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Abstract: Bacillus subtilis is an important bacterial species due to its various industrial, medicinal,
and agricultural applications. Prophages are known to play vital roles in host properties. Never-
theless, studies on the prophages and temperate phages of B. subtilis are relatively limited. In the
present study, an in silico analysis was carried out in sequenced B. subtilis strains to investigate their
prevalence, diversity, insertion sites, and potential roles. In addition, the potential for UV induction
and prevalence was investigated. The in silico prophage analysis of 164 genomes of B. subtilis strains
revealed that 75.00% of them contained intact prophages that exist as integrated and/or plasmid
forms. Comparative genomics revealed the rich diversity of the prophages distributed in 13 main
clusters and four distinct singletons. The analysis of the putative prophage proteins indicated the
involvement of prophages in encoding the proteins linked to the immunity, bacteriocin production,
sporulation, arsenate, and arsenite resistance of the host, enhancing its adaptability to diverse en-
vironments. An induction study in 91 B. subtilis collections demonstrated that UV-light treatment
was instrumental in producing infective phages in 18.68% of them, showing a wide range of host
specificity. The high prevalence and inducibility potential of the prophages observed in this study
implies that prophages may play vital roles in the B. subtilis host.

Keywords: bacteriophages; Bacillus subtilis; prophages; prevalence; diversity; induction; in silico
prophage analysis; insertion sites

1. Introduction

All bacteria are prone to infection by the most abundant viruses on earth, which are
called bacteriophages (also known as phages for short) [1]. Based on their lifestyles, phages
are grouped into either virulent (phages that cause cell lysis after infection) or temperate
(phages that cause lysogeny or cell lysis after infection) [2]. In the lysogenic lifestyle, the
DNA of temperate phages is maintained as prophages within the host and is replicated
as its chromosomal integrated form (integrated prophages) or in its circular or linear
plasmid forms (plasmid prophages) to render the host as a lysogen [3,4]. The lytic genes of
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prophages are repressed, while some regulatory and lysogenic conversion genes continue
to be expressed [5] to maintain the lysogenic state and to induce prophage-mediated
host-phenotypic changes, such as super-infection exclusion, increasing pathogenicity, and
expanding the metabolic capacities of the host [6,7].

About half of the sequenced bacteria harbor prophages [7] whose genome accounts
from less than 1.00% up to 20.00%, depending on the type of the species [8]. The proportion
of prophages in the genomes of Bacillus thuringiensis is 10.18% [9], while that of Group
A Streptococcus (GAS) ranges from 7.10 to 12.40% [10]. The prophage of Escherichia coli
O157:H7 strain Sakai accounts 16.00% [11], while that of Streptococcus thermophilus and
Streptococcus pyogenes are 0.40 and 9.50%, respectively [12]. Moreover, the prophages of
Pectobacterium spp. and Dickeya spp. represent less than 2.00% [13]. Not all prophages
are able to induce infective phages because some may not be fully functional [14]. The
literature shows that the prevalence of inducible functional prophages ranges from 0 (i.e.,
defective) to 42.00% [15,16].

Bacillus subtilis is a fast-growing, Gram-positive, spore-forming bacterium that is
regarded as a model organism due to its importance in the study of the fundamentals of
bacterial physiology and metabolism [17]. It is also considered as a key industrial organism
due to its natural and engineered use in industrial production application, such as in
food production (through fermentation), hydrolytic enzymes (amylases, protases), and fine
chemicals (e.g., riboflavin) [18]. Despite the importance of B. subtilis strains in the food
industry and biotechnology, the temperate phages SPbeta and phi3T are the two main
phages that have been involved in research the most in past decades, and the B. subtilis
168 strain is the most frequently preferred host [19,20]. However, no data are available
regarding the prevalence, diversity, and inducibility potential of the prophages in large
collections of B. subtilis strains.

Comparative genomics studies can show the diversity of prophages. Studies into
the prophage-encoding putative proteins and inducibility potential in B. subtilis can help
us to understand their desirable and undesirable effect on their hosts as well as on their
applications in the fermentation industry. The present study explored (a) the prevalence, di-
versity, characterization, and plausible roles of prophages in 164 sequenced B. subtilis strains
via in silico analysis methods and (b) the UV-light inducibility potential of prophages in
91 B. subtilis collections and their prevalence. This work represents the first comprehensive
study on the prevalence, diversity, and UV-light inducibility potential of prophages in a
large collection of B. subtilis strains.

2. Materials and Methods
2.1. Collection of B. subtilis Genome Dataset and In Silico Prediction of Prophages

Complete genome sequences of 194 B. subtilis strains deposited in NCBI (https://
www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/665/) (accessed on 5 February
2021) were retrieved for putative prophage prediction. Following manual analysis, the
strains of 30 genomes were dropped from further analyses for multiple reasons, such as
prophage predictions that comprised >99.80% of the host’s genome (BS38 (NZ_CP017314.1),
HJ0-6 (NZ_CP016894.1), and SG6 (NZ_CP009796.1)), the prediction of prophages with ‘N’
nucleotides (FB6-3 (CP032089.1)) and when strains shared identical strain names (with
>98.00% symmetric identity) coupled with the prediction of identical/nearly identical
prophages. Thus, the genomes of 164 strains (Table S1) were considered for prophage
prediction using two programs: PHASTER [21] and PhiSpy [22]. PHASTER is a web-
based program that uses gene/protein hits in a given region to predict prophages as intact
prophages (IPs), questionable prophages (QP), and incomplete prophages (InP) based on
their completeness. It also annotates the prophages using Glimmer software for structural
annotation and BLASTP for functional annotation [21], which were used for the analysis of
the putative prophage-encoded proteins.

The integrated intact prophage regions predicted by PHASTER were then checked
for whether they could be identified by the second prophage predicting program, PhiSpy,
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which operates on a Unix-based OSs platform. The PhiSpy program can identify prophages
with and without sequence similarities to known phage sequences. The program was
run with the default setting and using the B. subtilis_subsp._subtilis_str._168 training set
distributed with it. The exact position of the end coordinates of the PhiSpy-predicted
regions showed some degree of deviation compared to the PHASTER prediction due to
variations in the prediction methods [23]; thus, the significance of their similarity was
further checked using BLASTN. Only integrated IPs that were identified by both programs
were included in the downstream analysis. Because PHASTER has the ability to evaluate
and report the completeness of the prophages, the prophage genome sequences extracted
using the end coordinates specified by PHASTER were considered as IP genome sequences.

2.2. Occurrence, Distribution and Prevalence of Prophages in B. subtilis

The occurrence of IPs in the 164 B. subtilis genomes and their distribution as either their
integrated or plasmid forms was evaluated. All of the putative prophages were used to
study their occurrence and distribution along with the genome sizes of the hosts. Only IPs
were considered to estimate the prevalence, abundance (number of IPs per host genome),
and proportion (genomic proportion of IPs) and to study the features of their genomes.
The genomic proportion of IPs was calculated as “% = (Total IP Length ÷ Host Genome
Length) × 100”.

2.3. Bioinformatic Analysis of B. subtilis Prophages

A comparative analysis of the IP genomes was carried out by generating average
similarity matrices using Gegenees v3.1 with the 200/100 setting-fragmented BLASTN
and TBLASTX comparison methods [24]. The phylogenomic relationships of the IPs
were produced using the neighbor-joining method in SplitsTree4 [25]. The phylogenomic
tree was then visualized using the iTOL (v5) tool (https://itol.embl.de/ (accessed on 10
November 2021)). A genome-scale dotplot was created using the Genome Pair Rapid
Dotter (Gepard) [26].

2.4. Growth Conditions of Bacteria and Bacteriophages

The B. subtilis used for the prophage induction study included strains from the Ko-
rean Culture Center of Microorganisms (KCCM), Korean Agricultural Culture Collection
(KACC), Korean Collection for Type Cultures (KCTC), American Type Culture Collection
(ATCC) as well as lab isolates (Table S2). Of the strains, the genomes of five strains were
found in the NCBI database, namely JCM 1465 (NBRC 13719 (NZ_AP019714.1)), KCCM
32835 (NCIB 3610 (NZ_CP020102.1)), SRCM 102751 (NZ_CP028217.1), KCCM 11316 (ATCC
6633 (NZ_CP0349431.1)), and KCTC 2217 (168 (NZ_CP0110052.1)). B. subtilis were cultured
aerobically in tryptic soy broth (TSB: BD, Sparks, MD, USA) or TSB agar (TSA: TSB enriched
with 1.5% agar) at 37 ◦C. Lactobacillus strains were cultured in BD Difco™ Lactobacilli MRS
media. During the course of the phage isolation and propagation procedures, TA soft agar
containing nutrient broth (8 g/L), NaCl (86 mM), MgSO4.7H2O (0.8 mM), MnSO4 (0.3 mM),
and CaCl2 (1.0 mM) (pH 6.0), SM buffer containing 50 mM Tris-HCl (pH 7.5), and 100 mM
NaCl plus 10 mM MgSO4 were used as described in the works of Bandara et al. (2012) [27].

2.5. UV-Light Survival Rate of B. subtilis

To optimize a protocol for the prophage induction experiment, B. subtilis strains were
exposed to a UVC light source (T-8C, 8W with 254 nm range, VILBER) at varying distances
(i.e., 8, 9, and 10 cm) and exposure times (i.e., 1, 2, 3, 5, 10, 15, and 20 min) in the dark.
After the addition of an equal volume of fresh TSB medium, cultures were kept in the dark
for 2 h at 37 ◦C followed by dilution, plating, and incubation overnight at 37 ◦C for CFU
counting. The survival rate was calculated using the plate count method presented in the
reports of Djurdjevic-Milosevic et al. (2011) [28].

https://itol.embl.de/
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2.6. Prophage Induction up on Ultraviolet-Light Treatment of B. subtilis

B. subtilis strains were treated with UV light for the prophage induction experiments
and for the supernatant preparations, and the strains served as indicator strains to test
the infectivity of each supernatant by means of the dotting assay. An amount of 500 µL of
exponentially growing B. subtilis culture was irradiated with UV-light, mixed with an equal
volume of TSB, and incubated at 37 ◦C in dark for 2 h. Finally, the culture was centrifuged
at 14,000× g for 5 min, followed by the collection and filter-sterilization (0.2 µm pore size)
of the supernatants as outlined by Kim et al. (2012) [29]. All experiments were carried out
in triplicate.

2.7. Infectivity, Prevalence of UV-Light Inducible Prophages and Phage Isolation

The infectivity and host spectrum of the induced prophages were determined by
dotting the supernatants onto 91 indicator B. subtilis strains using the dotting assay method
described by Kropinski et al. (2009) [30] or as indicated otherwise (Table S2). An amount
of 10 µL of supernatant was dotted onto pre-solidified TSB agar that had been overlayed
with 300 µL of the indicator strain that had been grown overnight after being mixed with
4 mL TA soft agar. All supernatants a showing clear lysis zone (C) and some (n = 12)
showing a turbid lysis zone (T) were considered for phage purification and evaluation.
Moreover, the UV-light-treated supernatants that eventually produced infective phages
were compared against their corresponding non-UV-light treated supernatants to check
for any spontaneous prophage inductions. The non-UV-light-treated supernatants were
prepared using the same method used for the preparation of UV-treated supernatants
described in Section 2.5 above but without UV-light treatment.

2.8. B. subtilis Phage Host Range Analysis

Host range analysis was carried out against the B. subtilis strains and other purposely
selected bacteria, including Gram-positive and Gram-negative as well as pathogenic and
non-pathogenic species using the dotting assay method outlined by Ghosh et al. (2018) [31],
in which 5 µL of phage samples were dotted on pre-solidified TA soft agar containing
indicator strains. In addition to B. subtilis, five B. licheniformis (JCM 2505, SCC 125037, SDC
125016, SCC 123050, and SDC 125015), three Lactobacillus spp. (SRCM 100888, KACC 11451,
and KACC 13877), five B. cereus groups (ATCC 1611, ATCC 14579, ATCC 13061, ATCC
21768, and ATCC 27348), one B. thuringiensis (ATCC 10792), one B. mycoides (ATCC 21929),
one Staphylococcus aureus (ATCC 144458), one Listeria monocytogenes (Scott A), one E. coli
(BW 25113), and one Enterobacter sakazakii (KCTC 2949) were included. Phages that showed
identical host range lysis patterns were compared using the efficiency of plating (EOP)
assay [32] and calculated as (PFU on Target Host Strain ÷ PFU on Propagation Host Strain)
× 100.

2.9. B. subtilis Phage Large Scale Propagation Condition Obtimizations

Phage growth conditions such as media types (solid vs. liquid), temperature (30 ◦C
vs. 37 ◦C), and multiplicity of infection (1 vs. 0.1) were optimized. Large-scale propagated
phages were centrifuged at 10,000× g for 30 min and incubated overnight at 4 ◦C after the
addition of 10% (w/v) polyethylene glycol (PEG 8000, Sigma, Saint Louis, MO, USA) and
0.5 M NaCl. They were then precipitated at 10,000× g for 30 min, the pellet re-suspended
in SM buffer, filter-sterilized (0.2 µm pore size), and subjected to ultracentrifugation in
six-density gradients of CsCl, vis-à-vis 1.7, 1.5, 1.45, 1.4, 1.3, and 1.2 g/mL of SM buffer
at 166,900× g for 4 h using an ultracentrifuge (Soravel WX + ULTRA SERIES Centrifuge,
Thermo Scientific, Waltham, MA, USA) at the Korea Food Research Institute (KFRI, Korea).
Blue bands were withdrawn using a syringe from the centrifuge tubes (06750-AV tubes,
Thermo Scientific, Asheville, NC, USA) and dialyzed against SM buffer by means of gentle
shaking at 4 ◦C overnight followed by PFU checking and were stored at 4 ◦C [33].
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2.10. Data Analysis

Data were analyzed using the ggplot2 package [32] provided in R programming [34]
with its integrated development environment RStudio [35] (available at https://www.r-
project.org/ and https://rstudio.com/ (accessed on 2 February 2022)).

3. Results
3.1. Prevalence and Distribution of Prophages in Sequenced B. subtilis Genomes

Prophages were predicted in 164 sequenced B. subtilis genomes and were used for
prevalence and distribution analysis. The analyses showed that all of the strains harbored
one or more types of intact prophages (IP), questionable prophages (QP), and incomplete
prophages (InP). Whereas 92.07% (n = 151) of the strains contained IP and/or QP, 8%
(n = 13) contained InP only. The analyses showed that 75.00% of the (n = 123) B. subtilis
strains have IP, while 25.00% (n = 41) of them have no IP (Table S1).

The sizes of the host genomes for most B. subtilis strains are confined from around 3.4
to 4.5 Mb and can contain all types of prophages. A relationship analysis between the type
and abundance of putative prophages and host genome size showed no strong association.
It is worth mentioning that the IPs were not found for strains with small-sized genomes
(Figure 1).
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Figure 1. Distribution of intact prophages (IP), questionable prophages (QP), and incomplete
prophages (InP) in 164 sequenced B. subtilis genomes. Host genome size is indicated on the X-
axis. The distributions of the types of IPs according to host genome sizes are indicated on the Y-axis.
Closed circles represent predicted prophages, and their colors indicate IP abundance, as indicated at
the top.

When we look into the locations of the IPs on the replicons of the hosts, 93.50%
(n = 115) of the strains have integrated IPs, 2.44% (n = 3) have plasmid IPs, and 4.07%
(n = 5) have both integrated and plasmid IPs (Figure 2).

Initially, the PHASTER program was able to predict a total of 180 putative intact
prophages (172 integrated and 8 plasmid forms) from 123 B. subtilis strains. In the genome
of one strain (B. subtilis QB928), the PHASTER program identified two Ips with different
scores from the same region, the reason for which is not clear. Thus, only one, the one
with the highest score, was considered for further analysis. Overall, a total of 179 Ips
(171 integrated and 8 plasmid forms) were predicted by PHASTER, and the details are
provided in Table S1.

https://www.r-project.org/
https://www.r-project.org/
https://rstudio.com/
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Out of 171 integrated IPs predicted by PHASTER, 162 were re-identified by the second
prophage prediction program, PhiSpy, which showed some degree of deviation in the exact
locations of the start and end coordinates. Seven of the integrated IPs were not identified by
PhiSpy and were hence excluded from the downstream analysis of the IPs. The remaining
two integrated IPs predicted by PHASTER from the B. subtilis NCD-2 chromosome could
not be checked by PhiSpy because its genome was not annotated. However, following
manual inspection, most of the genes of these IPs were annotated to be phage proteins;
thus, they were kept for further analysis. Taken together, the further downstream analysis
was carried out by using 172 IPs, i.e., 164 integrated (162 verified by PhiSpy and 2 PhiSpy
unverified) and 8 plasmid IPs (Table S3).

3.2. Characterization of Intact Prophages in B. subtilis

Summary statistics were carried out for the genomic features of 172 IPs (Table 1). The
mean genome length, genome proportion, protein number, and GC percent were found to
be 55.02 kb, 1.86%, 71.33, and 41.63%, respectively. The attachment-site show-up and the
number of tRNAs encoded by the IPs generated by the PHASTER program were evaluated.
While the program identified the attachment sites for 56.39% (n = 97) of the IPs, 43.60%
(n = 75) of the IPs did not show attachment sites. tRNA was only encoded in 8.14% (n = 14)
of the IPs (Table S3).

Table 1. Genomic features of 171 intact prophages in B. subtilis predicted by PHASTER.

IP Genome Features Mean ± SD Min Max

Length (kb) 55.02 ± 34.04 21.50 148.80
Genome proportion (%) 1.86 ± 1.54 0.01 7.18

Protein No. 71.33 ± 50.25 26.00 204.00
GC (%) 41.63 ± 3.90 34.32 47.75

The abundance of IPs in each host genome was found to be 1 to 5, while their genomic
proportion ranged from 0.01 to 7.18% compared to the genomes of their hosts. A total of 82
(66.66%) of the strains had one IP per genome (accounting <1.5% of host genome), while 27
(21.95%) of the strains had two IPs with genome proportions ranging from 1.5% to 4.5%.
Nine (7.32%) strains harbored three IPs with a high genomic proportion ranging from 4.5
to 7.5% (Figure 3a). Generally, we observed that the genomic proportion of the prophages
increased as the genome abundance per strain increased, as predicted.
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The IPs were plotted against their length and GC-contents to analyze the features and
associated genome distribution. (a) The IP genomes had genome lengths spanning from
20 to 150 kb with GC-contents ranging from 34 to 48%. (b) Nearly two-thirds of the IPs
(n = 118) had genomes that were less than 50 kb long and broader GC-content distributions.
(c) Some of the IPs (n = 28) had genomes that were 50 to 100 kb long with significantly
broader GC-content distributions ranging from 34 to 48%. (d) Others (n = 26) IPs contain
genomes that extended from 100 to 150 kb and that had a relatively narrow GC-content of
34 to 38% (Figure 3b).

The study into the relationship between the genome length of the IPs and their GC-
contents revealed a slight negative association. When IPs have shorter genomes, they tend
to have a higher GC-content and vice versa. The majority of the prophages with genome
lengths that are less than 50 kb appeared to have a relatively higher GC-content (38 to 48%),
while those with lengths greater than 100 kb tend to have lower GC-content (34 to 38%).

3.3. Diversity of B. subtilis 172 Intact Prophages in B. subtilis

Both nucleotide and translated amino acid sequence comparisons were carried out
with the Ips at genome-scale using Gegenees software. A comparison heatmap revealed the
presence of prophage clusters with identical/nearly identical and highly or less similarity
scores. Following BLASTN comparison, the majority of the IPs (n = 153) could be assigned
into 13 main clusters and were put into blocks. Identical or nearly identical and highly
similar IPs (score > 70%) are depicted in green and t in black rectangles. Some IPs are
similar (score > 40% and depicted in yellow and put in blue rectangles), while others are
dissimilar (score <40% and depicted in red) (Figure 4a). Moreover, some of the IPs showed
no similarity and existed as singletons.
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Figure 4. Comparison of 172 IP genome sequences predicted in B. subtilis (a,b) Gegenees heatplot
generated using BLASTN and TBLASTX, respectively, with 200/100 settings. Heatplot colors indicate
similarity ranging from nearly identical (green) to similar (yellow) or dissimilar (red). The corre-
sponding numbers of group members of each cluster are indicated on the y-axis. Labeled boxes at the
top represent IP clusters. (c) Dotplot alignment of IP sequences generated by Gepard.

Some members of the IPs of the cluster depicted in green (e.g., clusters H, I, and K)
have similarity scores as high as >99%, implying their ubiquity, where their sequences are
shared by numerous strains, rendering them to colonize a diversity of strains. Dissimilarity
among the IPs might imply their distinctness across the strains. The details of the similarity
scores used to build the heatmap and the members of each cluster are presented in Table S4.

The TBLASTX-translated IP comparison analysis generated similar clusters to that
of the nucleotide comparison method, but with reshuffling of few IPs from one cluster to
another. Cluster labels that do not coincide with the BLASTN comparison in Figure 4a are
shown by small letters in Figure 4b. Members of cluster ‘B’ in BLASTN comparison joined
cluster ‘A’ in the TBLASTX comparison, while some members of cluster ‘A’ left their prior
cluster and restructured into a new cluster (assigned as cluster ‘c’) in TBLASTX comparison
mode (Figure 4b, Table S5).

All 172 IPs sequences were concatenated into a single file in the same order as in the
heatmap similarity matrix (Table S4), with the exception of the singletons, which were
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concatenated to be at the end. Gepard with a sliding window of 10 nucleotides was used to
generate a dotplot alignment, as shown in Figure 4c.

Looking into the annotations of the IPs, Bacillus phage SPbeta (NC_001884), Bacillus
phage phi105 (NC_004167), Brevibacillus phage Jimmer2 (NC_041976), and Brevibacillus
phage Jimmer1 (NC_029104) were among the topmost common phages that showed ho-
mology among the BLAST hits. The majority of the Ips that have the same most common
phages hits were clustered together in the Gegenees analysis. To see the relationships
at the genomic level, the genomes of the IPs were further compared based on the most
common phages that they had in common as well as the B. subtilis temperate phage phi3T
(KY030782.1) and the skin element defective prophage containing the B. subtilis 48 kb region
found in NCBI (D32216.1), as seen in Table S6.

3.4. Analysis of Insertion Sites of B. subtilis Intact Prophages

The insertion sites of the integrated IPs (n = 161) were analyzed to demonstrate the
presence of common and distinct insertion sites as well as the 5′ and 3′ end genes of the
prophages. Considering the position of both the 5′ and 3′ end coordinates, 138 of the IPs
showed an intergenic site insertion, while five were intragenic. There were 18 other IPs
that showed intragenic site insertion in their 5′ end coordinates only, and 10 others showed
intragenic insertion at their 3′ end coordinates only. The DinB family- and sporulation-
related proteins encoding the genes were among the frequently flanking genes of the
prophage region on the left side. The spoIISC gene that encodes three-component toxin–
antitoxin–antitoxin system antitoxin SpoIISC was the most frequent gene lanking the
prophage regions from the right side. Most IPs of the same cluster tend to have the same
or similar preferential insertion sites. Yet, different insertion sites were also observed in
some IPs of the same cluster, suggesting their richness in diversity (Table S7). Moreover, in
the case of intergenic-inserted Ips, the 5′ end coordinate may be positioned at the 5′ end or
downstream of the first prophage’s gene. Some prophages show intragenic insertions into
RNAs, in which the prophages’ start and end coordinates are inserted within the tRNA
sequences, including tRNA-Arg, tRNA-Val, tRNA-Thr, and rRNA-23S ribosomal RNA.
Most IP members of a cluster prefer to have the same genes at their 5′ and 3′ ends (Table 2).

Table 2. Genes present at 5′ and 3′ integrated intact prophage ends.

Clusters
Commonset 5′ and 3′ End Genes Prophages’ Coordinates Exact

Position with Respect to A GeneMost 5′ End Genes Most 3′ End Genes

A ATPase YjoB
N-acetylmuramoyl-

L-alanine
amidase

5′ end→ 3′ end

B ATPase YjoB
N-acetylmuramoyl-

L-alanine
amidase

5′ end→ 3′ end

C Tetratricopeptide
repeat protein

N-acetylmuramoyl-
L-alanine
amidase

Intragenic→ 3′ end

I
Type I

glutamate–ammonia
ligase

Intergenic 5′ end→ intergenic

F Intergenic Intragenic Intergenic→ intragenic

H Intergenic Intergenic Intergenic→ intergenic
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Table 2. Cont.

Clusters
Commonset 5′ and 3′ End Genes Prophages’ Coordinates Exact

Position with Respect to A GeneMost 5′ End Genes Most 3′ End Genes

M
SDR family

NAD(P)-dependent
oxidoreductase

Intergenic 5′ end→ intergenic

K
Sigma-70 family

RNA polymerase
sigma factor

ImmA/IrrE family
metallo-peptidase Intragenic→ intragenic

3.5. Phylogenomic Analysis of 172 B. subtilis Intact Prophages

Phylogenomic trees of Ips were constructed following the NJ method in SplitsTree4.
The result showed that the Ips could be assigned into 14 clusters. Some of the clusters have
many Ips while others have only a few. The phylogenomic tree analysis also showed the
presence of singletons, indicating the diversity of the IPs (Figure 5).
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3.6. Functional Annotation Analysis of Putative Proteins Encoded by B. subtilis Intact Prophages

Functional annotation analysis was carried out for 50 heterogeneous cluster-representative
putative Ips that were selected based on their phylogenomic relationships. The analysis
primarily focused on the gene products of the prophages in order to look into the plausible
roles of the prophages in their host properties. The exercise demonstrated that the prophage-
encoded putative proteins included various enzymes, such as proteases and peptidases,
lipases, catalase, hydrolases, oxidases, and transferases. The prophages also encode puta-
tive sporulation-, bacteriocin-, immunity-, and arsenite and antibiotics resistance-related
proteins. Some of the proteins were linked to transporters, while other products were
associated with toxin–antitoxin and apoptotic control systems (Figure 6).
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3.7. Optimization of UV-Light Treatment for Induction of B. subtilis Prophages

The effect of UV-light on the survival of the B. subtilis was optimized before the
prophage induction study. UV-light exposure for 1 min at 8, 9, and 10 cm distances
inactivated 65 to 80% of B. subtilis. The deactivation level increased from 75 to 87% upon
increasing the exposure time by a factor of 1 (Figure 7). A linear relationship was observed
between the survival rate and UV-light exposure distance for up to 2 min. As the exposure
time increased to 2 min, the exposure distance tended to have less impact, suggesting the
greater effect of the exposure time compared to the exposure distance on the survival of
B. subtilis. Prophage induction increased as the viability of the host decreased [7]. It has
also been documented that a survival rate of about 11% is suitable for meaningful growth
comparisons [36]. In our case, since exposing the bacteria for 2 min at a 9 cm distance
yielded an ~15% survival rate, that exposure setting (for 2 min from 9 cm) was adopted for
prophage induction.
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3.8. Examination of B. subtilis Supernatants for the Presence of Infective Prophages and
Phage Isolation

Supernatants prepared from 91 UV-light-treated B. subtilis strains were dotted on
91 B. subtilis indicator strains using the spot assay method to assess the presence of induced
infective prophages. The dotting assay profiles of all of the supernatants are presented in
Table S2. A given supernatant can display clear lysis zones in multiple or single indicators.
Clear lysis-forming supernatants were considered for the next phage isolation steps. Some
supernatants displayed clear zones in multi-indicators, providing an opportunity to con-
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sider alternative indicator hosts for phage isolation trials, given that clear lysis showing
supernatants remains unresponsive to plaque formation tests or fails to produce sufficient
phage titers. Infective phages were isolated from clear lysis-forming supernatants.

Some supernatants formed turbid lysis but not clear lysis. Ten (10) turbid lysis-forming
supernatants and two (2) turbid and clear lysis-forming supernatants were considered
for further phage isolation tests using indicators on which they showed turbid lysis to
assess whether or not these supernatants are effective in producing functional phages.
All of these supernatants failed to support plaque formation except the two (2) that form
both turbid and clear lysis. Moreover, the UV-light-treated supernatants that formed the
plaques were considered for comparisons against their corresponding supernatants that
had been prepared without UV-light treatment. Some of the supernatants prepared from
non-UV-light-treated B. subtilis strains were able to form a clear zone similar to the treated
ones, suggesting the spontaneous induction of the prophages (data not shown).

3.9. Inducibility Potential of B. subtilis Prophages

Supernatants were prepared from 91 B. subtilis strains following UV-light treatment to
assess the inducibility potential of the prophages. The spot assay test showed that 26.37%
(n = 24) of the supernatants formed clear lysis, while 48.4% (n = 44) formed only turbid lysis
zones. Likewise, the plaque-forming assay showed that 20.88% (n = 19) of the supernatants
formed plaques. In conclusion, infective phages were isolated from 18.68% (n = 17) of the
clear lysis-forming supernatants (Figure 8).
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Figure 8. Prevalence of in silico-predicted prophages and UV-light inducible of prophages in
B. subtilis.

3.10. A Comparison of In Silico Predictions with UV-Light Induced Prophages

When searching for the B. subtilis strains to be used in both the in silico and induction
studies, we were able to identify five strains (Table 3). The in silico prophage analysis
showed that four of the strains contained at least one integrated IP, while one contained IPs
in both their integrated and plasmid forms. The UV-light induction experiment showed
that while all of the supernatants of the strains formed turbid lysis zones, only three display
clear lysis zones tested on 91 indicator strains. During the plaque-forming assay, only one
supernatant (NBRC 13719) showed plaques. The supernatants from the SRCM102751 and
ATCC 6633 strains were able to form a clear lysis zone in multiple indicator strains but
failed to form plaques during the plaque-forming assay.
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Table 3. The prevalence of UV-light inducible prophages in 5 B. subtilis.

Strain Name Genome (Plasmid)
Accession Number

Number of
Predicted
Prophages

No. of Lysis Showed Indicators
Following Dot Assay Plaque

Display
Purified
Phage

Clear Lysis Turbid Lysis

NBRC 13719 NZ_AP019714.1
(NZ_AP019714.1) 2 (1) 5 2 Yes Yes

NCIB 3610 NZ_CP020102.1 3 (1) 0 3 ND No

SRCM102751 NZ_CP028217.1 1 2 9 No No

ATCC 6633 NZ_CP034943.1 1 13 15 No No

168 NZ_CP010052.1 3 0 3 ND No

ND: Not detected.

3.11. Large-Scale Propagation Conditions and Host Range Analysis

Seventeen (17) B. subtilis phages were isolated and their respective host, and their
propagation conditions are presented in the Supplementary Materials (Table S8). Most
of the phages were propagated in large-scale liquid media at 37 ◦C. Few phages were
propagated in solid media at 30 ◦C.

Host range analyses of the 17 phages were carried out in 50 indicators. Twenty-eight
(28) indicators on which the phages showed clear lysis or no lysis were sorted for host
range lysis pattern comparison (Table 4). Two groups of phages (green and blue) showed
similar lysis patterns in all of the indicators, while the rest showed distinctly different lysis
patterns. The member phages of the different groups appeared to have a narrower host
range, while those that showed distinctly different lysis patterns tended to have broader
host ranges. The phages with similar lysis patterns were further analyzed using relative
efficiency of plating (EOP). However, they did not show satisfactory score variations to
make any generalizations (data not shown).

Table 4. Phage host range analysis of B. subtilis phages on 28 B. subtilis indicator strains.

B. subtilis
Indicator Strains

B. subtilis Phages (BSTP)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

KCCM11779 + + + - + − − − − − + + + − − − +
KCCM35421 − − − + − − + + + + − − − + + + −
KCCM12248 − − − + − + + + + + − − − + + + −
KCCM41990 + + + − + − − − − − + + + − − − +
SRCM101407 + + + − + − − − − − + + + − − − +
SRCM100731 − − − − + − − − − − − − − − − − −
KCCM12513 + + + − + − − − − − + + + − − − +
KCCM11736 + + + − + − − − − − + + + − − − +
KCCM11734 + + + − + − − − − − + + − − − − −
KCCM11496 + + − + + + + + + + + + + + + + +
KCCM12513 + + + − + − − − − − + − + − − − +
KCCM40443 + + + − + − − − − − + + + − − − +
KCCM11733 − − − − + − − − − − − − − − − − −
KCCM41991 + + + − + − − − − − + + + − − − +
KCCM41462 − − − − + − − − − − − − − − − − +
KCCM11815 + + + − + − − − − − + + + − − − +
KACC 17802 + + + − + − − − − − + + + − − − +
KACC 12680 + + + − + − − − − − + + + − − − +
KCCM12511 + + + − + − − − − − + + + − − − +
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Table 4. Cont.

B. subtilis
Indicator Strains

B. subtilis Phages (BSTP)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

70-4 − − − − − − − − − − + + + − − − +
KACC 17797 + + + − + − − − − − + + + − − − +
SRCM102751 + − − − + − − − − − + − − − − − −
KACC 10111 + + + − + − − − − − + + + − − − +
KACC 10112 − − − + − + + + + + − − − + + + −
SRCM100170 − − − − + − + − − + + − − − − + −
KCCM11796 + + + − + − − − − − + + + − − − +
SRCM100336 + + + − + − − − − − + + + − − − +
KCCM12027 + + + − + − − − − − + + + − − − +

Lysis (+) 19 18 17 4 23 3 5 4 4 5 21 18 18 4 4 5 19
No Lysis (−) 8 9 10 24 4 25 23 24 24 23 6 9 9 24 24 23 8

Furthermore, the host range of the phages was investigated using 19 purposively
selected non-B. subtilis bacterial species. These include Gram-positive bacteria, namely five
B. licheniformis and B. cereus, three Lactobacillus brevis, and one Staphylococcus aureus, Listeria
monocytogenes, B. thurengenesi, and B. mycoides and Gram-negative bacteria including one
Escherichia coli and Cronobacter sakazakii. The phages showed no lysis on the non-B. subtilis
strains, except for the B. licheniformis strains, on which some of the phages showed clear or
turbid lysis (data not shown).

4. Discussion

The present in silico prophage study uncovered a high prevalence of IPs in a large
collection of B. subtilis genomes. The study identified and examined 172 IPs from 123
sequenced B. subtilis strains using two prophage prediction programs, namely PHASTER
and PhiSpy. Of the sequenced 164 B. subtilis strains included in this study, 75.00% of them
contain IPs (Figure 8)—mostly in integrated form (93.50%). A total of 4.07% of the strains
have both IP forms, while 2.44% only have prophages in their plasmid form, expanding
the diversity of B. subtilis prophages. Previous studies documented that most temperate
phages perpetuate their genomes through integration into the chromosomes of their hosts
and that some maintain lysogeny via plasmid formation [37]. Bacillus phage vB_BtS-B83
*NC_048762.1) [38] and vB_BceS-IEBH [NC_011167.1] [39] are examples of experimentally
proven plasmid prophages in B. thuringiensis host.

Prophages are particularly prominent in pathogenic bacteria [7,40]. Virulence factor-
coding genes of pathogenic bacteria are often associated with prophages [41]. Previous in
silico prophage prevalence and diversity analyses have mainly been focused on various
pathogens. In one study using PHASTER, the prevalence of full-length or putatively
full-length prophages in Gram-positive pathogenic Pneumococcus (n = 482) was 45.00%,
and the total identified full-length prophages were 286 [42]. Studies using the same
method reported prophage prevalence of up to 64.90% in Gram-negative Pectobacteriaceae
phytopathogen (n = 57), with 37 intact prophages being identified [13], and up to 81.00%
in Gram-positive B. thuringiensis (n = 61), in which 135 putative complete prophages
were identified [9]. Likewise, studies using the multiplex PCR method showed 87.00%
prophage prevalence in Gram-positive S. aureus pathogens [43] and 80.00% in Gram-
negative Flavobacterium psychrophilum pathogens [44].

Relevant information on the prevalence of prophages in non-pathogenic bacterial
species is limited. Thus, a higher or comparable prevalence of B. subtilis prophages with
that of the aforementioned pathogens is interesting and of high value. Previously, it was
suggested that lysogeny is frequent in fast growers, as they provide more resources for
virion production [7]. Thus, it is possible that as fast-growing bacteria, in B. subtilis infection
and lysognization across strains by temperate phages takes place frequently, resulting in a
high prevalence of prophages.
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High genetic diversity was noticed among the predicted IPs. Comparative genomics
of the IPs revealed that the prophages demonstrated diverse but structured relationships,
with most of them being grouped into 13 clusters and four distinct singletons. The presence
of highly similar prophages in different B. subtilis strains could imply that such prophages
may have high infective power, whereas the less similar ones and singletons may have
lower infection ability. However, it was not easy to make generalizations because the
number of hosts used for prophage identification or the number of related phages used for
homology searches may not be comprehensive enough.

Detailed analysis of the gene annotations indicated by PHASTER showed that Bacillus
phage SPbeta, Bacillus phage phi105, Brevibacillus phage Jimmer2, and Brevibacillus phage
Jimmer 1 are the most common phages to 28 (16.28%), 25 (14.53%), 35 (20.35%), and
17 (9.88%) IPs. Upon the comparison of these IPs and phages, significant similarities were
only able to be observed among some of the IP with the SPbeta and phi3T phages but
not the others, supporting the high diversity of the IPs. Most of the Spbeta-related IPs
were grouped into two clusters, L and M. Only about half of the phi105-related IPs could
be assigned into cluster I, with the rest being distributed into multiple clusters. The
observation that some of the Ips have the most common phages from different host species
may indicate the limitation of the information provided by B. subtilis phages.

According to the current International Committee on Taxonomy of Viruses (ICTV)
classification scheme, the Bacillus phage SPbeta and phi105 are the only two B. subtilis
temperate phages classified to the genus Spbetavirus and Spizizenvirus, respectively, under
the family Siphoviridae. Based on the ICTV criteria, to classify phages into the same genus,
they should share >50% DNA sequence identity [45]. Our findings showed that only 30.81%
(cluster L and M members) of the identified IPs shared significant sequence similarity with
the Bacillus phage SPbeta and phi105, meaning that they may belong to the same respective
genus. The majority of the other species showed no relatedness to either SPbeta or phi105,
suggesting the rich diversity of the prophages in B. subtilis strains. It is important to note
that the diversity of the IPs and their insertion site analysis results can vary with different
prediction platforms. In fact, the two prophage prediction tools used in this study mostly
showed variation in terms of the same IP end coordinates.

We used a large collection of B. subtilis strains (n = 91) to study the UV-light inducibility
potential of B. subtilis prophages and 18.68% of them produced infective phages that can
form clear plaques and be isolated. Hinting at the inducibility prevalence of the prophages
in B. subtilis, five strains were studied in both in silico and inducibility studies. All of the
strains appeared to have at least one IP in the in silico analysis, but following UV-light
induction treatment, only one (20%) could produce plaques.

The inducibility potential of the prophages observed in this study is significantly lower
than the prevalence of the IPs (75%), which are commonly identified from two prophage-
predicting programs in the in silico analysis. During the induction study, some supernatants
a showing clear lysis zone failed to form plaques and few plaques remained unresponsive in
the subsequent phage isolation steps, indicating that some prophages might still be induced
but somehow defective to further their lifestyles. A similar observation was reported in a
study with Staphylococcus suis, where cells were lysed after the addition of mitomycin C but
failed to form plaque in all of the tested indicators [41]. In addition, the gradual loss in the
ability of the prophages to form plaque or phage particles and subsequently to lyse cells is
documented [46]. This loss in ability occurs because of the inactivation of point mutations,
genome rearrangements, modular exchanges, invasion by further mobile DNA elements,
and massive DNA deletions [47]. Exploring the prevalence of inducible prophages in B.
subtilis would require additional prophage inducibility studies using various inducing
agents and a large collection of sequenced B. subtilis strains.

High IP prevalence in B. subtilis genomes and the inducibility potential traits observed
in this study leads us to deduce that prophages may have considerable effects on their hosts.
The functional annotation of 50 representative intact prophage genomes resulted in the
identification of putative proteins such as bacteriocins, transporters, enzymes (hydrolases,
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catalases, phosphatases, lipases, to name a few), and others associated with immunity,
sporulation, arsenate-, arsenite-, and bleomycin resistances as well as polysaccharide
biosynthesis (Figure 6).

Some of these may affect B. subtilis in a desirable way from an industry point of view.
For example, immunity-related proteins could be involved in defending B. subtilis from
foreign phage infection [48]. Bacteriocin-related proteins could assist B. subtilis in having
competitive advantages [14].Resistance-associated proteins, such as the arsenite resistance
protein, may enhance host survival. A previous study involving the inactivation of arsenate
and arsenite encoding genes in a skin element, a defective B. subtilis prophage, showed that
they confer resistance to arsenate and arsenite [49].

On the other hand, prophages may also have undesirable effects. One such effect is
the risk of interfering with the B. subtilis-mediated fermentation processes. Phage infections
of starter cultures are serious risks in the food industry [50]. Moreover, agents that favor
prophage inductions are common in food industries where B. subtilis may be used for
various purposes. For example, UV-light, an established prophage inducer [16], is used
for sterilization in food industries [51]. Likewise, some foods such as soy sauce, which are
predominantly fermented by B. subtilis [52,53], are reported as being prophage inducers [54].
Desirable or not, it needs to be experimentally proven whether any of these putative genes
play a role in the bacterial property and thus require further studies.
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