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Abstract: Disease classification based on machine learning has become a crucial research topic in
the fields of genetics and molecular biology. Generally, disease classification involves a supervised
learning style; i.e., it requires a large number of labelled samples to achieve good classification
performance. However, in the majority of the cases, labelled samples are hard to obtain, so the amount
of training data are limited. However, many unclassified (unlabelled) sequences have been deposited
in public databases, which may help the training procedure. This method is called semi-supervised
learning and is very useful in many applications. Self-training can be implemented using high- to
low-confidence samples to prevent noisy samples from affecting the robustness of semi-supervised
learning in the training process. The deep forest method with the hyperparameter settings used in
this paper can achieve excellent performance. Therefore, in this work, we propose a novel combined
deep learning model and semi-supervised learning with self-training approach to improve the
performance in disease classification, which utilizes unlabelled samples to update a mechanism
designed to increase the number of high-confidence pseudo-labelled samples. The experimental
results show that our proposed model can achieve good performance in disease classification and
disease-causing gene identification.
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1. Introduction

Recently, bioinformatics technologies have provided efficient ways to diagnose diseases,
and machine learning methods applied in bioinformatics have achieved remarkable breakthroughs
in the field of disease diagnosis [1]. Disease classification based on gene expression levels can
efficiently distinguish disease-causing genes efficiently, so it has become an effective method in disease
diagnosis and gene expression levels assessment for different conditions [2–4]. The combination of
data preprocessing and machine learning is an essential approach that improves the performances of
many computer-aided diagnosis applications [5,6], including for log-count normalized original data
in linear modelling [7]. Many state-of-the-art biological methods have been developed for disease
classification. For example, a multiple feature evaluation approach (MFEA) of a multi-agent system has
been proposed to improve the diagnoses of Parkinson’s disease [8]. A high-quality sampling approach
has been proposed for imbalanced cancer samples for pre-diagnosis [9]. Supervised discriminative
sparse principal component analysis (SDSPCA) has been used to study the pathogenesis of diseases
and gene selection [10].
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However, disease classification using gene expression data also faces challenges because of the
characteristic high dimensions and small sample sizes [11]. Generally, large quantities of unlabelled
samples are contained in datasets, because whole-genome gene expression profiling is still too
expensive to be used by typical academic labs to generate a compendium of gene expression for
a large number of conditions [12]. To improve the classification performance, semi-supervised
learning, an incremental learning technique, has been designed to utilize unlabelled samples to
obtain more labelled data. Semi-supervised learning has achieved many successful applications,
for example, the semi-supervised functional module detection method based on non-negative matrix
factorization [13] and semi-supervised hidden Markov models for biological sequence analysis [14].
Moreover, self-training is a special semi-supervised learning method that can implement learning
from high- to low-confidence samples [15]. For example, self-training subspace clustering with
low-rank representation has been proposed for cancer classification based on gene expression data [16].
A self-training algorithm that had been assumed feasible only for prokaryotic genomes has now
been developed for gene identification [17]. Moreover, common classifiers do not achieve satisfactory
accuracy because the number of samples is much smaller than the number of genes in gene expression
data. To tackle these problems, a classifier named the forest deep neural network (FDNN) has been
developed to integrate a deep neural network architecture with a supervised forest feature detector
in RNA-seq expression datasets [18]. In addition, cancer subtype classification with deep learning
can be used for single sample prediction to facilitate clinical implementation of cancer molecular
subtyping [19]. The deep forest (DF) model, a decision tree ensemble approach with a non-neural
network style deep model, is used in this work because it has been shown to achieve good performance
in many tasks [20]. Furthermore, the deep forest exploits two types of forests, i.e., random forests
(RFs) and completely random tree forests, which help enhance the diversity. Motivated by the lack
of relevant research, we attempt to exploit the deep forest method for semi-supervised learning in
biological tasks.

Many regularization methods have been proposed to identify significant genes to achieve
high-performance disease diagnosis. Regularization methods have recently attracted increased
attention in gene selection and have become a key technique to prevent over-fitting [21]. For example,
a popular regularization term, the L1 penalty, i.e., the Least Absolute Shrinkage and Selection Operator
(LASSO), can assign redundant coefficients to zero for gene selection and has been applied to
high-dimensional data [22,23]. Research on disease-causing gene selection involving the extended
LASSO includes identification of context-specific gene regulatory networks with gene expression
modelling using LASSO [24] and inference of gene expression networks with a weighted LASSO [25].
Stable feature selection can avoid negative influences when new training samples are added or
removed [26]. Therefore, we investigate stable LASSO regularization to identify disease-causing genes
in disease classification. In this paper, we propose a combined deep forest and semi-supervised with
self-training (DSST) method to diagnosis diseases. With deep forest as a base model, semi-supervised
learning such as self-training provides more high-confidence labelled samples for deep forest training.
Three types of disease datasets are applied to our proposed approach to assess its effectiveness
and robustness.

The rest of this paper is structured as follows. Section 2 presents a literature review of the various
studies applying machine learning to disease diagnosis, including deep forest and semi-supervised
learning. Section 3 describes our method. Section 4 introduces the dataset. We discuss the results and
performance of our approach in Section 5. Finally, conclusions are presented in Section 6.

2. Literature Review

Machine learning methods for disease diagnosis can be traced back to the 1990s [27]. Since then,
various machine learning methods have been investigated and tested for cancer classification.
A forward fuzzy cooperative coevolution technique proposed for breast cancer diagnosis has achieved
the best accuracy [28]. A weighted naive Bayesian (NB) method to predict breast cancer status with
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high F1 score and accuracy has been presented [29]. Recently, deep learning has achieved great
success in various fields such as disease diagnosis. A new neighbouring ensemble predictor (NEP)
method coupled with deep learning has been proposed to accurately predict a detected nuclear
class label before quantitatively analysing the tissue constituents in whole-slide images to better
understand cancer [30]. The application of deep learning methods to medical images can potentially
improve the diagnostic accuracy, with algorithms achieving areas under the curve (AUCs) of 0.994 [31].
However, the ideal parameters of deep neural networks methods are difficult to determine. The deep
forest model implements a novel classifier based on decision tree ensembles that explore how to
construct deep models based on non-differentiable modules. Such models offer guidance to improve
the underlying theory of deep learning and generate a deep forest exhibiting these characteristics
[32]. Moreover, the number of hyper-parameters is fewer than that of deep neural networks and the
complexity of a model can be automatically determined via data correlation. Various experimental
results show that the model performance is robust after the hyper-parameters are set. Such models
can achieve excellent performance with the default settings, even if data from distinct domains are
considered. Many studies of deep forest methods have been developed [33,34], and these methods
have been successfully used in image retrieval [35], and cancer subtype classification [36].

Semi-supervised learning, an active research topic in machine learning in recent years, aims to
label an amount of unlabelled data to improve the performance of a model. Many recent successful
examples of semi-supervised learning in bioinformatics have been presented. For example, a
semi-supervised network to solve the high-dimensional problem of identifying known essential
disease-causing genes has been proposed [37]. Chai et al. proposed a semi-supervised learning
method with the Cox proportional hazard and accelerated failure time (AFT) models to predict disease
survival time, and the performance of the model exceeded that of the Cox or AFT model alone [38].
Moreover, self-training, a type of semi-supervised learning, to learn by gradually including high- to
low-confidence samples as pseudo-labelled samples has been proposed [39]. Self-training has been
successfully applied to computer vision [40], data density peaks [41], computed tomography (CT)
colonography [42] and other fields. In this paper, self-training with deep forest as base learners is
used to learn from both labelled and unlabelled instances; in particular, the experiments shows that an
ensemble learner provides additional improvement over the performance of adapted learners [43].

From a biological point of view, most likely only a few genes can strongly indicate targeted
diseases, and most genes are irrelevant to cancer classification. The irrelevant genes may introduce
noise and reduce the classification accuracy. Given the importance of these problems, effective gene
selection methods can help classify different types of cancer and improve the prediction accuracy [44].
Stability selection provides an approach to avoid many false positives in biomarker recognition by
repeatedly subsampling the data and only treating those variables assumed as biomarkers that are
always important [45]. LASSO, as a primary variable selection method, is a popular regularization
method and shrinks the regression coefficients towards zeros if their corresponding variables are
not related to the model prediction target [46]. To obtain more sparse solutions, the Lp norm is
proposed, which simply consists of replacing the L1 norm with the non-convex Lp norm (0 < p < 1) [47].
A multi-stage convex relaxation scheme with a smoothed L1 regularization is presented to solve
problems with non-convex objective functions [48]. Zeng et al. [49] investigated the properties of the
Lp (0 < p < 1) penalties and revealed the extreme importance and special role of the L1/2 regularization.
Zou and Hastie [50] indicated that the Lp (0 < p < 1) penalty can provide a different sparsity evaluation
and that the Lq (1 < q < 2) penalty can provide a grouping effect with different q values.

3. Methods

3.1. Semi-Supervised Learning with Deep Forest

The deep forest approach provides an alternative to deep neural networks (DNNs) to learn
super-hierarchical representations at low cost. Figure 1 illustrates the basic architecture of the deep



Healthcare 2020, 8, 291 4 of 12

forest model. The deep forest approach learns class distribution features directly based on multiple
decision trees instead of learning via the hidden layers of DNNs. Additionally, an ensemble of forests
can achieve more precise classification of distribution features since the random forest has a potent
classification ability. We use previously reported parameter settings [20] to iteratively process the data
in the experiments. In our proposed method, the convergence condition is that the training samples
(combined original training and pseudo-labelled samples) achieve the best accuracy by employing the
obtained pseudo-labelled samples (x)n

i . In particular, labelled samples are used to train a base model
to label unlabelled samples. Combined labelled and pseudo-labelled samples can then achieve higher
performances in gene selection. The deep forest functions as a base model and is similar to the random
forest ensemble model. In this paper, high-confidence samples are defined as those with smaller loss
values; for example, the closer the y value is closer to 0 or 1 for the logistics regression, the smaller the
loss value. These values represent high-confidence samples.
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Figure 1. Diagram of the deep forest structure. Each level of the cascade consists of two random
forests (red) and two completely random forests (black). Different coloured random forests represent
different classes.
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Figure 1. Diagram of the deep forest structure. Each level of the cascade consists of two random
forests (red) and two completely random forests (black). Different coloured random forests represent
different classes.

3.2. Self-Training

Consider a pseudo-labelled training dataset D = (Xi, yi)
m
i=1 and a pseudo-labelled training dataset

D′ = (Xi, yi)
n
i=m+1 with n samples, where Xi ∈ Rd is the ith sample and yn

i=m+1 is the pseudo-label
information according to the training of Xi in a classification model. f (Xi, w) is a learned model,
and w is a model parameter. L(yn

i=m+1, f (Xn
i=m+1, w)) is a loss function of the ith sample. The objective

of self-training is to simultaneously optimize the model parameter w and latent sample weights
v = [vm+1, vm+2, ..., vn] via a minimization Equation (1).

min
w,v

E(w, v; λ) =
n

∑
i=1

viL(y′i, f (Xi, w)) + g(λ, vi), (1)

where y′, g(λ, vi) and λ are pseudo-labels of unlabelled data, the self-training regularizer and a penalty
that controls the learning pace, respectively. In general, given sample weights v, the minimization over
w is a weighted loss minimization problem, independent of regularizer g(λ, v). If g(λ, vi) = −λvi,
the optimal v∗i is calculated by

v∗i = { 1 i f L(y′i, f (Xi, w)) ≤ λ

0 otherwise
(2)

4. Datasets

In this study, three public cancer datasets from the National Center for Biotechnology Information,
U.S. National Library of Medicine (https://www.ncbi.nlm.nih.gov/geo) are utilized. A brief
description of these datasets is shown in Table 1.

https://www.ncbi.nlm.nih.gov/geo
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Table 1. Three publicly available disease datasets.

Dataset Disease Type No. of Samples No. of Genes Microarray Platform Class

1 Lung 187 22,215 Affymetrix Human Genome U133A Array Normal/Tumour
2 Breast 310 54,677 Affymetrix Human Genome U133 Plus 2.0 Array Normal/Tumour
3 Prostate 102 12,600 Hybridization to U95Av2 arrays Normal/Tumour

4.1. Lung Dataset

The lung cancer dataset (GSE4115) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE4115) is from Boston University Medical Center. The numbers of lung cancer and healthy samples
are 97 and 90, respectively, and each sample contains 22,215 genes.

4.2. Breast Dataset

The breast cancer dataset (GSE21050) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE21050) from the French Institut Bergonie contains 310 samples, which consist of 183 lung cancer
and 127 normal lung samples, with 54,677 genes as the model input.

4.3. Prostate Dataset

The prostate cancer dataset (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524991/) is
from the MIT Whitehead Institute. After preprocessing, the prostate dataset contains 102 samples and
12,600 genes in two classes, tumour and normal, which account for 52 and 50 samples, respectively.

5. Results

Three common methods are used for comparison to assess the performance of our approach: deep
neural networks (DNNs), logistic regression (LR), support vector machine (SVM) and random forest
(RF). In the experiments, a portion of the three disease datasets is treated as unlabelled samples to assess
the classification accuracy of the proposed method. The labelled and unlabelled samples are randomly
selected in every run of the program. Table 2 provides more details about the distributions of the
datasets used in the experiments. The methodology of the tests encompasses 10-fold cross-validation
to evaluate the learning of the methods and track the variation in their performance.

Table 2. Details of the experimental dataset settings.

Dataset Disease Type Labelled Samples Unlabelled Samples Testing Samples No. of Genes

1 Lung 65 65 57 22,215
2 Breast 109 109 92 54,677
3 Prostate 36 36 30 12,600

The classification performance achieved by the various methods for the three datasets is shown in
Table 3. Table 3 shows the results on the test set obtained by the five methods. DSST produces the best
results. For example, for the lung cancer dataset (GSE4115), the DSST and deep forest (DF) rank first
and second, respectively: the accuracy of DSST is 0.7389, which is higher than the values of 0.6618
and 0.5926 achieved by DF and RF, respectively. The receiver operating characteristic (ROC) curves
obtained by the various methods in one run for the three datasets are shown in Figure 2, and the
corresponding AUCs are shown in Table 3. DSST outperforms the other classifiers and the deep
forest model. Moreover, DSST is characterized by greater sparsity than DF and the other models.
Clearly, the F1 score of the DSST model is the highest; i.e., the robustness of the model is better than
that of the remaining methods, which indicates that the mechanism used to update the pseudo-labelled
samples is a crucial improvement for supervised learning model training.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4115
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4115
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21050
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21050
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524991/
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Figure 2. AUC-ROC in the three datasets, (a) GSE4115 (lung cancer), (b) GSE21050 (breast cancer), (c)
prostate cancer.

Figure 2. AUC-ROC in the three datasets, (a) GSE4115 (lung cancer), (b) GSE21050 (breast cancer),
(c) prostate cancer.
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Table 3. Performance comparison of various models.

Dataset Model Accuracy AUC Recall Precision F1-Score

Lung cancer

LR 0.5926 0.5885 0.4074 0.6471 0.5000
SVM 0.6481 0.6406 0.4815 0.7222 0.5778
RF 0.5926 0.6036 0.8148 0.5641 0.6667

DNNs 0.6023 0.6173 0.5555 0.9259 0.6944
DF 0.6618 0.6708 0.7037 0.6333 0.6667

DSST 0.7389 0.7209 0.7778 0.7000 0.7368

Breast cancer

LR 0.7128 0.7091 0.8909 0.7000 0.7840
SVM 0.5957 0.5921 0.9818 0.5934 0.7397
RF 0.7447 0.7245 0.9818 0.7013 0.8182

DNNs 0.7021 0.7170 0.7636 0.7368 0.7500
DF 0.7766 0.7702 0.8182 0.8036 0.8108

DSST 0.8085 0.8093 0.8545 0.8246 0.8393

Prostate cancer

LR 0.6333 0.6429 0.6667 0.6250 0.6452
SVM 0.5862 0.6381 0.6667 0.5882 0.6250
RF 0.6552 0.6762 0.7333 0.6471 0.6875

DNNs 0.6333 0.6286 0.7333 0.6111 0.6667
DF 0.6897 0.7238 0.8000 0.6667 0.7273

DSST 0.7931 0.7857 0.7333 0.8462 0.7857

Discussion

To further illustrate the performance of our method in computer-aided diagnosis, stable LASSO is
used in this work [45]. The top-10 ranked genes selected by stable LASSO in the various datasets are
listed in Tables 4–6. Most stability scores are close to 1, which indicates that the selected genes are robust.
Additionally, the p-values indicate that the results are significant. Many studies consider function
analysis for gene expression. For example, USP6NL in Table 4 acts as a GTPase-activating protein
for RAB5A [51]. LMX1A in Table 5 acts as a tumor suppressor to inhibit cancer cell progression [52].
TP63 in Table 6 encodes a member of the p53 family of transcription factors, in which the functional
domains of p53 family proteins include an N-terminal transactivation domain, a central DNA-binding
domain and an oligomerization domain [53].

Table 4. The top-10 ranked informative genes found in the lung cancer dataset based on stable Least
Absolute Shrinkage and Selection Operator (LASSO).

Gene Name Gene Symbol Stable Score p-Value

USP6 N-terminal like (USP6NL) 1 <0.01
acyl-CoA oxidase 2 (ACOX2) 0.98 <0.01
agouti related neuropeptide (AGRP) 0.53 <0.01
HECT, UBA and WWE domain containing 1, E3 ubiquitin
protein ligase (HUWE1) 0.99 <0.01

calcium/calmodulin dependent protein kinase II beta (CAMK2B) 1 <0.01
tripartite motif containing 5 (TRIM5) 1 <0.01
Janus kinase 3 (JAK3) 1 <0.01
sperm antigen with calponin homology and coiled-coil
domains 1 like (SPECC1L) 0.96 <0.01

echinoderm microtubule associated protein like 3 (EML3) 1 <0.01
glycosylphosphatidylinositol anchor attachment protein 1
homolog (yeast) pseudogene (LOC100288570) 1 <0.01
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Table 5. The top-10 ranked informative genes found in the breast cancer dataset based on stable LASSO.

Gene Name Gene Symbol Stable Score p-Value

LIM homeobox transcription factor 1 alpha (LMX1A) 0.96 <0.01
tRNA methyltransferase 44 homolog (S. cerevisiae) (TRMT44) 0.95 <0.01
NLR family pyrin domain containing 1 (NLRP1) 0.69 <0.01
ret finger protein like 2 (RFPL2) 1 <0.01
C-C motif chemokine ligand 16 (CCL16) 0.92 <0.01
opioid receptor mu 1 (OPRM1) 0.7 <0.01
ubiquitin conjugating enzyme E2 H (UBE2H) 0.81 <0.01
potassium calcium-activated channel subfamily N member 3 (KCNN3) 0.98 <0.01
haemoglobin subunit mu (HBM) 1 <0.01
E2F transcription factor 4 (E2F4) 1 <0.01

Table 6. The top-10 ranked informative genes found in the prostate cancer dataset based on stable LASSO.

Gene Name Gene Symbol Stable Score p-Value

fms related tyrosine kinase 1 (FLT1) 0 <0.01
tumour protein p63 (TP63) 0.56 <0.01
UDP glucuronosyltransferase family 1 member A10 (UGT1A10) 0.73 <0.01
T-box 5 (TBX5) 1 <0.01
potassium voltage-gated channel subfamily A member 5 (KCNA5) 1 <0.01
myosin XVI (MYO16) 0.83 <0.01
inhibitor of DNA binding 1, HLH protein (ID1) 0.86 <0.01
cathepsin G (CTSG) 1 <0.01
X-box binding protein 1 (XBP1) 0.95 <0.01
fibroblast growth factor receptor 1 (FGFR1) 1 <0.01

Meanwhile, the heat map correlation between the genes is illustrated in Figure 3. A red colour
indicates a positive correlation, while a violet colour indicates a negative correlation. The darker the
colour, the stronger the correlation. Figure 3 shows that most selected genes have a positive correlation.
The gene XBP1 of prostate cancer is negatively correlated with the other six genes.Version August 19, 2020 submitted to 9 of 12
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Figure 3. Relevance display by heat map for the three datasets, (a) GSE4115 (lung cancer), (b)
GSE21050 (breast cancer), and (c) prostate cancer.
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6. Conclusions

In this paper, we proposed deep forest and semi-supervised with self-training (called DSST)
to solve disease classification and gene selection problem based on different types of diseases.
The deep forest method is consistently superior to other conventional classification methods, possibly
because the deep forest approach learns more significant advanced features in the learning process.
Semi-supervised learning provides an effective alternative to alleviate the challenges of over-fitting
and improves the robustness of the model in the experimental process. Improved experimental results
can be obtained by combining semi-supervised learning and the deep forest model. By simultaneously
considering all classes during the gene selection stages, our proposed extensions identify genes leading
to more accurate computer-aided diagnosis by doctors.

In the experiments, we used datasets for three types of diseases to assess and investigate the
performance of our method using trained from 10-fold cross-validation and different sizes datasets.
The results show that our proposed disease classification approach has achieved higher prediction
accuracy than other methods published in the literature. However, the relevance threshold is
different in the context of classification performance when the number of training instances is small.
Therefore, how to determine the relevance threshold in the adaptive problem will be a focus of our
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work in the future. Additionally, we believe that our mechanism can also be applied to other types of
disease diagnosis problems and can be expanded to various classifications of disease states.
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