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Slow progress towards implementation of conventional clinical bacteriology
in low resource settings and strong interest in greater speed for antimicrobial
susceptibility testing (AST) more generally has focused attention on next-
generation rapid AST technologies. In this Review, we systematically synthe-
size publications and submissions to regulatory agencies describing technol-
ogies that provide phenotypic AST faster than conventional methods. We
characterize over ninety technologies in terms of underlying technical inno-
vations, technology readiness level, extent of clinical validation, and time-to-

results. This work provides a guide for technology developers and clinical
microbiologists to understand the rapid phenotypic AST technology land-
scape, current development pipeline, and AST-specific validation milestones.

Inadequate access to clinical bacteriology testing in low resource set-
tings (LRS) impedes management of individual patients, detection of
antimicrobial resistance (AMR), and implementation of effective anti-
microbial stewardship (AMS) interventions'. This fuels the overuse of
empiric antimicrobials driving AMR, now among the greatest threats
facing humanity’. AMR disproportionately affects low-income coun-
tries, particularly those in sub-Saharan Africa and South Asia*. Unfor-
tunately, only 1.3% of 50,000 medical laboratories in 14 sub-Saharan
countries offered any clinical bacteriology testing as of 2019, owing to
multiple factors that thwart scale-up of conventional bacteriology’.
These include a requirement for specialized infrastructure, a lack of
automation, and inadequate local access to a complex supply-chain
which is compounded by foreign exchange distortions in many
countries*®. Diagnostic sectors focused on single diseases like HIV,
tuberculosis, malaria, or COVID-19 require a comparatively short list of
platforms or supplies”®. In contrast, clinical bacteriology laboratories
(CBL) require a complex supply chain, which can involve hundreds of
stable-sourced and quality-assured components. Though frequently
inexpensive, they are often unavailable in LRS or cannot be purchased

without foreign currency, which itself is often inaccessible. Human
resource challenges and a relative lack of granular guidance further
complicate CBL implementation.

The cornerstone of clinical bacteriology laboratories is diagnosis
of bloodstream infections’. This conventionally involves three
sequential processes: detection of bacterial growth, taxonomic iden-
tification of isolated bacterial colonies, and antimicrobial susceptibility
testing (AST). Detection of bacterial growth in blood culture bottles
can take up to 5days, but often occurs within the first 24 h of
incubation'®, Next, bacterial identification typically takes another
24 h. Finally, AST on pure bacterial colonies typically also requires
4-24 h. Nucleic acid amplification tests (NAAT) have been proposed to
accelerate this process. Alas, most genotypic methods currently rely
on detecting a limited number of targets in a manner that is neither
hypothesis-free nor allows for the detection of the diverse AMR
mechanisms across clinical settings. For example, a carbapenemase
gene is identifiable in fewer than 50% of bacteria found to be pheno-
typically carbapenem resistant?. Thus, despite considerable con-
tributions of NAAT-based diagnostics in the fields of tuberculosis, HIV,
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and malaria, few available technologies have emerged so far as a sui-
table replacement for conventional bacteriology to yield rapid and
accurate AST. Lack of progress towards implementation of conven-
tional clinical bacteriology in low resource settings, as well as interest
in greater speed and accuracy for AST more generally, has shifted
attention toward next-generation, rapid AST technologies.

In this Review, our aim was to understand the current pipeline of
AST technologies and what role they may play in bridging the diag-
nostic gap currently facing LRS. We performed a scoping review of
scientific publications and submissions to regulatory agencies
describing technologies capable of providing phenotypic AST in a
shorter timeframe than conventional methods. We then characterized
the pipeline of identified AST technologies in terms of their underlying
technical innovations, technology readiness level (TRL), extent of
clinical validation, and standardized expected time-to-results from
specimen collection.

Methods

Search strategy

We searched PubMed using the MeSH search terms “Microbial Sensi-
tivity Tests” [MeSH]; “Rapid Diagnostic Tests” [MeSH], “Phenotype”
[MeSH] and non-MeSH keywords “antimicrobial sensitivity”, “anti-
microbial susceptibility”, “rapid”, “phenotyp*”. The search was last
updated in July 2024, and articles from 1946 to present were included.
No language limit was applied. We first screened titles and abstracts for
relevant information and then used a snowball search strategy to
screen reference lists to retrieve other relevant articles.

The FDA 510(k) Premarket Notification and FDA Premarket
Approval (PMA) databases were searched with the Classification Pro-
duct Codes “LON”, “/WY” and “LRG” to find tests falling under the
categorization of “system, test, automated, antimicrobial suscept-
ibility, short incubation”, “manual antimicrobial susceptibility test
systems”, “instrument for auto reader & interpretation of overnight
susceptibility systems” respectively. When a device had multiple sub-
missions, the most recent submission that provided details on the
organisms included in the study design was used. We also performed
Google searches with the terms “rapid phenotypic antimicrobial sus-
ceptibility test”. Finally, several content experts in microbiology and
bio/biomedical engineering were consulted to probe for lacunes in our
search strategy. When we identified a technology missed by our
search, we adapted it to ensure it was captured by the above strategy.
We considered as “commercialized” any AST technology with any of
the following: FDA authorization, approval, or a pre-market notifica-
tion; European Economic Area CE marking; or authorization by
another WHO-Listed Authority (WLA) if specified by authors. All others
were considered “non-commercialized”.

Rapid AST platforms were included if they relied on phenotypic
antimicrobial susceptibility profiling of bacteria, regardless of the
recognition element used. Rapid technologies were defined as those
offering a faster time-to-final-result than those possible with conven-
tional clinical microbiology methods. The latter typically require a
minimum of 72h from specimen collection to final susceptibility
results and at least 4 h after the isolation of pure bacterial colonies".
Phenotypic tests were defined as those that measure microbial growth
or viability in the presence of antimicrobials to determine suscept-
ibility. Hypothesis-free nucleic acid-based tests were defined as those
using genomic recognition elements to detect or quantify bacteria in
the presence of different antimicrobial conditions without pre-defined
targets. Although they represent a subgroup of “phenotypic tests”, we
considered methods using nucleic acid-based recognition elements in
a distinct category of technologies to facilitate comparison between
them. We only included technologies with publications that specifi-
cally addressed their application to phenotypic AST. Finally, we only
considered technologies used for non-mycobacterial vegetative bac-
teria routinely isolated in clinical laboratories.

Data extraction

All titles, abstracts, and full texts in PubMed and FDA databases were
screened by one reviewer (GR). In addition, an independent micro-
biologist reviewer (KH) audited all included publications or technol-
ogies and extracted data. Data extracted included relevant information
on bacterial testing (including number, source, and species of bacterial
isolates, as well as species-antimicrobial combinations tested), speci-
men characteristics (specimen matrix, number of patients, retro-
spective/prospective collection), performance metrics as outlined by
the Clinical and Laboratory Standards Institute (CLSI) (minimum
inhibitory concentration [MIC], essential agreement, categorical
agreement, minor and major errors), time-to-result, and a description
of the technology.

Identified technologies and comparative
frameworks

Number of identified platforms

We identified 81 publications describing non-commercialized AST
platforms (67 phenotypic and 14 hypothesis-free nucleic acid-based).
We also identified 18 commercialized platforms, with 12/18 having FDA
510(k) clearance and CE marking and 6/18 having only CE marking.
Eight commercialized platforms were described in 34 publications
either pre- or post-commercialization. Nine technologies were identi-
fied external to our literature search in PubMed and the FDA databases
via consultation with experts and internet searches (PRISMA dia-
gram, Fig. 1).

Technology Readiness Level for antimicrobial susceptibility
testing technologies

To understand how close non-commercialized technologies are to
commercialization, we created an AST Technology Readiness Level
framework (Table 1) adapted from the general Technology Readiness
Level (TRL) frameworks from the Government of Canada™ and US
Department of Health and Human Services”. We then described the
key elements of each commercial, non-commercial phenotypic, and
non-commercial hypothesis-free nucleic-acid based technology and
classified all identified non-commercial technologies according to the
TRL framework (Tables 2, 3, and 4).

Extent of clinical validation of technologies

While the TRL is designed to broadly stage the development of new
technologies, it does not provide a direct understanding of the extent
of clinical validation or use-case assessment of a given system'. The
FDA provides guidelines on the study design necessary for regulatory
approval, but early-phase studies are difficult to compare across
publications. In contrast to the case for pharmaceutical therapeutics",
no standardized framework currently classifies the diversity of clinical
validation studies of AST platforms. Consequently, we developed a
framework to type the full spectrum of AST diagnostic studies, build-
ing on previous work for diagnostic studies in general’®". This fra-
mework is meant to help to understand the AST diagnostics landscape
and may serve to guide subsequent work. Figure 2 shows the Phase of
Clinical Validation framework and how studies identified in by our
search strategy map onto it.

Evaluation of Turn-Around-Time (TAT) from the time of speci-
men collection

We defined the time interval from clinical specimen collection (e.g.
collecting blood or urine from a patient) to final AST results as the
most meaningful metric of a test’s Turn-Around-Time (TAT). This is a
key parameter to predict the value of novel rapid AST platforms
because delayed administration of effective antimicrobials has been
repeatedly associated with increased mortality among patients with
severe manifestations of sepsis®® .. Reports describing technologies
we identified frequently cited time-to-result from a different starting

Nature Communications | (2024)15:9719


www.nature.com/naturecommunications

Review article

https://doi.org/10.1038/s41467-024-53930-x
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—>

Internet searches and content experts
(n=9)

Submissions excluded
=1092)
Not phenotypic or

Total submissions examined
from FDA 510(k) Premarket — (n

free-molecular
* Intended for mycobacteria

Full text screened (n = 270) )—. Articles excluded (n = 162)

* Not phenotypic and hypothesis
free-molecular

* Not in English, French or Spanish

Notification database

(n=1104) hypothesis-free

molecular
* Intended for
mycobacteria
Prior submissions of
the device
Does not meet rapid
criteria

¥
Total distinct FDA commercial
devices approved (n = 12)

* Intended for mycobacteria

* Does not meet rapid criteria

* Screening tests for specific
bacteria

* No MIC or S/R result

Technologies identified from

No longer
commercially
available

Reference lists (n = 4)

Non-commercialized
tests (n =3)

CE marked
technologies (n = 6)

Total papers evaluating a
commercialized phenotypic test

(n =34). In these papers, 8 distinct
commercialized tests (FDA or CE
approved) identified.

Non-Commercial Tests
Total non-commercial phenotypic articles included (n = 67)
Total non-commercial rapid hypothesis-free nucleic acid-based articles included (n = 14)

Fig. 1| PRISMA flow diagram of search strategy. A systematic search strategy
encompassed PubMed and the FDA 510(k) Premarket Notification and FDA Pre-
market Approval (PMA) databases. Iterative internet searches and consultation with
content experts in microbiology and bio/biomedical engineering were used to
probe for lacunes in our search strategy. Technologies were included if they relied
on phenotypic antimicrobial susceptibility profiling of bacteria, regardless of the
recognition element used. Rapid technologies were defined as those offering a
faster time-to-final-result than those possible with conventional clinical micro-
biology methods. Phenotypic tests were defined as those that measure microbial
growth or viability in the presence of antimicrobials to determine susceptibility.
Hypothesis-free nucleic acid-based tests were defined as those using genomic

Commercial Tests
Total FDA approved tests (n = 12)
Total commercial non-FDA approved tests (n = 6)
Total papers evaluating a commercialized test (n = 34)

recognition elements to detect or quantify bacteria in the presence of different
antimicrobial conditions without pre-defined targets. We considered methods
using nucleic acid-based recognition elements in a distinct category of technolo-
gies to facilitate comparison between them. We only included technologies with
publications that specifically addressed their application to phenotypic AST.
Finally, we only considered technologies used for non-mycobacterial vegetative
bacteria routinely isolated in clinical laboratories. We considered as “commercia-
lized” any AST technology with any of the following: FDA authorization, approval,
or a pre-market notification; European Economic Area CE marking; or authorization
by another WHO-Listed Authority (WLA) if specified by authors. All others were
considered “non-commercialized”.

point than specimen collection, opacifying direct comparison of
claimed TAT between different technologies.

To standardize TAT reporting and provide a level playing field for
inter-technology comparisons, we devised a methodology using
evidence-based assumptions regarding the average time from speci-
men collection to a positive blood culture and from specimen collec-
tion to pure colony isolation. Figure 3 depicts a standard clinical
microbiology workflow and how the TAT of identified technologies
align with it. The assumed delays for each step are in line with the daily
workflow used in most clinical microbiology laboratories. However,
shorter overall TAT are possible with conventional techniques if a
continuous workflow eliminates delays caused by “dead time” (i.e. if
each step was initiated at the earliest possible moment for each spe-
cimen). In practice, this is possible only with fully robotic automation
which is deployed in a small number of laboratories at very high initial
cost. Most technologies we identified relied on a combination of
innovations to reduce overall TAT rather than a single element (Fig. 4).

Understanding the current rapid AST technology
landscape and pipeline

We extend the work of prior narrative reviews by using a rigorous
scoping review methodology to perform a comprehensive and
reproducible search, encompassing both peer-reviewed scientific lit-
erature and submissions to regulatory agencies, to provide an up-to-
date understanding of the landscape of available rapid AST technolo-
gies and the development pipeline” . We also expand on the 26
technologies identified in a 2019 landscape analysis on simplified
blood culture systems from the Foundation for Innovative New

Diagnostics (FIND)*. We identified 120 publications describing over
90 rapid AST technologies promising TAT faster than that currently
possible with conventional clinical microbiology methods (81 report-
ing non-commercialized technologies and 34 describing 9 of the 18
commercially available products). Among non-commercialized tech-
nologies, a wide array of phenotypic and hypothesis-free nucleic acid-
based AST methods were identified. We proposed AST-adapted fra-
meworks to evaluate and compare Technology Readiness Level and
Phase of Clinical Validation for non-commercialized technologies to
respectively capture the stage of development of the technology and
the extent of published validation with bacterial isolates and clinical
specimens. All 18 commercially available technologies were also
assessed using the Phase of Clinical Validation framework to char-
acterize the evidence base available for their clinical use.

Commercialized rapid phenotypic AST technologies

Most of the 18 commercialized rapid phenotypic AST technologies we
identified combine multiple innovations to shorten TAT (Table 2). Nine
commercialized technologies or alternative methods produced by
standards organizations circumvent the need to isolate bacteria in
pure colonies by providing phenotypic results directly from positive
blood culture bottles after a necessary incubation period”>® (Fig. 3,
Table 2). This reduces TAT by at least 24 h compared to conventional
practices. Among these, only 5/9 have undergone Phase 4 clinical
validation studies as identified in our search, reflecting that such
technologies are yet to be widely evaluated in routine clinical use.
Notably, one commercialized technology with regulatory approvals
and clinical validation data offers direct-from-specimen phenotypic
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Table 1| Technology Readiness Levels adapted for rapid antimicrobial susceptibility tests (AST)

Level Description Example

1 Basic Principles Observed and Reported Bacteria is observed to produce heat when viable.
Active monitoring of scientific knowledge base to identify phenomenon and/
or pathological markers to assess bacterial viability.

2 Technology Concept and/or Application Formulated A microcalorimeter is proposed to measure the amount of bacterial metabo-
Hypothesis generated for how a phenomenon could be used in an anti- lism as a measurement of growth.
microbial susceptibility test with none-to-minimal development of an
experimental proof of concept.

3 Analytical and Experimental Critical Function and/or Proof of Concept A microcalorimeter is built to measure heat production of bacteria.

Active research and design have begun, and a basic proof of concept model
is developed without integration of components into a complete system.

4 Component Validation in a Laboratory Environment A pre-existing antibiotic gradient generator is combined with the novel
Multiple component pieces are tested together, and a plan is developed for  microcalorimeter and tested with bacterial isolates. Plans are made for how
critical design requirements. urine sample processing will be integrated into the device.

5 Component Validation in a Simulated Environment Spiked urine samples and a small number of clinical urine samples are tested
Spiked sample matrices and/or a small number of clinical samples are tested  on the pre-existing antibiotic gradient generator and novel microcalorimeter.
on components.

6 Complete System Demonstration in a Simulated Environment Sample processing techniques, antibiotic gradient generation and a micro-
A fully functional prototype is built and tested with spiked samples and/ora  calorimeter are all integrated into one device and tested with spiked urine and/
small number of patient samples. or a small number of patient samples.

7 Complete System Demonstration in an Appropriate Operational Envir- A fully functional prototype is tested with numerous patient samples and
onment bacterial strains.

A fully functional prototype is demonstrated in an appropriate environment
that includes many patient samples, bacterial strains, and antibiotics.

8 Actual Technology Completed and Qualified through Tests and Demon-  Studies have been conducted that meet FDA class Il requirements for reg-
strations ulatory approval and a submission has been made to the FDA.
Technology is ready for regulatory approval submission. Studies have been
performed with sufficient susceptible, resistant, and challenge organisms
from clinical samples and quality control organisms. Studies also include
comparison to a reference method, demonstrated reproducibility, and
acceptable performance characteristics.

9 Actual Technology Proven through Successful Deployment in an FDA approval has been granted.

Operational Setting
Regulatory approval has been acquired and device is ready for marketing.

This framework provides a metric to evaluate the stages of technological development and how close a rapid AST technology is to commercialization. FDA Class Il requirements for rapid

AST technologies are taken from the reference cited®.

AST without pre-incubation (PA-100 AST System, SYSMEX Europe SE),
though only from urine specimens at this time. This is significant
because while final AST results for urine cultures are conventionally
available within 48 h of collection, the ~ 44 hr reduction in TAT offered
by this method opens the possibility of new use cases at the point of
need. Nearly all commercialized technologies we identified represent
refinements of microbiology processes that must already be imple-
mented in the first place. For low resource settings without conven-
tional bacteriology services, this means that most such technologies
may be very useful but do not inherently provide a means of leap-
frogging current obstacles to implementing bacteriology in low- and
middle-income countries (LMIC). We have highlighted potential
advantages and limitations to implementation of each commercialized
technology, recognizing that LMIC versus high-income countries may
face different barriers.

The pipeline of non-commercialized rapid phenotypic AST
technologies

Methods most frequently employed to decrease time-to-AST results by
non-commercialized platforms included novel detection elements,
single-cell imaging, miniaturization of growth chambers, and micro-
fluidic assay designs, usually in combination with a minimized incu-
bation time (Tables 3 and 4). However, the majority of these rapid
phenotypic AST technologies offered only incremental reductions in
TAT compared to the modern clinical microbiology laboratory work-
flow (Fig. 3). Markedly faster non-commercialized technologies were
described in six publications reporting phenotypic results directly
from positive blood culture bottles—i.e. blood that has been incubated
to culture-amplify infecting bacteria until bacterial growth is detected

by an automated system—either clinically obtained positive blood
culture specimens (n =1) or sterile blood spiked with bacterial isolates
and then incubated for culture-amplification (n=5)*"* (Fig. 3,
Tables 3 and 4). The technology reporting AST directly from clinically
obtained positive blood culture bottles utilizes a microfluidic assay
design with integrated antimicrobial content similar to existing com-
mercial technologies but adds an additional centrifugation component
to concentrate the specimen for optimal growth and light microscopy-
based imaging®. For reference, two recently commercialized tech-
nologies capable of direct-from-positive blood culture bottles results
(QuickMIC from Gradientech and dRAST from QuantaMatrix) pro-
ceeded from pre-commercialization publications to European market
approval in 6-7 years*>*. Another recently published technology
provides results for both species identification and AST directly from
patient blood specimens without use of culture-amplification in blood
culture bottles; this technology uses a novel bacterial isolation step
prior to proceeding, demonstrating a significant advancement in
managing a more complex specimen matrix*.

We also identified 7 non-commercialized technologies reporting
direct-from-specimen phenotypic AST via MIC measurement. One
technology describes AST performed directly from a blood specimen,
without need for incubation in a blood culture bottle, and incorporates
simultaneous species identification®®. The other six of these all used a
urine matrix, with 1/6 also provided data using a blood matrix*"
(Fig. 3, Tables 3 and 4). All were reported in 2020 or later, with
advanced TRL and well-described studies using clinical specimens in 3/
7°! and 1/7 having a moderate-sized prospective clinical study (Phase
2b)*. For the moment, a preponderance of data for direct-from-
specimen AST platforms reports performance data for only a few
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ical validation

Phase of clin-
1a, 1b

1a
1a, 1b

Rapid
AST TRL

Publication year
2020
2018
Rousseau'®
2014

Wan 9144
Novelli
Entenza'*®

Quantitative MIC  First author

result
Yes
Yes

Detection of heat produced by bacteria exposed No

ing exposure to antimicrobials within a capillary
to antimicrobials

using a metabolic indicator dye and light absor-

bance measurements
activity during exposure to antimicrobials using

Visualization of bacterial metabolic activity dur-
Raman spectroscopy

Detection of individual bacterial metabolic

Notable features of technology principle® Detailed technology description

Technology principles
specimen capability, bolded first author indicates direct-from-positive blood culture bottle capability, and bolded plus italicized first author indicates both direct-from-urine specimen and direct-from-positive blood culture bottle capabilities. Phase of Clinical

Description of methods available in published literature but not commercially available ordered according to their Rapid AST Technology Readiness Level (TRL) (definitions in Table 1), followed by date of publication. Italicized first author indicates direct-from-urine
Validation also reported (definitions in Fig. 2).

Table 4 (continued) | Spectroscopy-based, laser-based, and non-optical methods for phenotypic antimicrobial susceptibility testing

“The net advantages and limitations of mature diagnostic platforms almost always reflect a balance of multiple elements beyond a single underlying technology that determine overall usability.

antimicrobials against Enterobacterales spp., as would be expected
from urinary tract infections. Data on a broader diversity of drug-
organism combinations are needed for clinical use. Of note, diverse
technologies were employed in this group, including detection of
bacterial metabolic activity during exposure to antimicrobials using
deuterium labelling and stimulated Raman spectroscopy with single-
cell resolution®>*, visualization of bacterial concentration using flow
cytometry and a universal fluorescent dye (without use of nucleic-acid
based probes)®, and deep-learning enabled detection of bacterial
metabolic activity using the change in reflected light spectrum of a
microfluidic cassette nanosurface in combination with resazurin
reduction®.

Hypothesis-free nucleic-acid based AST platforms

The capacity of metagenomic sequencing to provide hypothesis-free
identification of whole-genome sequences from any putative patho-
gen has transformed our ability to understand their pathogenesis and
epidemiology®*. Alas, the diversity of evolving antimicrobial resistance
mechanisms in the face of continuous global exposure to anti-
microbials leads to an imperfect relationship between genotype and
drug susceptibility phenotype. This thwarts genomic sequence-based
predictions of AST phenotypes that have sufficient accuracy for
patient care decisions, for most drug-organism combinations. Thus,
the key parameters to understanding how promising nucleic-acid
based technologies are for providing rapid automated AST that are
robust across time and geography are (i) whether they offer unbiased
detection of bacterial targets and (ii) their ability to determine anti-
microbial susceptibility by means other than genomic sequence
information alone.

We identified 14 publications describing non-commercialized
technologies that employed hypothesis-free nucleic acid-based
methods to detect and quantify bacteria exposed to different con-
centrations of antimicrobials without relying on predetermined resis-
tance genes (Table 5). Among phenotypic nucleic-acid based tests,
phenotype was characterized either by nucleic acid amplification-
based methods (n =11), or by quantifying physical interactions with a
universal DNA or RNA probe (n=3). One technology reports AST
directly from positive blood culture bottles using blood spiked with
bacterial isolates™. Seven publications reported technologies designed
for AST directly from urine specimens with six reporting results from
clinical urine specimens®*2,

Finally, a number of technologies we identified claim direct-from-
specimen AST for specific bug-drug combinations with an output that
reports susceptibility versus resistance only. However, because their
description did not report the direct measurement of MIC values, and
because the interpretation of MIC values as “susceptible” or “resistant”
for a given bacterial isolate to a given drug requires knowledge of the
bacterial species®, we did not consider these applicable for general
clinical bacteriology laboratory work which is the focus of the present
manuscript. However, such technologies may have substantial value
for specific use cases such a rapid high throughput screening for
infection control and prevention and are included in Tables 3 and 4.

Synthesizing the adequacy of clinical diagnostic accuracy stu-
dies of new rAST platforms
Figure 2 outlines a proposed classification for diagnostic validation
studies of rapid antimicrobial susceptibility testing platforms. Phase 2
study designs are only pertinent for direct-from-specimen technolo-
gies. Conversely, all technologies should undergo some version of
Phase 3 studies for regulatory submissions. The design and execution
of diagnostic studies is a critical determinant of whether their findings
are valid and free from bias. Best practices for diagnostic studies in
general have been described in detail®***,

For Phase 2-3 studies describing novel AST technologies, the most
widely used metric for concordance between two methods of MIC
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dats

Proposed Classification of V:

Studies for Rapid AST Technol

Phase 1: Proof-of-concept studies
Description: Study uses small number of
stored bacterial isolates. The isolates may
be from a commercial source or patient
source, using stored materials.

1a: Stored bacterial isolates, reference strains, unspiked in matrix
Test is performed directly on bacterial reference isolates that have not been spiked in a sample matrix.

1b: Stored bacterial isolates, clinical source, unspiked in matrix
Test is performed directly on bacterial reference isolates that have been isolated from patients and have not been spiked

in a sample matrix.

1c: Stored bacterial isolates, reference strains, spiked in matrix
Test is performed directly on bacterial reference isolates that have been spiked in a sample matrix, such as urine or blood.

sample matrix, such as urine or blood.

1d: Stored bacterial isolates, clinical source, spiked in matrix
Test is performed directly on bacterial reference isolates that have been isolated from patients and have been spiked in a

Phase 2: Direct on specimen, small 2a: Retrospective collection

number of isolate validation*
Description: Test is performed directly on a

Test is performed directly on clinical i i arer

small number of clinical specimens
(typically n<100 per bacteria species).
Sample processing optimization has already
been performed

2b: Prospective collection

Test is performed directly on clinical specimen, specimens are prospectively collected.

Phase 3: Large number of isolate 3a: Retrospective /stock clinical or
validation

Description: Test is performed on a large
number of clinical specimens (typically
n>100 per bacterial species) and results are

3b: Prospective collection/fres!

nical organisms

For direct-from-specimen test: Test is performed directly on clinical speci peci are p
For non-direct-from-specimen test: Test is performed with <50% of clinical organisms being fresh.

For direct-from-specimen test: Test is performed directly on clinical specimen, specimens are prospectively collected.

pared with a refe test device. For non-direct-from-specimen test: Test is performed with >50% of clinical organisms being fresh.
Phase 4: Post-market studies
Description: Study is assessing the clinical impact and/or cost effecti ofa ialized test.
*Study phases may not be sequential for all technologies, e.g., a technology that is not intended to be used on direct specimen may not have any 0 9 18 26 35

Phase Ic, Phase 1d or Phase 2 studies performed.
**Only the highest validation level publication was included per technology.

[ Journal Article
FDA Submission

Fig. 2 | Proposed classification for diagnostic validation studies of rapid anti-
microbial susceptibility testing platforms and how research studies map onto
the Phase of Clinical Validation framework. This framework differs from the
Technology Readiness Levels by focusing on the extent of clinical validation
available from diagnostic study designs rather than stages of technological devel-
opment. When a publication described the requirements for multiple phases, it was

Number of Publications**

put only in the highest-level phase. All papers and FDA submissions were included
in this figure. All 3b studies were from FDA submissions. One of these did not
specify if the organisms were fresh or stock but referenced the FDA Class Il Special
Controls Document which requires >50% of organisms to be fresh, so it is assumed
this criterion was met.

determination is termed essential agreement (EA) and is defined as the
proportion of MIC results from an index method that are within one
2-fold dilution of that achieved with a comparator method. Compared
to a reference standard such as broth microdilution, complete vali-
dation of new methods for AST determination should achieve EA of
90%, categorical agreement (CA) around susceptibility breakpoints of
90%, and “major”/"very major” errors of <3%. The precision around
these parameters required by regulatory agencies typically requires
testing on > 100 isolates for each bacterial species tested®’. The origin
of specimens evaluated (reference strains versus clinically derived,
stored specimens versus prospectively collected ones) is a key deter-
minant of how robust findings are likely to be in real-world use.
Thus, for commercialized rapid AST platforms with FDA author-
ization, approval, or a pre-market notification, performance metrics
can be assumed to meet the basic standards outlined above for
common bacterial species and organism-drug combinations.
However, assessment of diagnostic accuracy for individual pre-
commercialization technologies is complicated by the heterogeneity
of the types of data that are reported. Understanding the study designs
used for clinical validation (Fig. 2), and how free of bias their results are
likely to be, is important for comparison between technologies in early
stages of development. Performance metrics may not be directly
comparable for data from different study designs or different gen-
erations of prototypes. Similarly, even within a given clinical validation
phase, testing accuracy may vary significantly between bacterial spe-
cies, or for a given species against different antimicrobials. For many
studies we identified, diagnostic accuracy is reported for only a subset
of bacterial species or antimicrobials that would be required for a
regulatory submission. The Supplementary Data 1 outlines the repor-
ted performance metrics (categorical agreement, essential agreement,
and errors compared to a reference standard method) as well as the
combinations of bacterial species and antimicrobials tested of non-
commercialized rapid phenotypic AST technologies according to
phase of clinical validation, to be interpreted weighing the con-
siderations above. Finally, the most robust data are those that are

replicated by independent research groups. This is why Phase 4 studies
remain important even after technologies are available commercially,
as they provide real-world data on how a technology performs across
use cases and its effect on clinical or health-economic outcomes.

Specific challenges facing direct-from-specimen rAST platforms
Once a specimen arrives in the laboratory, the greatest contribution to
the overall turnaround-time for all currently used phenotypic AST
methods—and for most of those in development—is the time required
for culture amplification and colony isolation (Fig. 3). These often
dwarf the time required to complete AST testing itself once bacterial
colonies are isolated. Thus, rapid AST methods capable of being
applied directly on clinical specimens have the potential to leapfrog
incremental improvements to platforms that require isolated bacterial
colonies.

However, several hurdles complicate the development of direct-
from-specimen platforms. Probably the greatest technical challenge
to achieving standardized MIC measurements directly-from-clinical-
specimens is the lack of knowledge of bacterial concentrations (i.e.
the inoculum) at the time of loading specimens into the AST device.
Conventional methods work from pure isolated bacterial colonies
and rely on standardized inoculum concentrations (usually
5x10° CFU mL™) for accurate and reproducible results®®. Using these
methods, a 100X increase in inoculum may increase the apparent
MIC for some antimicrobials, while lower inoculum may artifactually
decrease apparent MIC values. Both of these effects are observed
especially with beta-lactam antimicrobials®® ", Direct-from-specimen
AST platforms accordingly must be robust across a range of bacterial
inoculums to be usable. Second, 6/7 direct-from-specimen AST
methods we identified focused on urinary clinical specimens. This is
undoubtedly because urine is a specimen matrix that is relatively free
of proteins, cells and other potential inhibitory substances, com-
pared to blood or stool for example. Moreover, clinically significant
concentrations of urinary bacteria (generally considered as at least
10° CFUmL™ from spontaneously voided first morning urine) are well
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above the expected limit of detection of most detection methods. In
contrast to urine, bacterial concentrations in clinical blood speci-
mens are much lower (typically-10° - 10> CFUmL™). Thus, while
blood cultures are the cornerstone of clinical microbiology labora-
tories, only 1 direct-from-specimen rapid phenotypic AST platform
has been validated for blood. For blood specimens, a short pre-
incubation may overcome imperfect analytic sensitivity and facilitate
signal detection and inoculum standardization. Alternatively, one

Il Assumption

[ Shortest Time to Result [l Longest Time to Result if Reported

group circumvents this by showing that bloodborne bacteria at
clinically encountered concentrations can be selectively recovered
and subjected to phenotypic AST*.

Beyond direct measurement of MIC, translation of MIC values into
categorical interpretation for clinicians (i.e. reporting whether bacteria
A is “susceptible” or “resistant” to antimicrobial B) is based on sus-
ceptibility breakpoints that are designated for individual species of
related groups of bacteria. This means that mature direct-from-
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Fig. 3 | Turnaround time of identified antimicrobial susceptibility testing (AST)
technologies overlaid on a conventional AST workflow. The conventional
workflow shows a timeline of the standard steps from specimen collection to final
results for blood culture specimens (A). Cultures of urine can be assumed to
require at least 24 h less than the conventional workflow shown for blood speci-
mens. The time from specimen collection to final AST readout is shown for com-
mercialized phenotypic platforms (B) and non-commercialized platforms (C). For
commercialized phenotypic platforms, the shortest time was taken as the shortest
time reported by the company and the longest time was taken from the longest
time reported by the company or from a paper in our review which evaluated the
platform. For non-commercialized tests, when a test reported a range of time-to-
results, the shortest and longest time were recorded, otherwise only the shortest

time was recorded. For tests that reported a time to result from positive blood
culture, an assumption of 24 h was used to estimate the time from sample collec-
tion to the start of the test. For tests that reported a time to result from colony
isolation, an assumption of 48 h was used to estimate the time from sample col-
lection to the start of the test. When a test was performed directly from specimen
collection, no assumptions of extra time were added to the total turnaround time.
One assay was performed directly on blood*®, while the other direct-from-specimen
tests were all performed on urine samples. 41/81 non-commercial phenotypic tests
were excluded from this graph because they did not report the time from begin-
ning the test to a minimal inhibitory concentration measurement. Graphics created
with BioRender.com.
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Fig. 4 | Spotlight on selected innovations underlying some of the recent
advances leading to rapid phenotypic AST. Single-cell bacterial imaging (A)
combines optical detection of bacterial growth with small reaction chambers to
reduce incubation times, and optimizes geometry for specimen processing. Nano-
scale growth chambers are a common feature across several rapid AST technolo-
gies. Plasmonic bacterial sensing (B) can enhance the speed and sensitivity of
optical readouts. It can be categorized into nanosurface or nanoparticle plasmonic
sensing. Nanosurface plasmonic sensing (i) incorporates nano-structured surfaces
exhibiting plasmonic structural colours that enhance AST metabolic assay TAT
through bright field microscopy. Alternatively, nanosurface plasmonic sensing can
utilize surface plasmon resonance (SPR), where a light source illuminates the sen-
sor under-surface through a prism using a wide beam within the range of total
internal reflection. The SPR angle shifts in response to changes in the refractive
index at the surface of the chip, triggered by the binding of an analyte (e.g. a

[™~ Nano-scale growth chambers
for shorter incubation and
optimized geometry for
Specimen processing

Plasmonic bacterial sensing

(i) Plasmonic nanosurfaces

_” e
L Ny’ ~
. Ny
Nanosurface ‘
recognition element Plasmon wave

Metal surface Prism ‘
°SPRi—*
"Reﬂec&ion;./'

Reflected light
Absorbed light
Angle shift

/ I I ]Flow cell
Light source
Detector
(ii) Plasmonic nanoparticles
Gold Nanoparticles )
(GNP) Baceerial Aggregate GNP

metabolic activity (Violet)

Monodispersed GNP
(Red)

Susceptible Resistant

biomolecule). Nanoparticle plasmonic sensing (ii) employs plasmonic nano-
particles (e.g. gold nanoparticles) for colorimetric AST detection. Changes in the
configuration of the nanoparticles (monodispersed or aggregate) yield detectable
colour changes (e.g. from red to violet). Different assays integrate plasmonic
nanoparticle sensing where the metabolic activity of viable bacterial cells would
lead to change of the nanoparticle composition (from monodispersed to aggregate
or vice versa) which can be monitored by naked eye or through absorption mea-
surements. Highly-multiplex nucleic acid probe-based bacterial detection (C) uses
the incorporation of multiple target-specific probes into replicating bacteria and
leverages spectral analysis to assign a quantification and specific identification of
bacteria present. Other examples of bacterial probes include the use of isotope
labels in Raman-spectroscopy-based methods. Regardless of signal detection
method, deep learning is increasingly used for enhanced signal processing. Created
with BioRender.com.

specimen rapid AST platforms must be combined with a method for
bacterial identification if they do not provide it inherently.

Finally, several testing parameters require optimization for
application of such methods to the full range of antimicrobials of
interest and the spectrum of pathogenic bacteria that may
be encountered in clinical use. The testing medium must be shown

to support the growth of both common and fastidious organisms (such
as Haemophilus sp. Neisseria sp., and Streptococcus pneumoniae).
For antimicrobials that require non-standard concentrations of
divalent cations (eg daptomycin) or other physicochemical
requirements (e.g. dalbavancin)®’, dedicated AST cassettes or media
are likely required.
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Commercialization is only the first step: obstacles
to implementing diagnostics where they

are needed

Value-chains for global health diagnostics are complex and
fragmented’. Many technical and regulatory challenges must be over-
come between proof-of-concept and commercialization of tests with
acceptable accuracy, costs, and complexity. In addition, pitfalls espe-
cially pertinent to low-resource settings include inadequate evaluation in
settings of intended use and weak end-user involvement during devel-
opment stages. Post-commercialization, a second “valley of death”
threatens the successful scale-up of useful technologies™. Hazards
leading to product failures in the roll-out phase include lack of focus on
demand generation, uncertain cost-effectiveness, and weak engagement
of country decision-makers and stakeholders (e.g. professional societies
and clinical guideline bodies; legislative bodies shaping health priorities;
the financial sector for adequate prioritization of foreign exchange
allocations). Several guides have been created to navigate this process”™,
and it is hoped that new initiatives will bridge the current gaps facing the
successful dissemination of critical AMR diagnostics to sub-Saharan
Africa and Asia where needs are greatest™’°.

Economic models that support successful post-commercialisation
scale-up of diagnostic technologies in low resource settings are a multi-
sectoral challenge. Strategies to face it have included supranational
pooled procurement mechanisms such as those provided by the Global
Fund”’, product-development partnerships that support the develop-
ment and commercialization of priority products throughout their
lifecycle’, and the provision target product profiles specifying device
parameters and ideal costs for products targeting LMIC markets”. This
has been done for blood culture systems, for example®. For the new
technologies identified in this review, health-economic studies evaluat-
ing different implementation models, evolving technology paradigms,
dynamic health ecology, and the value placed on prevention will be
required for the optimal deployment of new diagnostic technologies
aimed at combatting AMR.

New technologies are looked to in the hopes that they will cir-
cumvent some of the obstacles to the implementation of conventional
bacteriology in low resource settings. However, the imperative of
rapidly implementing some type of phenotypic bacteriology AST in
LRS should supersede emphasis on any single technological approach
- whether new or conventional.

Conclusion

We synthesized the current AST pipeline and highlight necessary mile-
stones yet to be achieved for individual technologies. Overall, a few
recent advances promise rapid and accurate phenotypic AST directly
from urine specimens. For blood specimens, only one non-commerical
technology offers phenotypic AST without prior culture-amplification.
However, robust platforms working directly from positive blood culture
bottles are themselves a transformative advance. As expected, there is a
relative lack of phase 2-3 clinical studies among the non-commercialized
technologies we identified, possibly owing to obstacles facing diagnostic
technologies on the path to commercialization” or the desire not to
publish results prior to regulatory submissions. We did not system-
atically assess the suitability of technologies for low resource settings,
but several of the rapid phenotypic AST technologies we identified have
the potential to bridge a critical diagnostic gap in settings where the
AMR crisis is most acute. With adequate prioritization and incentives
from the global AMR community, it is plausible that such platforms
could be deployed in the next decade.

Data availability

The data supporting the results of this work are available within the
paper and its Supplementary Data 1. The raw datasets generated and
analysed during the study are available from the corresponding author
upon reasonable request.
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