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Analysis of gene expression data by clustering and visualizing played a cen-

tral role in obtaining biological knowledge. Here, we used Pearson’s corre-

lation coefficient of multiple-cumulative probabilities (PCC-MCP) of genes

to define the similarity of gene expression behaviors. To answer the chal-

lenge of the high-dimensional MCPs, we used ICC-CLUSTER, a clustering

algorithm that obtained solutions by iterating clustering centers, with

PCC-MCP to group genes. We then used t-statistic stochastic neighbor

embedding (t-SNE) of KC-data to generate optimal maps for clusters of

MCP (t-SNE-MCP-O maps). From the analysis of several transcriptome

data sets, we demonstrated clear advantages for using ICC-CLUSTER with

PCC-MCP over commonly used clustering methods. t-SNE-MCP-O was

also shown to give clearly projecting boundaries for clusters of PCC-MCP,

which made the relationships between clusters easy to visualize and under-

stand.

Clustering analysis is used to search for patterns and

group genes into expression clusters that provide addi-

tional insight into the biological function and relevance

of genes that show different expressions [1]. The most

popular clustering algorithms include hierarchical clus-

tering [2,3], k means clustering [4], and self-organizing

maps (SOMs) [5]. However, clustering analysis cannot

reveal underlying global patterns in the data, or rela-

tionships between the clusters found. To complement

clustering analysis, dimension reduction techniques

map the high-dimensional points onto a 2D or 3D

visualization space that is displayed graphically as a

scatter plot, which provides a humanly interpretable

visualization of the data set. A commonly used method

for this purpose is principal component analysis

(PCA). But for complex gene expression data sets,

PCA typically gives poor visualizations [6,7]. Because

of these limitations, non-linear dimension reduction

methods have been used to preserve local structure in

the data, such as t-statistic stochastic neighbor embed-

ding (t-SNE) [7–10]. t-SNE has been successful in com-

plementing clusters of Euclidean distance, but it is

usually inefficient for displaying clusters of Pearson’s

correlation coefficient (PCC). For instance, for any
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reference data set in this paper, t-SNE gives poor visu-

alizations for the clusters that are generated by PCC.

Here, we use Pearson’s correlation coefficient of

multiple-cumulative probabilities (PCC-MCP) as a

measure to define similarity of genes, where MCPs are

composed by n cumulative probabilities of genes, and

n is the dimension of gene points. These cumulative

probabilities of each gene are generated from n per-

mutations of the normalized points. For permutations

of a normalized point, they have the same elements as

the normalized points, but their element orders are

different. Compared to the normalized points, MCPs

are able to weaken the curve shape difference of genes

with similar expression behavior. For instance, these

genes can be seen as similar expression behavior that

their elements are relatively equivalent, but their shape

curves may have differences. Moreover, MCPs enlarge

the element discrepancy of dissimilar genes. To evalu-

ate the reliability of PCC-MCP, we apply it with ICC-

CLUSTER to group a simulated data set and four exper-

imental expression data sets. When PCC-MCP with

ICC-CLUSTER applies to these data sets, it produces

clusters of more statistical relevance than those gener-

ated by some other popular clustering methods. This

superior performance of PCC-MCP partially confirms

the validity of MCPs. Moreover, ICC-CLUSTER with

PCC-MCP has great ability to remove the effect of

the clustering numbers. In fact, even if clustering num-

ber is relative large or small compared to the optimal

one, ICC-CLUSTER is able to attain tight and stable

clusters.

Here, we firstly construct KC-data sets, where KC-

data is composed of the first to k-th principal compo-

nents of MCPs, these components of MCPs are

generated from PCA, k is less than n, and n is the dimen-

sion of the genes. Then, t-SNE-MCP-k map is generated

from t-SNE of KC-data, where t-SNE-MCP-k is 2D

projections of the KC-data. And then, t-SNE-MCP-O

map is selected from these t-SNE-MCP-k projections by

the average silhouette value of clustering results. That

is, t-SNE-MCP-O is such t-SNEMCP-k map that has

the most clear boundaries for 2D projections of cluster-

ing results. To evaluate the reliability of t-SNE-MCP-O,

we use it to display clusters of a simulated data set and

four experimental expression data sets, where clusters

are generated from PCC-MCP. Results show that

t-SNE-MCP-O gives clearer projecting boundaries for

these clusters than commonly used dimension-reduction

techniques. Furthermore, to readily see which nearby

2D points are truly similar, we also construct gene

neighbor maps by t-SNE-MCP-(n – 1). Results show

that t-SNE-MCP-(n – 1) makes the relationships

between clusters easy to visualize and understand.

In this study, ICC-CLUSTER with PCC-MCP is firstly

applied to yeast metabolic cycle data [11], mouse

retina data [12], human embryo data [13] and K562

cell line data [14], and then these clustering results are

overlayed onto t-SNE-MCP-O maps, which makes the

identification of gene relationships easy and intuitive.

Materials and methods

Data set 1

The simulation data set consisted of 2000 members at five

time points, which were generated from normal distribu-

tions. These 2000 members belonged to four groups, A, B,

C and D, according to the models they were generated

from, and each group consisted of 500 members. The mem-

bers of groups that were generated from the different nor-

mal distributions are shown in Table 1.

Data set 2

This data set consisted of yeast metabolic cycle data: NCBI

GEO accession number GSE3431. It described the transcrip-

tional changes in the metabolic cycle of budding yeast,

Saccharomyces cerevisiae [11]. In this experiment, gene

expression behaved in a periodic manner, comprising a non-

respiratory phase followed by a respiratory phase. The tran-

scriptome was assayed every 25 min over three consecutive

cycles, resulting in 36 samples (T1–T36). These were profiled
using Affymetrix YG_S98 oligonucleotide arrays (Affyme-

trix Inc., Santa Clara, CA, USA). Probes that had at least

three present calls generated by Affymetrix GENE CHIP soft-

ware were classified as expressed and the data normalized

using GENESPRING v7 per-chip normalization. Using a period-

icity algorithm described in the original paper, the authors

classified 3552 genes as periodic, corresponding to 3656

probe sets. From these 3656 probe sets, 2913 probes, expres-

sion values were greater than 5 in at least one of 36 samples

selected. These 2913 probes were summarized in Data S2.

Data set 3

The raw mouse retinal data consisted of 10 SAGE libraries

(38 818 unique tags with tag counts ≥ 2) from developing

retina taken at 2-day intervals. The samples ranged from

Table 1. List of simulated data.

Time points Group A Group B Group C Group D

1 N(10,2) N(10,2) N(100,10) N(10,2)

2 N(10,2) N(0.5,0.1) N(60,6) N(30,3)

3 N(10,2) N(0.5,0.1) N(60,6) N(10,2)

4 N(10,2) N(0.5,0.1) N(60,6) N(60,6)

5 N(10,2) N(30,3) N(100,10) N(10,2)
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embryonic, to postnatal, to adult. Among the 38 818 tags,

1467 tags that had counts ≥ 20 in at least one of the 10

libraries were selected [12]. The purpose of this selection

was to exclude the genes with uniform low expression. The

counts of each tag in a SAGE library were Poisson dis-

tributed. These Poisson distributions were independent of

each other across different tags and libraries [12,15]. These

1467 tags are summarized in Data S3.

Data set 4

This data set consisted of human embryo data: NCBI GEO

accession number GSE18887. The resulting matrix con-

tained expression measurements for 5441 transcripts across

18 samples, denoted as the human organogenesis expression

matrix [13] (Carnegie stages 9–14, S9–S14). A total of 5441

probe sets were identified as differentially expressed using

extraction of differential gene expression (EDGE)-based

methodology. Initially, Fang et al. used SOM-SVD (SOM

combined with singular value decomposition) to identify

co-expressed genes of human embryo data [13], which iden-

tified six clusters. From their analysis, they extracted 2148

differentially expressed probe sets. We used this set of 2148

probe sets for our analysis. These 2148 probes are summar-

ized in Data S4.

Data set 5

NCBI GEO accession number GSE12736. Time course

microarray data were obtained at seven independent time

points. Duplicate experiments were performed for each time

point. Selecting genes with a significant detection P-value

produced 14 000 probes out of a total of 23 920 probes.

Quantile normalization was carried out for each data set at

seven time points using the average expression value. It was

reasoned that significant genes should show over two-fold

induction at least at one time point with respect to the con-

trol sample (t = 0; before phorbol 12-myristate 13-acetate

treatment), and 1779 probes satisfying this requirement had

been determined [14,16]. These 1779 probes are summarized

in Data S5.

MCPs of genes

Here, Xi = {xi1, xi2, ���, xin} represents the i-th gene, and xij
represents the expression level of the j-th time points. Here,

we sketch MCP of Xi as follows.

(a) Xi is normalized into Yi, where

Yi ¼ fyi1; yi2; � � � ; ying; yit ¼
xit �minð min

1� t� n
ðxitÞ; 0Þ

Pn
l¼1ðxil �minð min

1� t� n
ðxitÞ; 0ÞÞ ;

t ¼ 1; 2; � � � ; n:

For genes, expression levels may be negative at some time

points, such as the genes of data set 5. Here, we deal with

these genes by a translational transformation. That is, xit is

substituted by xit �minð min
1� t� n

ðxitÞ; 0Þ. In fact, if all expres-

sion levels of Xi are non-negative, xit �minð min
1� t� n

ðxitÞ; 0Þ is
the same as xit. Moreover, Zis is constructed, where Zis is

the s-th permutation of Yi, and

Zis ¼ fyis; yiðsþ1Þ; � � � ; yin; yi1; yi2; � � � ; yiðs�1Þg; s ¼ 1; 2; � � � ; n:

Based on Zis, Tis is constructed, where

Tis ¼ fyis=2; yis þ yiðsþ1Þ=2; � � � ;
Xn�1

l¼s

yil þ yin=2;
Xn

l¼s

yil þ yi1=2;

Xn

l¼s

yil þ yi1 þ yi2=2; � � � ;
Xn

l¼s

yil þ
Xs�2

l¼1

yil þ yiðs�1Þ=2g
:

ð1Þ
That is, Tis is the modified cumulative probability of

Zis.

(b) Based on Tis, Ti is constructed, where Ti is an n2-dimen-

sional vector, and

Ti ¼ fTi1;Ti2; � � � ;Ting:
Here, Ti is considered to be the MCP of Xi.

To clearly understand MCPs, we used a flowchart to

show their construction process (Fig. 1). Moreover, we

define Euclidean distance and PCC between Ti and Tj as

the Euclidean distance of multiple-cumulative probabilities

(ED-MCP) and PCC-MCP of Xi and Xj, respectively.

ICC-CLUSTER algorithm

(a) Choose Xj1 and Xj2 as the first and second cluster centers,

where

dj1;j2 ¼ max
1� i\j�m

fdi;jg;

m is the gene number of the data set. If Xjs satisfies

minfdjs;j1; djs;j2; � � � ; djs;jðs�1Þg
¼ max

1� i�m;i6¼j1;���;jðs�1Þ
minfdi;j1; di;j2; � � � ; di;jðs�1Þg ;

it is chosen as the s (s = 4, 5, ���, k)-th cluster center.

Fig. 1. Flowchart of the multiple-cumulative probabilities.
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(b) Xi belongs to the l-th cluster (1 ≤ l ≤ k) if it satisfies

di;jl ¼ minfdi;j1; di;j2; � � � ; di;jkg:
(c) Assuming Xl1, Xl2, ���, Xlq in the l-th cluster, Xli is chosen

as a new center if it satisfiesXq

j¼1

dli; lj ¼ min
1�m� q

Xq

j¼1

dlm; lj:

(d) Repeat step 2 and step 3 until the assignment does not

change.

For the ICC-CLUSTER algorithm, when PCC is used to

measure the similarity of genes,

di;j ¼ 1� ui;j;

where ui;j is PCC between Xi and Xj (or Ti and Tj).

The t-SNE-MCP-O and t-SNE-MCP-k maps

The formal description of the t-SNE algorithm can be

found in Ref. [9]. But for the high-dimensional expression

points of genes, it is difficult for us to obtain t-SNE projec-

tions of their MCPs. To answer the challenge of the high

dimensional MCPs, we use t-SNE-MCP-O to display clus-

ters of PCC-MCP, where t-SNE-MCP-O selects from t-

SNE-MCP-k (k = 2, 3, ���, n � 1) maps, t-SNE-MCP-k is

t-SNE of KC-data, points of KC-data are composed of the

first to k-th principal components of Ti, components of Ti

were generated from PCA. In fact, for PCA of MCPs, only

their first to (n � 1)-th principal components are not zero,

and we abbreviate t-SNE-MCP-(n � 1) as t-SNE-MCP.

Here, for clusters of PCC-MCP, we use the average sil-

houette value of t-SNE-MCP-k to select their t-SNE-MCP-

O. The average silhouette value of t-SNE-MCP-k is defined

as

Sk ¼ 1

m

Xm

i¼1

ðbi � aiÞ
maxðai; biÞ ;

where ai is the average Euclidean distance from Ui to the

other points in the same cluster as Ui, bi is the minimum

average distance from Ui to points in a different cluster, min-

imized over clusters, Ui is the t-SNE projection of Pi, Pi is

the i-th point of KC-data, and m is the gene number of the

data [17]. Moreover, if Ti belongs to the a-th cluster, cluster

membership of Ui is a also. For these Sk of clusters that

Fig. 2. Overlay of clusters of data set 1

onto 2D maps, where data points were

colored according to cluster membership.

(A) Overlay of four populations onto t-SNE-

MCP-O map. (B) Overlay of four

populations onto t-SNE-N map. (C) Overlay

of four clusters onto t-SNE-MCP-O map,

where clusters were generated from ICC-

CLUSTER with PCC-MCP. (D) Overlay of four

clusters onto t-SNE-N map, where clusters

were generated from ICC-CLUSTER with PCC.

(E) Overlay of four clusters onto t-SNE-

MCP-O map, where clusters were

generated from k means with PCC-MCP.

(F) Overlay of four clusters onto t-SNE-N

map, where clusters were generated from

k means with PCC.
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generate from PCC-MCP, if Sk is the largest, t-SNEMCP-k

is selected as the t-SNE-MCP-O map of the clusters. For

convenience, we use t-SNE-MCP-1 to denote t-SNE of

MCPs.

Results

Here, all clustering results were generated from the nor-

malized points, and PCC-MCP, PCC, ED-MCP, Eucli-

dean distance, TransChisq and PoissonC were chosen as

measures of genes. Moreover, clustering number of

data sets mainly came from the corresponding refer-

ences. In detail, data set 2 had been divided into eight

clusters by Euclidean distance [7], data set 3 into 25 clus-

ters by PoissonC and TransChisq [12,15], data set 4 into

six and 10 clusters by Euclidean distance [7], and data

set 5 into eight clusters by Euclidean distance [14].

Comparison of PCC-MCP and PCC

Here, data set 1 was firstly displayed on t-SNE-MCP-O

and t-SNE-Nmaps according to population membership

of points (Fig. 2A,B), where t-SNE-MCP-O of data set 1

was t-SNE-MCP-3, and population membership of

points was summarized in Table 1. From Fig. 2A,B, t-

SNE-MCP-O and t-SNE-N correctly separated members

of different groups, and only a few members of group A

were assigned to group C, where members of group A

and group C (Table 1) were marked by the blue and red

colors in Fig. 2A,B, respectively. Moreover, data set 1

was divided into four clusters by PCC-MCP and PCC,

where ICC-CLUSTER and k means were used simultane-

ously. Then, these clustering results were displayed on t-

SNE-MCP-O and t-SNE-Nmaps (Fig. 2C–F).
From Fig. 2A,C,E, for clusters of PCC-MCP, ICC-

CLUSTER and k means correctly assigned members of

group B, C and D into three different clusters, and only a

few members of group A were assigned to the cluster that

contained all the points of group C. But for clusters of

PCC, ICC-CLUSTER and k means assigned members of

group A to four different clusters, and assigned members

of group C to three different clusters (Fig. 2B,D,F). For

members of group A, their elements of five time points

came from N(10,2) simultaneously, so their elements

were relatively equivalent, but their shape curves had sig-

nificant differences. The poor performance of PCC may

be due to the fact that PCC only compared the shape of

the curves. For instance, PCC between a1 = (8.08, 12.36,

9.86, 10.63, 11.14) and a4 = (12.39, 9.91, 9.54, 9.35, 9.41)

was only�0.74, while PCC between a1 and d384 = (6.49,

37.18, 9.12, 49.39, 13.12) was 0.594, where a1 and a2

came from group A: and d384 came from group D. How-

ever, PCC-MCP between a1 and a4 was 0.993, while

PCC-MCP between a1 and d384 was 0.95. That is, the

defect of PCCwas removed byMCPs.

Table 2. The average silhouette values of different measures. Number: clustering number. For each data set, the largest average silhouette

value was marked by an asterisk.

Data Algorithm Number ED-MCP PCC-MCP Euclidean distance PCC

2 ICC-CLUSTER 3 0.24905 0.40003 0.48845* 0.47263

2 k means 3 0.25236 0.40542 0.26024 0.47327

3 ICC-CLUSTER 25 0.18948 0.31151* 0.13419 0.22494

3 k means 25 0.18638 0.30046 0.15225 0.23674

4 ICC-CLUSTER 10 0.32985 0.53427* 0.27882 0.20489

4 k means 10 0.14063 0.31636 0.16123 0.11007

5 ICC-CLUSTER 12 0.26081 0.41184* 0.23601 0.30403

5 k means 12 0.16611 0.2457 0.17662 0.38694

Table 3. Statistics of 34 ‘specific’ genes of data set 3. The second

column showed the numbers of cell-specific genes in a cluster;

total, the total number of cluster members; sensitivity, the number

of cell-specific genes/34; precision, the number of cell-specific

genes/total number of cluster members. The top five clusters that

contained the 34 cell-specific genes are listed. The numbers in

bold were the highest percentage for sensitivity and precision for

that method.

Cell-specific

genes Total

Sensitivity

(%)

Precision

(%)

PCC-MCP 11 41 32.3 26.8

1 5 2.8 20

2 14 5.9 14.3

5 38 14.7 13.2

3 27 8.8 11.1

TransChisq 9 41 26.5 22.0

1 12 2.9 8.3

3 39 8.8 7.7

1 24 2.9 4.2

3 74 8.8 4.1

PoissonC 10 47 29.4 21.3

4 22 11.8 18.2

3 27 8.8 11.1

1 11 2.9 9.1

1 12 2.9 8.3

2012 FEBS Open Bio 7 (2017) 2008–2020 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

MCPs used to cluster and visualise transcriptomes X. Jia et al.



Fig. 3. The profile plots of the normalized points and MCPs. The X-axis represented the different time points. The Y-axis represented the

expression level, where E-level is the abbreviation of expression level. (A–H) The profiles of normalized plots of eight clusters; (I–P) The

profile of the multiple-cumulative probabilities of eight clusters.
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The statistical reliability of ICC-CLUSTER with

PCC-MCP

The average silhouette value was a quantitative way to

evaluate the clustering solutions [17], and we used it to

demonstrate the reliability of ICC-CLUSTER with PCC-

MCP. Here, we applied ED-MCP, PCC-MCP, PCC

and Euclidean distance to four experimental data sets.

For comparison, ICC-CLUSTER and k means were used

simultaneously, and the average silhouette values of

these clustering results were summarized in Table 2.

For all data sets, Table 2 showed that their largest

average silhouette value came from ICC-CLUSTER, and

three of these largest average silhouette values were

generated by PCC-MCP, where the largest average sil-

houette value of each data set was marked by an aster-

isk in Table 2. Moreover, for clustering results of any

data, the average silhouette value of ED-MCP was far

less than PCC-MCP. That is, clusters of PCC-MCP

were better separated from neighboring clusters than

ED-MCP.

The biological reliability of ICC-CLUSTER with

PCC-MCP

Here, 34 ‘cell-specific’ tags of data set 3 were used to

test the biological reliability of ICC-CLUSTER with PCC-

MCP, where these 34 tags are summarized in Data S3.

Moreover, these ‘cell-specific’ tags showed the most

dynamic and cell-specific expression in the mouse

neonatal retina (developmental stages P0–P6) [12].

Data set 3 had been grouped into 25 clusters by

Table 4. Statistics of three superclusters and five subclusters of

data set 2. The second column shows the number of subclusters.

The numbers in the third, fourth and fifth column were the number

of genes in subclusters that came from the three superclusters.

Total was the total number of subcluster members. The sensitivity

was the bold numbers/total number of subcluster members.

No. 1 2 3 Total Sensitivity (%)

ICC-CLUSTER 1 16 0 0 16 100.00

2 257 0 0 257 100.00

3 0 0 1458 1458 100.00

4 14 996 106 1116 89.25

5 65 11 0 76 85.53

k means 1 431 4 220 655 65.80

2 0 496 0 496 100.00

3 0 0 271 271 100.00

4 828 393 0 1221 67.81

5 293 0 17 310 94.52

Fig. 4. Overlay of clusters of data set 2

onto t-SNE-MCP-O (t-SNE-MCP-2) maps,

where data points were colored according

to cluster membership. (A) Overlay of

three superclusters of ICC-CLUSTER onto

t-SNE-MCP-O map. (B) Overlay of three

superclusters of k means onto t-SNE-

MCP-O map. (C) Overlay of five

subclusters of of ICC-CLUSTER onto t-SNE-

MCP-O map. (D) Overlay of five

subclusters of k means onto t-SNE-MCP-O

map.
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TransChisq and PoissonC measure [12,15], respec-

tively. Moreover, these 34 cell-specific genes were used

to demonstrate that TransChisq and PoissonC mea-

sures were more efficient for analyzing SAGE data

than PCC and Euclidean distance. For comparison, we

used ICC-CLUSTER with PCC-MCP to group these 1467

tags into 25 clusters also. Then, for each of the differ-

ent algorithms, the five most dynamic clusters that

contained ‘cell-specific’ tags were selected. The com-

parison statistics of 34 ‘cell-specific’ tags were summa-

rized in Table 3. In Table 3, ICC-CLUSTER generated

clusters that were most enriched for these 34 cell-speci-

fic genes. That is, PCC-MCP was appropriate and reli-

able for analyzing SAGE data also.

The features of the MCPs

By PCC-MCP with ICC-CLUSTER, data set 5 was firstly

divided into eight clusters. Then, these clusters were

selected to explore the feature of MCPs. For MCPs

and normalized points of each cluster, their curve

shapes were shown in Fig. 3. For the curve shapes of

MCPs, Fig. 3 showed that they were almost the same

in the same clusters, but had significant differences in

the different clusters. That is, MCPs weakened the

curve shape difference of the genes with similar expres-

sion behavior, but enlarged the element discrepancy of

dissimilar genes. Importantly, for each of clusters that

were generated from PCC-MCP, the curve shapes of

their normalized points had no significant difference

(Fig. 3A–H).

The features of ICC-CLUSTER

Here, we used data set 2 to validate that ICC-CLUSTER

had great ability to remove the effect of clustering

numbers, where data set 2 was divided into three and

five clusters by PCC-MCP. The comparison statistics

of super-clusters and sub-clusters are summarized in

Table 4. For each sub-cluster of ICC-CLUSTER, Table 4

showed that it contained 85% genes that came from

the same super-cluster at least. However, for two sub-

clusters of k means, their genes came from the same

super-cluster that were < 70%.

Moreover, we used t-SNE-MCP-O (t-SNE-MCP-2)

maps to display the features of ICC-CLUSTER (Fig. 4).

For sub-clusters of ICC-CLUSTER, Fig. 4A,C showed

that they mainly came from the same super-clusters.

Fig. 5. The average silhouette values of t-

SNE-MCP-k and D1-plot of data set 4 and

5. (A) The average silhouette values of t-

SNE-MCP-k maps of data set 4, where

clustering results of PCC-MCP with ICC-

CLUSTER, ED-MCP with ICC-CLUSTER, PCC-

MCP with k means and ED-MCP with k

means were shown by red, green, blue

and gray line, respectively. (B) The

average silhouette values of all t-SNE-

MCP-k maps of data set 5, where 8, 12,

16 and 20 clusters were shown by red,

green, blue and gray line, respectively. (C)

D1-plot of data set 4, where D1-plot of t-

SNE-MCP, t-SNE-MCP-O, PCA-MCP, PCA-

CP and PCA-N were shown by blue, pink,

green, gray and red line, respectively. (D)

D1-plot of data set 5, where D1-plot of t-

SNE-MCP, t-SNE-MCP-O, PCA-MCP, PCA-

CP and PCA-N were shown by blue, pink,

green, gray and red line, respectively.
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From Fig. 4B,D, clustering results of k means were

significantly affected by clustering numbers.

The consistency between clusters of PCC-MCP

and t-SNE-MCP

For a visualization technique, if it was able to project

genes of the same clusters together, and project neigh-

bor clusters in adjacent regions, we considered that it

was consistent with clustering results. In general, we

assessed the consistency by eye, which was an intuitive

feeling only. Here, the average silhouette value was

used to quantify the consistency, where we focused on

data set 4 and 5. Firstly, data set 4 was divided into

10 clusters by PCC-MCP (or ED-MCP) with ICC-CLUS-

TER (or k means). For any clustering result of data set 4,

the average silhouette values of its t-SNE-MCP-k maps

were shown in Fig. 5A. From Fig. 5A, for t-SNE-MCP,

the average silhouette values of any clustering result

were less than t-SNE-MCP-15. That is, t-SNE-MCP-15

was t-SNE-MCP-O of data set 4, and t-SNEMCP-1 did

not optimally display clusters of MCPs. Secondly, data

set 5 was divided into 8, 12, 16 and 20 clusters by PCC-

MCP with ICC-CLUSTER. For any clustering result of data

set 4, the average silhouette values of its t-SNE-MCP-k

maps were shown in Fig. 5B. From Fig. 5B, for 8, 16

and 20 clusters, t-SNE-MCP-2 was their t-SNE-MCP-

O. But for 12 clusters, the average silhouette value

t-SNE-MCP-1 was the largest. That is, for different

clustering number, their t-SNE-MCP-O maps were not

consistent.

The local validity of t-SNE-MCP

We considered that a dimension-reduction technique

was locally valid if the i-th closest neighbour of a

point was its j-th closest neighbour in 2D space, where

i, j and |i � j| were the relative small numbers, point

neighbours were located by any measure, while projec-

tion neighbours were located by Euclidean distance [6].

Moreover, the local validity of dimension reduction

techniques could be quantified by D1-plot [6].

Here, data set 4 and 5 were used to assess the local

validity of t-SNE-MCP, t-SNE-MCP-O, PCA-MCP,

PCA-CP and PCA-N, where we named the PCA of

the normalized points and cumulative probabilities as

PCA-N and PCA-CP, respectively. Moreover, when

gene neighbours were defined by PCC of MCPs, the

normalized points and cumulative probabilities, their

neighboring maps corresponded to t-SNE-MCP

Fig. 6. Overlay of clusters of data set 4

and 5 onto t-SNE maps, where clusters

were generated from PCC-MCP with ICC-

CLUSTER, and data points were colored

according to cluster membership. (A)

Overlay of 10 clusters of data set 4 onto t-

SNE-MCP-O (t-SNE-MCP-15) map. (B)

Overlay of 10 clusters of data set 4 onto t-

SNE-MCP map. (C) Overlay of eight

clusters of data set 5 onto t-SNE-MCP-O

(t-SNE-MCP-2) map. (D) Overlay of eight

clusters of data set 5 onto t-SNE-MCP

map.

2016 FEBS Open Bio 7 (2017) 2008–2020 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

MCPs used to cluster and visualise transcriptomes X. Jia et al.



(t-SNE-MCP-O and PCA-MCP), PCA-CP and PCA-

N, respectively. Moreover, D1-plots of data set 4 and 5

are shown in Fig. 5C and D, respectively. From

Fig. 5C,D, the local validity of t-SNE-MCP was far

more than others. That is, t-SNE-MCP better pre-

served local proximities of genes compared with other

dimension-reduction techniques.

Comparison of t-SNE-MCP and t-SNE-MCP-O

By PCC-MCP with ICC-CLUSTER, data sets 4 and 5 were

firstly divided into 10 and 8 clusters, respectively.

Then, these clustering results were displayed on t-

SNE-MCP and t-SNE-MCP-O maps (Fig. 6). As

shown in Fig. 6A,B, t-SNE-MCP-O and t-SNE-MCP

gave good projections for clusters of data set 4, where

t-SNE-MCP-O was t-SNE-MCP-15. For clusters of

data set 5, t-SNE-MCP-O (t-SNE-MCP-2) gave clearly

projecting boundaries (Fig. 6C), while their t-SNE-

MCP map showed slight intermixing (Fig. 6D). In

fact, for data sets 2 and 3, t-SNE-MCP maps were not

the optimal projections for clusters of PCC-MCP also.

Comparison of t-SNE-MCP-O, t-SNE-N and

t-SNE-C

Here, data set 4 was divided into six clusters by

PCC-MCP (or PCC) with k means, and data set 2

into three clusters by PCC with k means. Moreover,

these clustering results were displayed on t-SNE-

MCP-O, t-SNE-N and t-SNE-C maps (Fig. 7), where

t-SNE-C was t-SNE of the centered gene points [7].

From Fig. 7, only t-SNE-MCP-O gave clearly pro-

jecting boundaries for clusters of PCC-MCP

(Fig. 7A), while t-SNE-N and t-SNE-C maps had sig-

nificant intermixing for any clustering result of PCC

(Fig. 7B,C,D).

Comparison of ED-MCP and Euclidean distance

By ED-MCP (or ED-N) with k means, data set 4 was

divided into six clusters, and data set 5 into eight clus-

ters, where ED-N was Euclidean distance of the nor-

malized gene points. Moreover, clustering results of

data set 4 were displayed on t-SNE-MCP maps

(Fig. 8A,B), and clustering results of data set 5 on

Fig. 7. Overlay of clusters of data set 4

and 2 onto t-SNE-MCP-O, t-SNE-N and t-

SNE-C maps, where data points were

colored according to cluster membership.

(A) Overlay of six clusters of data set 4

onto t-SNE-MCP-O (t-SNE-MCP-15) map,

where clusters were generated from PCC-

MCP with k means. (B) Overlay of six

clusters of data set 4 onto t-SNE-N map,

where clusters were generated from PCC

with k means. (C) Overlay of three

clusters of data set 2 onto t-SNE-C map,

where clusters were generated from PCC

with k means. (D) Overlay of three

clusters of data set 2 onto t-SNE-N map,

where clusters were generated from PCC

with k means.
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Fig. 8. Overlay of clusters of data set 4

and 5 onto t-SNE-MCP and t-SNE-N maps,

where data points were colored according

to cluster membership. (A) Overlay of six

clusters of data set 4 onto t-SNE-MCP

map, where clusters were generated from

ED-N with k means. (B) Overlay of six

clusters of data set 4 onto t-SNE-MCP

map, where clusters were generated from

ED-MCP with k means. (C) Overlay of

eight clusters of data set 5 onto t-SNE-N

map, where clusters were generated from

ED-N with k means. (D) Overlay of eight

clusters of data set 5 onto t-SNE-N map,

where clusters were generated from ED-

MCP with k means.

Fig. 9. The gene neighbors of data set 4.

The nearest and second closest neighbors

of genes of data set 4, where the nearest

gene neighbors were linked by a blue line,

and second-closest gene neighbors were

linked by a red line.
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t-SNE-N maps (Fig. 8C,D). From Fig. 8, only t-SNE-

MCP gave clearly projecting boundaries for clusters of

ED-MCP (Fig. 8B), and t-SNE-N maps had slight

intermixing. Importantly, Fig. 8 showed that clustering

results of ED-MCP and ED-N had no significant dif-

ference. That is, MCPs retained the difference of the

normalized genes.

The gene neighbors of t-SNE-MCP

Hierarchical clustering was commonly used to reveal

gene neighbors, for it was much faster and more mem-

ory-efficient [2,3]. However, hierarchical clustering was

likely to cause loose gene neighbors. That is, two

neighbors that were generated by the hierarchical clus-

tering were not really the nearest and second-closest

neighbors of genes [7].

Here, the nearest and second-closest gene neighbors

were generated by PCC-MCP, where we focused our

attention on data set 4. For genes of data set 4, their

neighbor maps were shown on a t-SNE-MCP map in

Fig. 9, where the nearest gene neighbors were linked

by a blue line, and second-closest gene neighbors were

linked by a red line. Compared with the hierarchical

clustering, the gene neighbor map revealed the pairs of

high-dimensional points that were truly close, and

which pairs were in fact distant in 2D space. More-

over, t-SNE-MCP maps combined with nearest neigh-

bour maps provided an intuitive means to understand

the relationship between clusters and the affiliation of

genes with specific clusters.

Discussion

Although the cumulative probabilities have one-to-one

mapping with their normalized points, their magni-

tudes have significant differences, which may distort

distance of some similar genes. Moreover, for the dif-

ferent position elements of a normalized point, their

superposed opportunity is not consistent in cumulative

probability, which can distort the similarity of genes.

The defect of cumulative probabilities is removed by

MCPs. That is, for MCPs, the magnitudes are the

same, and the superposed opportunities of elements in

normalized points are consistent.

For high-throughput data sets, it is difficult for us

to obtain t-SNE projections of the MCPs. Here, for

clusters of PCC-MCP, we use t-SNE-MCP-O to obtain

their optimal 2D maps. Moreover, ICC-CLUSTER can rel-

atively rapidly achieve convergence to the optimal

solutions. The reason is that ICC-CLUSTER only updates

the cluster centers.

Conclusions

The success of MCPs has two main aspects. One is

that MCPs remove the differences of the curve shape

of similar expression genes, which makes PCC-MCP

able to robustly measure the similarity of genes.

Another is that MCPs enlarge the element divagations

of dissimilar genes, which make t-SNE-MCP-O able to

clearly display clustering results of PCC-MCP. We

suggest that MCPs can provide new insights applicable

to analyzing high-throughput data. Furthermore,

MATLAB implemented PCC-MCP with ICC-CLUSTER,

and from Figs 2–9 are available at Data S1.
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sisted of 10 SAGE libraries from developing retina

taken at 2-day intervals). Its detail (see Ref. [12]).

Data S4. Data set 4 (human embryo data: NCBI GEO

accession number GSE18887). Its detail (see Ref. [7]).

Data S5. Data set 5 (NCBI GEO accession number

GSE12736). Its detail (see Ref. [14]).
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