
Journal of

Clinical Medicine

Article

Aggregatibacter actinomycetemcomitans and Aggregatibacter
aphrophilus in a Kenyan Maasai Adolescent Population and
Inhibition of Leukotoxic Activity by Herbal Plants Used as Part
of Oral Hygiene Procedures

Mark Lindholm 1, Rolf Claesson 1, Arthur Kemoli 2 , Tonnie Mulli 3, Jan Oscarsson 1 , Dorte Haubek 4

and Anders Johansson 1,*

����������
�������

Citation: Lindholm, M.; Claesson, R.;

Kemoli, A.; Mulli, T.; Oscarsson, J.;

Haubek, D.; Johansson, A.

Aggregatibacter actinomycetemcomitans

and Aggregatibacter aphrophilus in a

Kenyan Maasai Adolescent

Population and Inhibition of

Leukotoxic Activity by Herbal Plants

Used as Part of Oral Hygiene

Procedures. J. Clin. Med. 2021, 10,

5402. https://doi.org/10.3390/

jcm10225402

Academic Editor: Izumi Asahina

Received: 7 October 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Odontology, Umeå University, 901 87 Umeå, Sweden; mark.lindholm@umu.se (M.L.);
rolf.claesson@umu.se (R.C.); jan.oscarsson@umu.se (J.O.)

2 Department of Paediatric Dentistry & Orthodontics, University of Nairobi, Nairobi 00100, Kenya;
musakulu@gmail.com

3 Department of Periodontology, University of Nairobi, Nairobi 00100, Kenya; mullitonnie@yahoo.com
4 Department of Dentistry and Oral Health, Health, Aarhus University, DK-8000 Aarhus, Denmark;

dorte.haubek@dent.au.dk
* Correspondence: anders.p.johansson@umu.se; Tel.: +46-70-2917707

Abstract: Background: A virulent genotype (JP2) of the periodonto-pathogen, Aggregatibacter actino-
mycetemcomitans (Aa), is widespread in North and West Africa, while its presence in East Africa has
not been thoroughly investigated. This JP2 genotype is associated with periodontitis in adolescents
and has a high leukotoxicity. The aim of the study was to examine the prevalence of Aa and its JP2
genotype, the prevalence of the oral, commensal Aggregatibacter aphrophilus in a Maasai adolescent
population, and the effect of herbal plants for inhibition of leukotoxicity. Methods: A total of 284
adolescents from Maasai Mara, Kenya, underwent an oral examination and microbial sampling. The
presence of Aa and A. aphrophilus was analyzed by quantitative PCR and cultivation (the 58 samples
collected at the last day of field study). The collected Aa strains were characterized and leukotoxin
promoter typed. Additionally, herbal plants commonly used for oral hygiene were assessed for the
inhibition of leukotoxicity. Results and Conclusions: The prevalence of Aa in stimulated whole saliva
was high (71.8%), with the JP2 genotype detected in one individual, and A. aphrophilus in 99% of
the sampled individuals. The commonly used herbal plant, Warburgia ugandensis, inactivated Aa
leukotoxicity. The Aa virulence might be reduced through use of W. ugandensis and the high levels of
A. aphrophilus.

Keywords: Aggregatibacter actinomycetemcomitans; Aggregatibacter aphrophilus; leukotoxicity; herbal
plants; Maasai adolescents

1. Introduction

Aggregatibacter actinomycetemcomitans is a Gram-negative, facultative anaerobic bac-
terium frequently found in the oral cavity [1]. Although the bacterium has been shown to
be strongly associated with periodontitis in adolescents, it can also exist in the oral cavity
without causing disease [1,2]. Moreover, occasionally, this species is also associated with
cases of extraoral diseases, such as endocarditis and rheumatoid arthritis [3,4]. The leuko-
toxin produced by the bacterium has recently been shown to be associated with rheumatoid
arthritis [4]. Earlier studies on the association between periodontitis and A. actinomycetem-
comitans have shown that the JP2 genotype, which has the ability to produce high amounts
of leukotoxin, has a very strong association with periodontitis [5,6]. A typical characteristic
of the JP2 genotype is a 530-basepair [bp] deletion in the promoter of the ltxCABD operon,
encoding the leukotoxin [7]. The leukotoxin expressed by A. actinomycetemcomitans has been
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shown to not only kill leukocytes, but also to activate neutrophil degranulation, to protect
the bacterium from phagocytic killing, and to initiate pro-inflammatory death of human
macrophages [8–10]. These properties of the leukotoxin are associated with the cellular
and molecular mechanisms involved in the pathogenicity of periodontitis [11]. Whereas
periodontitis associated with A. actinomycetemcomitans, especially in adolescents, has been
studied in northern and western parts of Africa, not much is known about the presence of
A. actinomycetemcomitans in eastern parts of Africa [12]. Some studies performed in Sudan
have indicated a rather high degree of rapidly progressing forms of periodontitis [13,14]
associated with A. actinomycetemcomitans in the Sudanese population. However, no JP2
genotype of A. actinomycetemcomitans was identified [14]. Another Sudanese study discov-
ered the JP2 genotype in one patient, who exhibited periodontitis with rapid progress [15],
but the overall results from these examinations supported the notion that the presence of
the JP2 genotype in East Africa is rather low [12]. Interestingly, an A. actinomycetemcomitans
isolate sampled from a patient of Ethiopian origin living in Sweden was found to have
an atypical 640-bp deletion in the leukotoxin gene promoter [16]. Whether this genotype
might have originated from East Africa is not known. To the best of our knowledge, only
one investigation on the topic was published about 30 years ago, which assessed the preva-
lence of periodontitis in adolescents in Kenya and reported a low prevalence of the disease
compared to the studies carried out in Sudan [13–15,17]. The lack of microbial analyses
in that study prompted us to investigate the presence of periodontal pathogens and other
factors that could influence the susceptibility to periodontitis in Kenyan adolescents. The
studied population in the present work consisted of adolescents living in Maasai Mara
North Conservancy, Kenya, and has been described earlier [18].

Previous studies, which examined the presence of A. actinomycetemcomitans in relation
to the occurrence of periodontal attachment loss, have included analyses of subgingival
plaque samples [2,19]. However, a recent study examined the salivary presence of the JP2
genotype of A. actinomycetemcomitans in Moroccan adolescents positive for the JP2 genotype
that has previously been detected in the subgingival plaque [19,20]. The JP2 genotype of
A. actinomycetemcomitans could also be detected in saliva from all the 22 participants in
the study, with the highest levels of the JP2 genotype in individuals with attachment loss
(≥3 mm). This indicates that saliva is a suitable source to use for the examination of the
presence of A. actinomycetemcomitans and its JP2 genotype on an individual basis.

Plants and natural products are widely used globally as substitutes for toothbrushes
due to the cost, availability, customs, and religious reasons. Many of the plants used for oral
hygiene purposes in Africa as well as other parts of the world have been shown to have
antimicrobial properties against oral bacteria, including periodontal pathogens [20,21].
Among plants, Psidium guajava has been efficient in neutralizing the activity of the A. actino-
mycetemcomitans leukotoxin [22]. The most common herbal plants used by the population
living in Maasai Mara, Kenya, have recently been reviewed [23]. In Maasai Mara, the use
of plants for oral hygiene is common and includes a variety of different species [24], but
the effects of these plants on the oral microbiota in this population has, however, not been
studied intensely. In some urban and rural areas of the world, there is limited or no access
to dental care and related products. It is therefore of particular importance to identify
appropriate tools easily available for use in these populations.

Aggregatibacter aphrophilus is closely related to A. actinomycetemcomitans, when com-
paring the gene content. While A. aphrophilus as well as A. actinomycetemcomitans can be
found in cases of endocarditis, it is not associated with periodontitis [25]. Considering that
there is a large genetic similarity between these two bacterial species, it cannot be excluded
that they compete with each other to proliferate in the same ecological niche in the oral
cavity [3].

The primary aim of the present study was to examine the salivary presence, levels,
and genotypic/phenotypic characteristics of A. actinomycetemcomitans and A. aphrophilus in
a population (n = 284) of students at primary and secondary schools in the Maasai Mara
area of Kenya. The secondary aim was to assess local factors that may potentially reduce
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the virulence of A. actinomycetemcomitans, such as anti-leukotoxic effects from herbal plants
used for oral hygiene.

2. Materials and Methods
2.1. Study Population

The study population consisted of 284 school children, aged 14 to 18 years (mean age:
15.0; SD 1.1; range 14–18 years), from five schools located in the Mara North Conservancy,
Narok County, Kenya. The study population has previously been described in detail [18].
A schematic overview of the present study is shown in Figure 1.
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Figure 1. Flowchart describing the outline of the present work, assessing an adolescent population in Mara North
Conservancy, Kenya (n = 284).

2.2. Description of Field Conditions for Biological Sampling

Oral examinations were executed under field conditions in an ordinary classroom
at the respective schools of the children in the Mara North Conservancy during five full
working days. Subjects were made to lie on top of a table, facing a natural light source. A
supplementary light source, a headlamp, was used to augment the natural light during
the examination of the oral cavity. Using clean disposable mouth mirrors and tweezers, an
oral examination was carried out to detect the status of the dentition. The methods and
data from the clinical examination, as well as the field conditions, have been described
previously; however, none of the clinical data are reported on in the present study [12,18].

2.3. Sampling of Stimulated Whole Saliva

The participants (n = 284) were asked to chew on a piece of paraffin wax for one
minute, and the stimulated whole saliva was thereafter collected in a disposable plastic
cup. One ml of the saliva was mixed with an equal volume of Saliva DNA Preservation
Buffer (2X) (Norgen Biotek Corporation, Thorold, ON, Canada) in a 2 mL sterile tube and
stored at room temperature until the DNA was isolated. This procedure was done prior to
the oral examination made for other purposes [18].
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2.4. Sampling of Subgingival Plaque for Microbial Cultivation

From a subgroup of the study population (n = 58; participants included on the last
day of the field study at schools), dental plaque was collected with sterile paper points
and inserted subgingivally in four periodontal pockets (mesial periodontal pockets on the
4 first permanent molars) for 10–20 s. The paper points from each patient were pooled
into a tube with 2 mL of VMGAIII [26] transport medium supplemented with Nystatin
(2 mg/L).

2.5. Isolation of DNA from Stimulated Whole Saliva

Five hundred µL saliva in buffer was mixed with 500 µL 10 mM Tris buffer with
1 mM EDTA (pH = 8.0) in a 1.5 mL Eppendorf tube and placed in an extraction instrument
(Diasorin, Dublin, Ireland). DNA was extracted from 550 µL of the sample mixture with
the Viral DNA extraction kit (Diasorin, Dublin, Ireland) with an elution volume of 100 µL
in accordance with the protocol of the manufacturer. The samples were stored at +4 ◦C
until the analyses were performed.

2.6. Quantification of A. actinomycetemcomitans and A. aphrophilus by qPCR

The loads of A. actinomycetemcomitans in the samples were quantified by qPCR using a
Corbett Research Rotor Gene™ 6000 Real-Time PCR Thermocycler (Qiagen, Valencia, CA,
USA). Specific primers and PCR cycling conditions used were as previously described [27].
The qPCR mixtures (10 µL) for the quantification of A. actinomycetemcomitans contained 5 µL
Kapa Sybr Green (KK 4601) (Kapa Biosystems, Boston, MA, USA), 4 µL template, and 1 µL
of the specific primer mix (0.5 µmol/L each). Each run included three negative samples
(H2O) and standard mixtures with a given concentration equivalent to 101; 102, 103, 104,
105, 106, 107, and 108 A. actinomycetemcomitans cells/mL were prepared as described for the
samples. The detection limit for the bacterium was set to 100/mL. A. aphrophilus loads in the
samples were determined using the same general set up, however, using 3 µL template and
2 µL of the specific primer mix (0.5 µmol/L each) in the qPCR reactions, and with each run
including one negative sample (H2O). The oligonucleotide primers used were a forward
(5′-CCTACACCAGCGTTTATTTC-3′) and a reverse (5′-CTGAGGTTTACGCCAGTC-3′)
primer, targeting an A. aphrophilus-specific gene sequence, encoding a putative hemolysin
co-regulated protein (ACS98147; CP001607; [28]).

2.7. Sero- and Genotyping of A. actinomycetemcomitans in Stimulated Whole Saliva Samples

Samples containing ≥104 A. actinomycetemcomitans cells/mL were analyzed with
primers specific for serotype b of A. actinomycetemcomitans according to a previously de-
scribed method [29]. Serotype b-containing samples were further analyzed for the presence
of the JP2 genotype of A. actinomycetemcomitans by using leukotoxin promoter-specific
oligonucleotide primers, as described previously [30]. PCR amplicons corresponding to
the size (bp) of the JP2 genotype were isolated from agarose gels and their DNA sequences
determined as described previously [16].

2.8. Detection of A. actinomycetemcomitans and A. aphrophilus in Plaque Samples by Cultivation

For the detection of A. actinomycetemcomitans in the dental plaque samples (n = 58)
collected for cultivation from periodontal pockets of permanent first molars, aliquots
(100 µL) were spread on a species-specific agar medium described by Slots, with the
exception that the serum was omitted [31]. For the inhibition of growth of contaminating
bacteria, i.e., enterobacteria, the samples were also spread on a medium modified as
described by Höglund Åberg et al. [32]. The plates were incubated at 37 ◦C in aerobic
atmosphere containing 5% CO2 for 3–5 days. Isolates from all A. actinomycetemcomitans-
positive subjects (n = 12) were collected. The A. actinomycetemcomitans JP2 genotype
reference strain, named HK1651, was included for comparison [33]. As reference, using
the same approach, a smaller collection of A. aphrophilus strains (n = 8) were isolated from
selected subjects. These isolates are referred to as 4-Aap-K, 12-Aap-K, 13-Aap-K, 21-Aap-K,
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29-Aap-K, 30-Aap-K, 32-Aap-K, and 53-Aap-K, and have been found to exhibit resistance
to human serum at a level similar to A. actinomycetemcomitans strains [34].

2.9. Characterization of A. actinomycetemcomitans Isolates

For serotyping, suspensions of the isolates were taken through a shaking block-heater
at 95 ◦C for eight minutes and centrifuged. The supernatants obtained were used as a
template and a PCR-based method described by Höglund Åberg et al. [32] was used. For
the determination of the leukotoxicity, the isolates were cultured on peptone yeast extract
agar at 37 ◦C in aerobic atmosphere containing 5% CO2 for 48 h, and the bacteria were
harvested into 300 mM NaCl in phosphate buffered saline (PBS). The density was adjusted
to OD 600 nm = 10 (≈1010 cells/mL), and the mixture was agitated at 4 ◦C for 60 min. The
cells were pelleted by centrifugation (10,000× g for 10 min at 4 ◦C). The cell-free supernatant
(5%) was added to cultures of phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1
cells for 120 min, and cell lysis was determined by quantification of the leakage of LDH
from damaged cells [35]. The release of LDH was expressed as % of the maximal release
(100%) caused by incubation with 0.1% Triton x-100.

2.10. Collection and Extraction of Herbal Plants

Material from six different plants was collected in the Maasai Mara region of Kenya
in collaboration with local experts. Plant species collected were (1) W. ugandensis twigs,
(2) W. ugandensis leaves, (3) Toddalia asiatica twigs, (4) T. asiatica leaves, (5) Eucalyptus spp.
twigs, (6) Grewia similis (oirii) twigs, (7) Psidium guajava leaves, (8) fresh extracts of W.
ugandensis leaves, and (9) fresh extract of W. ugandensis bark. The P. guajava were not used
in Maasai Mara but was included as a positive control based on previous findings [22]. The
plant material was disintegrated and mixed with 70% EtOH (250 mg/mL) and agitated at
room temperature for 24 h. The insoluble material was removed by centrifugation (5000× g
for 20 min), and the supernatants were analyzed in leukotoxin neutralization assays.

2.11. Determination of the Leukotoxin Neutralization Capacity of Herbal Plants

The supernatants (1%) were added to cultures of PMA-differentiated THP-1 cells in
the presence of leukotoxin (200 ng/mL) for 120 min, and cell lysis was determined by
quantification of the leakage of lactate dehydrogenase (LDH) [36]. Purified leukotoxin
was obtained by gel filtration of surface extracts from NaCl-treated cultures of JP2 geno-
type A. actinomycetemcomitans cells as described previously [9]. The release of LDH was
expressed as percentage (%) of the maximal release (100%) caused by incubation with 0.1%
Triton x-100. The ability of each extract to inhibit leukotoxicity was registered as a decrease
in leukotoxin-induced cell lysis.

2.12. Statistical Analyses

A one-tailed paired t-test with Excel (Microsoft, Redmond, WA, USA) was used to
determine any significant differences between samples. The confidence interval was set at
95% (p-value 0.05).

3. Results
3.1. Presence of A. actinomycetemcomitans and A. aphrophilus in Saliva Samples Determined
by qPCR

The prevalence of A. actinomycetemcomitans in the collected 284 stimulated whole saliva
samples was 71.8%, with 204 out of the 284 analyzed saliva samples containing ≥100 cells
of this species per mL. The distribution of the bacterium in specific concentration groups is
shown in Figure 2. The prevalence of A. aphrophilus was higher, and in the 284 analyzed
saliva samples, 99% (n = 282) contained≥ 100 cells of this organism per mL. The distribution
of the bacterium in specific concentration groups illustrates the generally higher loads
of A. aphrophilus in the saliva samples relative to the levels of A. actinomycetemcomitans
(Figure 2). This difference was emphasized by plotting the concentrations of A. aphrophilus
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against the concentrations of A. actinomycetemcomitans in the respective samples, revealing
clearly higher levels of the former organism (Figure 3). In a few outliers (n = 2), however,
we observed that there were instead high levels of A. actinomycetemcomitans relative to
A. aphrophilus.
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3.2. Sero- and Genotyping of A. actinomycetemcomitans in Stimulated Whole Saliva Samples

When the 98 samples (34.5%) containing ≥104 A. actinomycetemcomitans cells/mL
were studied with regard to serotype b strains, 15 samples (16.5%) were found to contain
this serotype. Saliva samples with <104 A. actinomycetemcomitans cells/mL could not be
serotyped with a reliable result. The subsequent leukotoxin promoter typing showed that 1
of the 15 samples had the 530-bp deletion, which is a characteristic of the JP2 genotype of
A. actinomycetemcomitans (Figure 4).
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3.3. Presence of A. actinomycetemcomitans in Subgingival Plaque Samples Determined
by Cultivation

Samples from 58 individuals were cultured on agar plates, and A. actinomycetemcomi-
tans could be isolated from 12 (22.1%) of 53 cultivable samples. It was not possible to
examine five plates of the total number of samples due to overgrowth of other microbes.
total of 11 (92%) of the 12 individuals, where A. actinomycetemcomitans could be detected
by cultivation of the plaque sample, had >3000 bacterial cells/mL of this species in the
saliva sample. Serotyping showed the presence of three different serotypes, five serotype a
(41.7%), four c (33.3%), and three f (25%) (Table 1). Thus, no A. actinomycetemcomitans strains
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of the JP2 genotype of serotype b were identified by cultivation methods. A. aphrophilus
was isolated from the plaque samples from eight individuals, who all carried a level of this
species >102/mL in their corresponding saliva sample.

Table 1. Plaque samples for cultivation were collected from 58 of the students examined on the last
day of the planned field study. Five samples were discarded due to overgrowth of bacteria and yeast.
In 53 of the 58 plaque samples collected, A. actinomycetemcomitans could be detected and isolated in
12 (22.6%) of them. These 12 isolates were serotyped and examined for their leukotoxic activity.

Number Aa Isolate Serotype

1 Aa-3-K f
2 Aa-4-K f
3 Aa-6-K c
4 Aa-11-K a
5 Aa-17-K f
6 Aa-23-K c
7 Aa-25-K c
8 Aa-29-K a
9 Aa-30-K a
10 Aa-38-K c
11 Aa-51-K a
12 Aa-52-K a

3.4. Characterization of Cultivated A. actinomycetemcomitans Isolates

Leukotoxicity analyses of the A. actinomycetemcomitans isolates showed the presence
of both low and intermediate leukotoxic phenotypes (Figure 5A). The isolate with the
highest leukotoxicity (isolate 12; serotype a), as determined by the use of the LDH release
assay (10), was compared with the JP2 genotype strain, HK1651, in a dose–response test.
This indicated a substantial difference between the JP2 genotype and the selected isolate,
which exhibited a lower leukotoxicity than the JP2 genotype (Figure 5B). However, none
of the isolated A. actinomycetemcomitans strains were from serotype b or with the 530-bp
leukotoxin promoter deletion.

3.5. Effects of Herbal Plants on Leukotoxic Activity

The ability of plant extract to inhibit leukotoxic activity was significant only for the
extracts based on P. guajava leaves or fresh leaves or bark from W. ugandensis (Figure 6).
It was shown by dose–response analyses that the neutralizing capacity of W. ugandensis
bark extract was at a similar level as that of P. guajava leaves (Figure 7). Based on oral
communications with examined pupils and their teachers, all individuals at the research
site used W. ugandensis daily for oral cleaning. The pupils at the different schools could
easily identify the tree from where they picked their chewing stick material (Figure 8).
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from isolate 12 (grey bars) and the JP2 genotype (black bars) of A. actinomycetemcomitans. Mean ± SD
of triplicate analyses.



J. Clin. Med. 2021, 10, 5402 10 of 15
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. Neutralization of leukotoxicity in the presence of different plant extracts (1%) on cell lysis 
in cultures of THP-1 cell exposed for leukotoxin (200 ng/mL) in 2 h. N.e.) No extract, (1) W. ugan-
densis twigs, (2) W. ugandensis leaves, (3) T. asiatica twigs, (4) T. asiatica leaves, (5) Eucalyptus spp. 
twigs, (6) G. similis (oirii) twigs, (7) Guava (P. guajava) leaves, (8) fresh extract of W. ugandensis leaves, 
and (9) fresh extract of W. ugandensis bark. White bar without leukotoxin, black bar with leukotoxin 
and gray bars leukotoxin + plant extract. Mean ± SD of four experiments analyzed in triplicates. 
Student’s t-test was used to examine significant difference of leukotoxicity without plant extract (p 
< 0.05 *. p < 0.001 ***). 

 
Figure 7. Dose-dependent effect on leukotoxic activity in the presence of extracts from P. guajava 
leaves or fresh extracts from W. ugandensis bark. Black bar with leukotoxin without plant extract. 
Mean ± SD of 3–6 observations from two separate experiments. Cultures of THP-1 cells were ex-
posed for leukotoxin (200 ng/mL) for 2 h. 

Figure 6. Neutralization of leukotoxicity in the presence of different plant extracts (1%) on cell lysis
in cultures of THP-1 cell exposed for leukotoxin (200 ng/mL) in 2 h. N.e. No extract, (1) W. ugandensis
twigs, (2) W. ugandensis leaves, (3) T. asiatica twigs, (4) T. asiatica leaves, (5) Eucalyptus spp. twigs,
(6) G. similis (oirii) twigs, (7) Guava (P. guajava) leaves, (8) fresh extract of W. ugandensis leaves, and
(9) fresh extract of W. ugandensis bark. White bar without leukotoxin, black bar with leukotoxin
and gray bars leukotoxin + plant extract. Mean ± SD of four experiments analyzed in triplicates.
Student’s t-test was used to examine significant difference of leukotoxicity without plant extract
(p < 0.05 *. p < 0.001 ***).

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. Neutralization of leukotoxicity in the presence of different plant extracts (1%) on cell lysis 
in cultures of THP-1 cell exposed for leukotoxin (200 ng/mL) in 2 h. N.e.) No extract, (1) W. ugan-
densis twigs, (2) W. ugandensis leaves, (3) T. asiatica twigs, (4) T. asiatica leaves, (5) Eucalyptus spp. 
twigs, (6) G. similis (oirii) twigs, (7) Guava (P. guajava) leaves, (8) fresh extract of W. ugandensis leaves, 
and (9) fresh extract of W. ugandensis bark. White bar without leukotoxin, black bar with leukotoxin 
and gray bars leukotoxin + plant extract. Mean ± SD of four experiments analyzed in triplicates. 
Student’s t-test was used to examine significant difference of leukotoxicity without plant extract (p 
< 0.05 *. p < 0.001 ***). 

 
Figure 7. Dose-dependent effect on leukotoxic activity in the presence of extracts from P. guajava 
leaves or fresh extracts from W. ugandensis bark. Black bar with leukotoxin without plant extract. 
Mean ± SD of 3–6 observations from two separate experiments. Cultures of THP-1 cells were ex-
posed for leukotoxin (200 ng/mL) for 2 h. 

Figure 7. Dose-dependent effect on leukotoxic activity in the presence of extracts from P. guajava
leaves or fresh extracts from W. ugandensis bark. Black bar with leukotoxin without plant extract.
Mean± SD of 3–6 observations from two separate experiments. Cultures of THP-1 cells were exposed
for leukotoxin (200 ng/mL) for 2 h.
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4. Discussion

In the studied Kenyan Maasai adolescent population (n = 284), the salivary presence
of A. actinomycetemcomitans was relatively high, with 71.8% of the population identified as
carriers of the bacterium. This determined presence is in parity with other studies from
far eastern countries [36–39], and with high carriage rates compared to those of 20–25% in
western countries [40–42]. In a study from Sudan, the presence of A. actinomycetemomitans
in subgingival plaque was high (70.6%) in cases diagnosed with rapidly progressing
periodontitis, while this bacterium was only sporadically detected (5.9%) in the healthy
controls [43].

Both the presence (99%) and loads of A. aphrophilus in the present work was found
to be high among the examined Maasai adolescents, indicating that this bacterium is a
conserved member of the normal oral flora in this population. In comparison with the
salivary loads of A. actinomycetemcomitans, the concentrations of A. aphrophilus were sub-
stantially higher. Although not much is known regarding the presence of A. aphrophilus in
populations worldwide, as this species has not been frequently assessed, our observations
are consistent with some studies on populations in western Europe [44]. As A. aphrophilus
presumably has low virulence potential related to the development of periodontitis, it
could be hypothesized that it is beneficial to have high levels of this bacterium, which
might allow lower numbers of A. actinomycetemcomitans to colonize in the same niche.

Interestingly, the detection of the JP2 genotype of A. actinomycetemcomitans in the
present study population confirmed the previously reported observation [12]. By sequenc-
ing the leukotoxin promoter operon, we found the characteristic 530-bp deletion originally
described by Brogan et al. [7]. A few A. actinomycetemcomitans isolates (n = 12) could be
cultivated from samples of subgingival plaque; however, none of them were of the JP2
genotype of the bacterium. Further characterization of these isolates showed substantial



J. Clin. Med. 2021, 10, 5402 12 of 15

leukotoxic activity in a few of them, but at levels lower than those exhibited by the JP2
genotype of A. actinomycetemcomitans strains.

The dissemination pattern of the JP2 genotype of A. actinomycetemcomitans has been
examined in previous studies by analyses of subgingival plaque samples [5,32,45]. This
strategy requires a stable transport medium, sterile paper points, and instruments to handle
the paper points relatively fast, if cultivation is desired [26]. Hence, in the present study,
this procedure was performed only with the 58 adolescents sampled on the last day of
the field study in order to avoid a too long transportation time of the bacterial samples
from the relatively remote research site in Maasai Mara, Kenya, to the laboratory at Umeå
University, Umeå, Sweden.

In comparison, saliva, which is easily collected, showed reproducible results over
time, and when frozen, it can retain the DNA stable for long periods of time [46,47]. Saliva
has also been proven to display comparable results with subgingival plaque samples [48].
This makes saliva more suitable for large population studies, which would also facilitate
the possibility of determining the dissemination pattern of the JP2 genotype of A. acti-
nomycetemcomitans. Since A. actinomycetemcomitans can be found at different sites in the
oral cavity [49], we could also expect to find A. actinomycetemcomitans more frequently, in
comparison to when subgingival plaque samples are analyzed.

The plant used for oral hygiene measures by the population of Maasai school pupils,
W. ugandensis, was found in the area surrounding the schools. As we showed in our
experimental setup, the plant extracts had a neutralizing effect on the leukotoxin produced
by A. actinomycetemcomitans. This could potentially have an influence on the presence of
periodontitis and the virulence capacity of A. actinomycetemcomitans in this area, where
this plant is frequently used. We are aware of the limitation of the present study, as the
periodontal status was not examined for most of the individuals included. Therefore, no
cause–effect relationship could be determined. The potential anti-bacterial effects of the
plant towards other oral bacteria are not known but would be relevant to assess, as such
effects might contribute to preventing the shift in the oral microbial ecology towards a
more periodonto-pathogenic composition.

5. Conclusions

In conclusion, we, by the assessment of the adolescent population in Maasai Mara,
found the JP2 genotype of A. actinomycetemcomitans, serotype b for the first time in Kenya.
While the reported prevalence of periodontitis in Kenya is low, our finding of a relatively
high presence of A. actinomycetemcomitans in the examined population could indicate the
influence of virulence-modifying factors that may counteract this species. This might
include factors such as substances in oral hygiene tools from herbal plants and/or in the
commensal oral flora.
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