking the median value. To compare expression levels between
tumors and normal tissues (unmatched samples), a two-sided t test was performed.
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Neoantigen prediction. The NetCTLpan server(http://www.cbs.dtu.dk/services/
NetCTLpan/) integrates prediction of peptide MHC class I binding, proteasomal C
terminal cleavage, and TAP transport efficiency39. The predicted values were cal-
culated as the weighted average of the MHC, TAP, and C-terminal cleavage scores,
and as %-Rank to a set of 1000 random natural 9mer peptides. The prediction
parameters of NetCTLpan are set as follows: the sorting threshold ≤0.5% (%Rank
of prediction score to a set of 1000 random natural 9mer peptides), the weight
proportion of c-terminal amino acid residues was 0.225, and the weight proportion
of TAP transport efficiency was 0.025.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This study is based on publicly accessible datasets listed in Supplementary Data 1.
Table 1 with accession identifiers and URLs provided in details.

Code availability
The pipeline, scripts, and manual are posted at Github (https://github.com/yafeng/pan-
cancer-proteogenomics-analysis).
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