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Abstract

Background

Although machine learning-based prediction models for in-hospital cardiac arrest (IHCA)

have been widely investigated, it is unknown whether a model based on vital signs alone

(Vitals-Only model) can perform similarly to a model that considers both vital signs and labo-

ratory results (Vitals+Labs model).

Methods

All adult patients hospitalized in a tertiary care hospital in Japan between October 2011 and

October 2018 were included in this study. Random forest models with/without laboratory

results (Vitals+Labs model and Vitals-Only model, respectively) were trained and tested

using chronologically divided datasets. Both models use patient demographics and eight-

hourly vital signs collected within the previous 48 hours. The primary and secondary out-

comes were the occurrence of IHCA in the next 8 and 24 hours, respectively. The area

under the receiver operating characteristic curve (AUC) was used as a comparative mea-

sure. Sensitivity analyses were performed under multiple statistical assumptions.

Results

Of 141,111 admitted patients (training data: 83,064, test data: 58,047), 338 had an IHCA

(training data: 217, test data: 121) during the study period. The Vitals-Only model and Vitals

+Labs model performed comparably when predicting IHCA within the next 8 hours (Vitals-

Only model vs Vitals+Labs model, AUC = 0.862 [95% confidence interval (CI): 0.855–0.868]

vs 0.872 [95% CI: 0.867–0.878]) and 24 hours (Vitals-Only model vs Vitals+Labs model,
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AUC = 0.830 [95% CI: 0.825–0.835] vs 0.837 [95% CI: 0.830–0.844]). Both models per-

formed similarly well on medical, surgical, and ward patient data, but did not perform well for

intensive care unit patients.

Conclusions

In this single-center study, the machine learning model predicted IHCAs with good discrimi-

nation. The addition of laboratory values to vital signs did not significantly improve its overall

performance.

Introduction

In-hospital cardiac arrests (IHCAs), which are associated with high mortality and long term

morbidity, are a significant burden on patients, medical practitioners, and public health [1].

To achieve a favorable outcome, the prevention and early detection of IHCA has been proven

to be essential [2,3]. Up to 80% of patients with IHCA have signs of deterioration in the eight

hours before cardiac arrest [4,5], and various early warning scores based on vital signs have

been developed [6–11]. The widespread implementation of electronic health records enables

large datasets of laboratory results to be used in the development of early warning scores [12–

15]. Recently, automated scores using machine learning models with and without laboratory

results have been widely investigated, and both have achieved promising results [16–18].

However, it is unknown whether a model with vital signs alone (Vitals-Only model) per-

forms similarly to a model that incorporates both vital signs and laboratory results (Vitals

+Labs model). It is promising that prior studies that use both vital signs and laboratory results

report that vital signs are more predictive than laboratory results alone for IHCA within each

model [16,19]. Physiologically, changes in vital signs may be more dynamic and occur earlier

than changes in laboratory results [4,5]. Computationally, the amount of vital-sign data is

likely to be much larger than that of laboratory results. Vital signs are less invasive and easier

to obtain, and there are many more opportunities to collect vital signs than laboratory results.

For these reasons, we hypothesize that a Vitals-Only model may perform similarly to a Vitals

+Labs model in the prediction of IHCA.

We were motivated to perform this study because a Vitals-Only model that performs simi-

larly to a Vitals+Labs model is of clinical importance for the following reasons. First, a simpler

model with fewer input variables can be adopted in a wide variety of settings. Vital signs are

available anywhere, even in a patient’s home potentially because of the development of teleme-

try and wearable devices, whereas laboratory results might not be available in all instances. If a

model uses complex input data such as biochemical and arterial blood gas data, or complex

image results, such a model may not be suitable in some hospitals, especially in low-resource

settings. Second, a simple model can also be externally validated and more easily calibrated to

different healthcare systems. Third, the Vitals-Only model would be non-invasive and eco-

nomically feasible, because it does not require any laboratory tests, which may be physically

stressful and financially burdensome for patients. Fourth, from a computational point of view,

the minimal optimal model with a low data dimensionality is always better than a more com-

plicated model as long as it has similar performance.

We hypothesized that the occurrence of an IHCA within 8 h can be predicted from vital

signs alone without the need for additional laboratory tests. To assess this hypothesis, we con-

ducted a single-center retrospective research project.
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Methods

Study design and setting

We conducted this single-center retrospective cohort study at Kameda Medical Center, a ter-

tiary teaching hospital in a rural area in Japan with 917 beds, which includes 16 intensive care

unit (ICU) beds. This hospital has a cardiac arrest team that treats all IHCAs and consists of

staff anesthetists, emergency physicians, and cardiologists. A record of the resuscitation is

entered in the code blue registry immediately after an event. This hospital also has a rapid

response team with an ICU senior doctor and an ICU nurse who attend calls to review patients

if requested by the ward nurse. The RRT has 90–100 activations per year.

Since 1995, Kameda Medical Center has used an electronic medical record system, which

collects patient information such as patient demographics, vital signs, and laboratory results.

The data for this study were taken from this system.

This study was reviewed and approved by the Institutional Review Board of Kameda Medi-

cal Center (approval number: 18-004-180620). The committee waived the requirement for

informed consent because of the retrospective design of the study. In addition, this study fol-

lows the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis

or Diagnosis (TRIPOD) reporting guideline for prognostic studies [20].

Study population

We included all adult patients (age� 18 years old) admitted for more than 24 h between 20

October 2011 and 31 October 2018 in the study. Both ward and ICU patients were included,

but emergency department patients were excluded unless they stayed in the hospital for more

than 24 h. We collected the following data: demographic data on admission (i.e. age, sex, BMI,

elective or emergency admission, and department of admission), eight-hourly vital signs (sys-

tolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, temperature, satura-

tion, and urinary output), and daily laboratory results (see Fig 1 for details). All the IHCA

patients were identified from the code blue registry of Kameda Medical Center. Three doctors

(JO, TM, and HH) retrospectively reviewed all the records and confirmed the IHCA event and

the time of day it occurred.

Prediction outcome measures

The primary outcome predicted by our model was IHCA within the next 8 h. The secondary

outcome predicted by our model was IHCA within the next 24 h. All the ‘expected’ cardiac

arrests (such as cardiac arrests in palliative care patients) without code blue responses were

excluded.

Algorithm selection

We chose a random forest model, which is a nonparametric machine learning approach that

has been shown to outperform other algorithms without the need for standardization or log-

transformation of the input data [16,21,22]. We chose this model for the following reasons.

First, a random forest model allows us to take into account the non-linear relationships

between input variables. Vital signs are known to differ among various age groups [23]. This

approach enables the model to learn the age-dependent variables more precisely. Second, ran-

dom forest models have relative explainability through the provision of ‘feature importance’.

This is a scaled measure that indicates the weighted contribution of each variable to overall

prediction. It is scaled so that the most important variable is given a maximum value of 100,

with less important variables given a lower value. While this allows comparison of the relative
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importance of each variable within a model, it does not allow comparison of the relative con-

tribution of the same variables between different models.

Statistical methods

Patient data were divided into training data and test data according to admission date (training

data dates: 20 October 2011 to 31 December 2015; test data dates: 1 January 2016 to 31 October

2018) [17]. As summarized in Fig 1, predictions were made every 8 h using patient demo-

graphics and eight-hourly vital signs in the last 48 h in the Vitals-Only model. The Vitals+Labs

model was the same as the Vitals-Only model but with the addition of two sets of laboratory

results obtained in the last seven days, as previously reported [17,24]. As shown in Fig 2, an

ensemble model of trees was developed using training data after bagging, and then the model

was validated using the test dataset. (See the S1 File for further details.)

We measured the prediction performance of each model by computing the following val-

ues: (1) the C statistic (i.e. the area under the receiver operating characteristic [ROC] curve);

(2) the prospective prediction results (i.e. sensitivity, specificity, positive predictive value, nega-

tive predictive value, positive likelihood ratio, and negative likelihood ratio) at Youden’s index;

Fig 1. Overview of the input variables for both models predicting IHCA. Six sets of eight-hourly measured Vital signs in the last 48 hours were used in both models.

Two sets of most recent Laboratory results in the last seven days were used in Lab model. Demographic data remains static whereas vital signs and laboratory results,

other data, and output are tracked at regular intervals. Abbreviations: Alb, albumin; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; ALT,

alanine aminotransferase; ALP, alkaline phosphatase; BMI, body mass index; BNP, brain natriuretic peptide; CK, creatine kinase; CKMB, creatine kinase–muscle/brain;

Cre, creatinine; CRP, C-reactive protein; eGFR, estimated estimated Glomerular. Filtration Rate; GGT, gamma-glutamyl transferase; Glu, glucose; Hb, haemoglobin;

Hct, haematocrit; IHCA, in-hospital cardiac arrest; LD, lactate dehydrogenase; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular haemoglobin

concentration; MCV, mean corpuscular volume; Plt, platelets; PT, prothrombin time; PT-INR, prothrombin time international normalized ratio; RBC, red blood cells;

TP, total protein; T-Bil, total bilirubin; WBC, white blood cells.

https://doi.org/10.1371/journal.pone.0235835.g001
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and (3) the calibration curve. To gain insight into the contribution of each predictor to our

model, we calculated their feature importance with respect to the primary outcome.

Sensitivity analyses were planned a priori under various statistical assumptions. To

compare the Vitals-Only model with the Vitals+Labs model in various populations, we

tested the performance of our models in patient subsets (i.e. medical admission or surgical

admission; ward admission or ICU admission). To assess the impact of missing data, we

repeated the primary analysis with different imputation methods (see the S1 File for fur-

ther details).

Values that are clearly errors (e.g. systolic blood pressure >300 mmHg) were removed,

as described in [17,25] (see the S1 File for further details). No other preprocessing (e.g. nor-

malization or log-transformation) of the dataset was performed. Missing values were

imputed with the patient’s last measured value for that feature or the median value of the

entire sample if a patient had no previous values, as described in [14,15,26]. If more than

50% of data for a particular vital sign or laboratory result was missing in the entire dataset,

the feature was converted to a binary value (1 denotes a measured value and 0 denotes a

missing value) [27]. Various types of missing imputations were performed as part of the

sensitivity analyses (see the S1 File for further details). Categorical variables were expressed

as percentages, whereas continuous variables were described as means (± standard devia-

tions, SDs) or median (± interquartile ranges, IQRs). The analyses were performed using

Python 3.7.0, and we have made the analysis code publicly available (https://github.com/

liyuan9988/Automet).

Fig 2. Architectural overview of data extraction and representation.

https://doi.org/10.1371/journal.pone.0235835.g002
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Results

Details of the patient cohort and IHCAs

A total of 143,190 admissions of adult patients were recorded during the study period. After

2,069 admissions less than 24 h in length were excluded, the remaining 141,111 admissions

were used in the analysis. Among these admissions, 338 IHCAs were recorded. Patients char-

acteristics were similar in both the training and test data (Table 1). The percentage of missing

data for each variable is summarized in S1 Table in S1 File; 11/130 (8.5%) variables with >50%

missing values were converted into binary values following the rule described in the Method

section. As summarized in S2 Table in S1 File, patients who suffered an IHCA had characteris-

tics different from those who did not. Of note, IHCA patients were older, frequently male, and

admitted with non-surgical conditions. Of the IHCA patients, almost 40% were admitted to

the Cardiology department. The next most common admission departments were Hematology

and General Internal Medicine, each accounting for approximately 10% of the IHCA patients.

Predictive ability of the Vitals-Only model and Vitals+Labs model

As summarized in Table 2, the Vitals-Only model (AUC = 0.862 [95% confidence interval

(CI): 0.855–0.868]) and Vitals+Labs model (0.872 [95% CI: 0.867–0.878]) had similar perfor-

mance in predicting the occurrence of an IHCA in the next 8 h. In addition, similar results

were obtained for the prediction of IHCA in the next 24 h (Vitals-Only model vs Vitals+Labs

model, AUC = 0.830 [95% CI: 0.825–0.835] vs 0.837 [95% CI: 0.830–0.844]). At Youden’s

index, both models achieved similar prospective prediction results for both positive and nega-

tive prediction values (Vitals-Only model vs Vitals+Labs model, positive prediction

value = 0.035 [95% CI: 0.029–0.041] vs 0.044 [95% CI: 0.035–0.053], negative prediction

value = 0.998 [95% CI: 0.997–0.998] vs 0.997 [95% CI: 0.997–0.998]).

Calibration plot

As shown in Fig 3, the calibration curve of both models were similarly far from the diagonal of

the calibration plot (Vitals-Only model vs Vitals+Labs model, Hosmen-Lemeshow C-statis-

tics = 8592.40 vs 9514.76, respectively). For the highest risk group, the occurrence of IHCA

was 20%–30% in both models.

Sensitivity analysis with different models

We performed several sensitivity analyses under various statistical assumptions. Our results

were unchanged when we applied the models to medical patients (Vitals-Only model vs Vitals

+Labs model, AUC = 0.869 [95% CI: 0.862–0.877] vs 0.876 [95% CI: 0.870–0.882]) or surgical

patients (Vitals-Only model vs Vitals+Labs model, AUC = 0.806 [95% CI: 0.797–0.816] vs

0.825 [95% CI: 0.802–0.848]). Likewise, the Vitals-Only model was not inferior to the Vitals

+Labs model among ward patients (Vitals-Only model vs Vitals+Labs model, AUC = 0.879

[95% CI: 0.871–0.886] vs 0.866 [95% CI: 0.858–0.874]).

However, the discrimination of both model types was poor when applied to the ICU popu-

lation. The Vitals+Labs model outperformed Vitals-Only model for ICU patients (Vitals-Only

model vs Vitals+Labs model, AUC = 0.580 [95% CI: 0.571–0.590] vs 0.648 [95% CI: 0.635–

0.661]; Table 3). Finally, our results were similar regardless of the type of imputation. The

Vitals-Only model had a performance similar to that of the Vitals+Labs model with AUCs

ranging between 0.80 and 0.90 for all four imputation methods (S3 Table in S1 File).
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Table 1. Characteristics of study population.

Comparison of Training/Test data

Training Test

Study Period Oct 2011- Dec 2015 Jan 2016—Oct 2018

Total Admissions, n 83,064 58,047

Age, y, median (IQR) 64 (54; 77) 65 (56; 77)

Male sex, n (%) 41,868 (50) 29,210 (50)

BMI, kg/m2, median (IQR) 22.9 (20.5; 25.4) 23.1 (20.7; 25.7)

Surgical Patients, n (%) 41,337 (50) 29,491 (51)

Emergency Admission, n (%) 17,853 (21) 14,673 (25)

Patient with IHCA, n (%) 217 (0.3) 121 (0.2)

Patient with In-Hospital Death, n (%) 2,577 (3.1) 1,729 (3.0)

Comparison of Patients with/without IHCA

Training Test

IHCA non-IHCA IHCA non-IHCA

Total, n 217 82847 121 57926

Male, n (%) 142 (65.4) 41726 (50.4) 77 (63.6) 29133 (50.3)

Age, median (IQR) 75 (66:81) 67 (54:77) 72 (63;81) 68 (56;77)

BMI, median (IQR) 24 (21;26) 23 (21;25) 24 (20;28) 23 (21;26)

Emergency admission, n (%) 63 (29.0) 17790 (21.5) 27 (22.3) 14646 (25.3)

Surgical admission, n (%) 50 (23.0) 41287 (49.8) 24 (19.8) 29467 (50.9)

History of previous IHCA in the same admission, n (%) 26 (12.0) 15 (0.0) 14 (11.6) 11 (0.0)

In-hospital death, n (%) 164 (75.6) 2413 (2.9) 88 (72.7) 1641 (2.8)

Primary Admission Department, n (%)

Breast Surgery 0 ( 0.0) 3592 (4.3) 0 (0.0) 2710 (4.7)

Cardiology 96 (44.2) 6556 (7.9) 46 (38.0) 5299 (9.1)

Cardiovascular Surgery 14 ( 6.5) 1412 (1.7) 4 (3.3) 768 (1.3)

Dermatology 0 ( 0.0) 136 (0.2) 0 (0.0) 68 (0.1)

Emergency Medicine 2 ( 0.9) 1758 (2.1) 6 (5.0) 709 (1.2)

Endocrinology 0 (0.0) 385 (0.5) 0 (0.0) 307 (0.5)

ENT 3 (1.4) 1594 (1.9) 1 (0.8) 1287 (2.2)

Gastroenterology 11 (5.1) 11282 (13.6) 4 (3.3) 6082 (10.5)

General Internal Medicine 13 (6.0) 3758 (4.5) 15 (12.4) 3902 (6.7)

General Surgery 13 (6.0) 6161 (7.4) 4 (3.3) 4387 (7.6)

Hematology 14 (6.5) 1850 (2.2) 13 10.7) 1594 (2.8)

Infectious Disease 0 (0.0) 47 (0.1) 0 (0.0) 91 (0.2)

Nephrology 14 (6.5) 2418 (2.9) 4 (3.3) 1449 (2.5)

Neurology 3 (1.4) 2747 (3.3) 5 (4.1) 1668 (2.9)

Neurosurgery 1 (0.5) 1812 (2.2) 2 (1.7) 1145 (2.0)

Obstetrics and Gynecology 3 (1.4) 9080 (11.0) 0 (0.0) 5107 (8.8)

Oncology 9 (4.1) 3387 (4.1) 4 (3.3) 1447 (2.5)

Opthalmology 0 (0.0) 2206 (2.7) 0 (0.0) 1562 (2.7)

Oral and Maxillofacial Surgery 0 (0.0) 1110 (1.3) 2 (1.7) 648 (1.1)

Orthopedics 6 (2.8) 3070 (3.7) 3 (2.5) 2312 (4.0)

Palliative Medicine 0 (0.0) 3 (0.0) 0 (0.0) 1 (0.0)

Pediatrics 0 (0.0) 3 (0.0) 0 (0.0) 2 (0.0)

Plastic Surgery 2 (0.9) 1052 (1.3) 0 (0.0) 814 (1.4)

Psychiatry 0 (0.0) 732 (0.9) 0 (0.0) 390 (0.7)

Pulmonology 6 (2.8) 4868 (5.9) 4 (3.3) 3984 (6.9)

(Continued)
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Discussion

Summary of key findings

In this retrospective study with 141,111 admissions, we compared two prediction models for

IHCA, one using vital signs and patient background only and one using the same information

plus laboratory results. The Vitals-Only model yielded a performance that was similar to that

of Vitals+Labs model for all data except for that of ICU patients, where discrimination was

poor for both models.

Relationship with prior literature

Prior studies have extensively investigated the importance of early prediction of IHCA [2–5].

It is known that monitored or witnessed IHCAs have more favorable outcomes even after

IHCA compared to events that are unmonitored or unwitnessed [2,3]. To support the neces-

sity of preventive monitoring, prior studies found that clinical deterioration is common prior

to cardiac arrest [4,5]. Based on these findings, various early warning scores have been devel-

oped, ranging from an analog model based on vital signs to a digital scoring system using both

vital signs and laboratory results [6–15]. Recently, a variety of early warning scores have uti-

lized machine learning to account for the non-linear relationships in various input variables

[16–18].

Various studies on models that use both vital signs and laboratory results have reported

that vital signs are more predictive than laboratory results for IHCA. In a study by Churpek

and colleagues, the top five most predictive variables for the composite outcome including

IHCA were all vital signs [16]. A similar result was obtained in [19]. We note that our study

has similar results to the results of those studies in that higher weights are given to heart rate,

blood pressure, and age in our model. However, our model was unable to learn the importance

of respiratory rate because of the high rate of missing respiratory rate data in our dataset (Fig

4). Similar to our study, a few studies have investigated the change in predictive performance

using different sets of input features. Churpek and colleagues reported a prediction model for

IHCA using both vital signs and laboratory results [15]. Their model performed better than

Table 1. (Continued)

Rehabilitation 0 (0.0) 1306 (1.6) 0 (0.0) 844 (1.5)

Rheumatology 1 (0.5) 1936 (2.3) 0 (0.0) 1055 (1.8)

Spinal Surgery 1 (0.5) 2082 (2.5) 0 (0.0) 1354 (2.3)

Sports medicine 0 (0.0) 720 (0.9) 1 (0.8) 675 (1.2)

Thoracic Surgery 2 (0.9) 1135 (1.4) 2 (1.7) 1201 (2.1)

Urology 3 (1.4) 4649 (5.6) 1 (0.8) 5064 (8.7)

Data are n (%) or median (IQR)

https://doi.org/10.1371/journal.pone.0235835.t001

Table 2. Predictive performance of each model for the in-hospital cardiac arrest in the next 0–8 hours.

Model AUC (95%CI) PPV (95%CI) NPV (95%CI) Sensitivity (95%CI) Specificity (95%CI) PLR (95%CI) NLR (95%CI)

Vitals-Only model 0.862 [0.855; 0.868] 0.035 [0.029; 0.041] 0.998 [0.997; 0.998] 0.817 [0.754; 0.880] 0.772 [0.716; 0.827] 3.58 [2.92; 4.25] 0.238 [0.172; 0.304]

Vitals+Labs model 0.872 [0.867; 0.878] 0.044 [0.035; 0.053] 0.997 [0.997; 0.998] 0.770 [0.719; 0.821] 0.830 [0.781; 0.879] 4.52 [3.56; 5.50] 0.277 [0.229; 0.325]

Abbreviations: 95%CI, 95% confidence interval; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive

value; PLR, positive likelihood ratio; NRL, negative likelihood ratio

https://doi.org/10.1371/journal.pone.0235835.t002
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their previously published model, which was only based on vital signs [9]. However, those

models were developed and validated in different cohorts with different methodologies. In a

short communication by Kellett and colleagues, a score based solely on vital signs was more

Fig 3. Calibration plot. The x-axis summarizes the predicted probability of having a cardiac arrest in the next 8 hours, whereas the y-

axis shows the observed proportions of patients who have a cardiac arrest in next 8 hours. Histogram below the calibration plot

summarizes the distribution of predicted probability amongst all the patients in our dataset. Abbreviations: IHCA; inhospital cardiac

arrest.

https://doi.org/10.1371/journal.pone.0235835.g003

Table 3. Predictive performance of each model in sets of sensitivity analyses.

AUC (95%CI) PPV (95%CI) NPV (95%CI) Sensitivity (95%CI) Specificity (95%CI) PLR (95%CI) NLR (95%CI)

Medical

Vitals-Only 0.869 [0.862; 0.877] 0.047 [0.034; 0.060] 0.997 [0.996; 0.998] 0.803 [0.714; 0.892] 0.783 [0.701; 0.865] 3.70 [2.63; 4.79] 0.251 [0.160; 0.342]

Vitals+Labs 0.876 [0.870; 0.882] 0.052 [0.039; 0.066] 0.997 [0.996; 0.998] 0.796 [0.733; 0.859] 0.809 [0.746; 0.871] 4.16 [3.01; 5.34] 0.253 [0.193; 0.313]

Surgical

Vitals-Only 0.806 [0.797; 0.816] 0.020 [0.016; 0.025] 0.998 [0.998; 0.998] 0.708 [0.661; 0.754] 0.819 [0.768; 0.871] 3.91 [3.00; 4.82] 0.357 [0.316; 0.398]

Vitals+Labs 0.825 [0.802; 0.848] 0.018 [0.011; 0.026] 0.998 [0.998; 0.999] 0.707 [0.604; 0.811] 0.795 [0.711; 0.879] 3.45 [2.06; 4.87] 0.368 [0.278; 0.458]

ICU

Vitals-Only 0.580 [0.571; 0.590] 0.346 [0.338; 0.353] 0.905 [0.881; 0.930] 0.889 [0.848; 0.930] 0.384 [0.342; 0.426] 1.44 [1.39; 1.49] 0.288 [0.209; 0.372]

Vitals+Labs 0.648 [0.635; 0.661] 0.382 [0.331; 0.434] 0.859 [0.775; 0.944] 0.725 [0.472; 0.977] 0.560 [0.300; 0.821] 1.65 [1.32; 2.04] 0.492 [0.178; 0.874]

Ward

Vitals-Only 0.879 [0.871; 0.886] 0.022 [0.018; 0.026] 0.999 [0.998; 0.999] 0.81 [0.752; 0.868] 0.791 [0.739; 0.844] 3.88 [3.13; 4.63] 0.240 [0.180; 0.300]

Vitals+Labs 0.866 [0.858; 0.874] 0.024 [0.017; 0.032] 0.998 [0.998; 0.999] 0.782 [0.705; 0.859] 0.814 [0.738; 0.890] 4.21 [2.85; 5.59] 0.268 [0.196; 0.340]

Abbreviations: 95%CI, 95% confidence interval; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive

value; PLR, positive likelihood ratio; NLR, negative likelihood ratio

https://doi.org/10.1371/journal.pone.0235835.t003
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predictive than other scores using both vital signs and laboratory results to predict in-hospital

mortality [28]. To date, the best performing model for IHCA (AUC = 0.85) was built solely

using vital signs by Kwon and colleagues. The authors argued that the addition of laboratory

results should improve performance, but this has not yet been confirmed [17].

Interpretation of the results

In our dataset, both the Vitals-Only and Vitals+Labs models were capable of predicting early

IHCA (within the next 8 h) and late IHCA (within the next 24 h). There are three possible rea-

sons for this result. First, physiologically, eight-hourly measured vital signs obtained in the last

48 h might reflect acute deterioration more sensitively than laboratory results obtained within

the last seven days. Second, doctors and nurses might have intervened to treat patients with

abnormal laboratory results to prevent physiological deterioration. As a result, such deteriora-

tion might not have resulted in IHCA [29]; this could be one reason why abnormal laboratory

results did not directly lead to IHCA. However, our data lacks this treatment information, so

we are unable to verify this supposition conclusively. Third, our model might have failed to

learn from the laboratory results. However, laboratory results, which have been clinically and

theoretically proven to be associated with IHCA [13,15,30], have a high feature importance in

the model (Fig 4), which indicates they were successfully learned. In addition, the newer vari-

ables (i.e. the variable measured closer to the time of prediction) of both vital signs and labora-

tory results have heavier weights in the models than older variables, which also evidences

successful feature learning.

Regardless of whether the admission was classified as medical or surgical, we did not

observe a notable difference in the performances of the Vitals-Only model and Vitals+Labs

model. This result is consistent with a prior study that compares the performance of the

National Early Warning Score among medical and surgical patient populations [31]. However,

our model did not predict IHCA well in ICU populations. We believe this is a result of the con-

tinuous vital-sign monitoring and more frequent interventions in ICU. Even with the same

abnormal vital signs, ICU patients are more likely to receive clinical interventions to prevent

IHCA than are ward patients. Given the heterogeneity of patient backgrounds, interventions,

and the amount of available data, a tailored prediction model should be developed specifically

for ICU patients in future trials.

Strengths

Our study has several strengths. First, our model aims to predict unexpected IHCAs rather

than a combined outcome or surrogate outcome. Unlike other outcomes such as ICU transfer,

unexpected IHCA is always objective and always necessitates clinical intervention.

Second, to obtain a straightforward interpretation of the prediction, we used a classification

model rather than a time-to-event model. Classification models were shown to outperform

time-to-event models in predicting hospital deterioration in [22].

Third, all imputation methods assessed in this study are prospectively implementable. A

prior study showed that the timing of each laboratory test itself has predictive value [27]. Our

model used this information for variables with >50% of the data missing, thereby maximizing

the utilization of the available data.

Fig 4. Feature importance in predicting subsequent occurrence of IHCA. Importance of each predictor in the 2 different random forest models: Vitals-Only

model and Vitals+Labs model. 20 most important variables were summarized. Abbreviations: APTT, activated partial thromboplastin time; BUN, blood urea

nitrogen; CRP, C-reactive protein; LD, lactate dehydrogenase; PT, prothrombin time.

https://doi.org/10.1371/journal.pone.0235835.g004
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Limitations and future work

There are various limitations in our study. First, this study was conducted in a single center.

Our results might be biased by the patient backgrounds and clinical practice of a tertiary care

center. If the frequency or methodology of vital measurements or laboratory tests varies in

other hospitals, their predictive values might be different. Even though our model shares many

of the characteristics identified in other clinical deteriorations of patients in prior studies

[15,19], further calibration and validation of our results in different clinical settings are

warranted.

Second, we were unable to obtain any data regarding treatment. Theoretically, the patient

management (e.g. treatment practice and staffing levels) could have changed over the study

period. Such information might have improved the model performance, but we were unable to

obtain it.

Third, some of our input features were missing. For example, various studies have stressed

the importance of respiratory rate, which is mostly missing in our dataset and hence was con-

verted into binary values. However, data will inevitably be missing when this model is used in

a real-world setting. In addition, our results were found to be robust after attempting various

imputation methods; we hence believe our approach is appropriate for developing and validat-

ing a model for bedside use.

Fourth, a low positive predictive value is a global issue in all prediction models of rare

events such as IHCA (0.4% of prevalence) [25,32]. Though no false positives might be better

than many false negatives with respect to cardiac arrest, each hospital needs to seek its own bal-

ance to optimize the tradeoff between false alarms and overlooking IHCA patients. In this

study, we focused on a comparison of the Vitals-Only model and Vitals+Labs model at a widely

investigated threshold (i.e. Youden’s index), rather than the provision of a highly predictive

model. A different threshold and more sophisticated feature engineering might aid in develop-

ing a model with a higher positive predictive value. In addition, it would be worth investigating

the outcomes of ‘false positive’ patients in future studies. These are patients flagged as being at

risk of cardiac arrest, and false positives could still be identified as ‘at risk’ patients, facilitating

early intervention such as a rapid response team.

Fifth, we used eight-hourly discrete vital signs rather than a continuous dataset. This

approach reflects the clinical practice in our hospital (vital signs are measured three times a

day in most of our patients) and prior studies [15,33]. Sometimes, the timing and frequency of

vital-sign measurement reflects the concern of medical professionals [34]. Hence, the addition

of such information might improve the performance of the model.

Sixth, the aim of our model is discrimination rather than calibration. That is, the aim of this

research is to compare the discrimination performance of two models rather than to provide a

well-calibrated risk score. However, if we were to implement the Vitals-Only model in an

actual clinical setting, a well-calibrated model might be highly valuable for clinical decision-

making because it enables clinicians to interpret the predicted probability as a risk score.

Although various clinical tests still solely focus on discrimination (e.g. pregnancy tests and

fecal occult blood tests), they should ideally be all calibrated. As shown in Fig 3, both models

were similarly far from the diagonal of the calibration curve. It is promising that the highest

risk group had a 20%–30% occurrence of IHCA, but future studies should investigate the more

sophisticated calibration of the Vitals-Only model before its clinical application.

Seventh, the random forest model is only partially interpretable. The random forest model

provides the feature importance, which shows the weight of each variable in the model and

enables us to assess the clinical validity of the model’s decision process. However, the random

forest model does not provide the reason why a patient was flagged as likely to have an IHCA
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in the next 24 h. If a clinician were keen to obtain such information, our model would remain

a ‘black box’. In addition, different clinicians could have different interpretations for the flag if

this model were unable to provide any reason for the alert. Despite these drawbacks, we used

the random forest model for the performance reasons summarized in the Methods. Moreover,

for an event such as an IHCA, a clinician’s response to an alert may be quite simple. Regardless

of its cause, a flag will necessitate a clinical review, and clinicians will be able to synthesize all

the available information for clinical decision-making. In such a process, the most important

part of the alert is the act of alerting the clinician rather than providing a reason for the alert.

Moreover, some cardinal investigations in medicine are ‘black boxes’ in nature. Not all clini-

cians understand why a certain saddle shape in an electrocardiogram is highly associated with

a fetal congenital arrhythmia, but all emergency physicians rely on this waveform in their daily

practice. Ultimately, the tradeoff between a model’s performance and its interpretability will

depend on medical professionals at the bedside. In future study, such factors will be highly

important to consider before the Vitals-Only model can be applied in clinical practice.

Eighth, we did not provide any clinical practice as a benchmark comparison for the Vitals-

Only model. This study focuses on the comparison of Vitals-Only model and Vitals+Labs

model rather than providing a single model for clinical use. However, it will be essential to pro-

vide appropriate benchmarks in order to assess a model’s clinical utility.

Finally, as is often the case with all prediction models, we do not yet know whether our pre-

diction model would actually improve the trajectory of patients at risk. Clinically, we have

found little evidence of the reliability, validity, and utility of these systems. However, our

results are persuasive enough to facilitate a prospective validation of the Vitals-Only model.

Implications of this research

While it is important to achieve the best performance by using all the data available, it is also

important to focus on developing a simple model for better generalizability [35,36]. We hope

our results will stimulate further investigations into and implementations of such a model.

Conclusions

In this single-center retrospective cohort study, the addition of laboratory results to a patient’s

vital signs did not increase the performance of a machine-learning-based model for predicting

IHCA. The prediction of IHCAs for patients in the ICU was found to be unreliable. However,

the simpler Vitals-Only model performed well enough on other patient types to merit further

investigation.
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