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A B S T R A C T   

Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public 
health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional 
cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times 
required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented 
by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics 
technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital 
details on the sequencing platform, sample information, sampling method, and key findings are provided. 
Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of 
multi-omics technologies in combination. Finally, the development trends and prospects of the application of 
single-cell multi-omics technology in digestive system cancer research are prospected.   

1. Introduction 

The digestive system, consisting of the digestive tract and organs, is 
prone to cancer, contributing to the most commonly diagnosed cancers 

[1]. Five of the top 10 fatal tumors are digestive system cancers, 
including esophageal, gastric, colorectal, liver, and pancreatic cancers. 
Because these tumors have high morbidity and mortality rates, oncol-
ogists have struggled with the lack of early detection and precise 
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treatment. The main reason for the lack of treatment is the heterogeneity 
and complexity of the tumor, coupled with the naive ambiguity of the 
immunosuppressive microenvironment. Cancer research, including 
cancer of the digestive system, is under unprecedented pressure. 

Single-cell sequencing (SCS) has undergone a significant shift in the 
past decade as these technologies moved from experts’ laboratories to 
other cancer research groups across the globe [2]. The methods of SCS 
have become more accessible due to the democratization process. The 
SCS methods have advantages over the traditional "bulk" DNA-seq and 
RNA-seq approaches. The latter can only provide mixed signals of 
multiple cell types and fusion of tumor clones with different genotypes 
[3]. In contrast, SCS technologies can realize the sequencing of a single 
cell due to their high resolution, which can analyze the cell poly-
morphism in tumors and solve the problem of tumor heterogeneity [2, 
4]. 

From single-cell transcriptome sequencing to genome sequencing, 
from epigenetics to proteomics, and then to SCS combined with spatial 
transcriptomics (ST), the development and application of this field have 
made great progress. Researchers have attempted to apply multi-omics 
SCS technologies to the study of the same tumor, realized the integra-
tion of multi-omics sequencing, and achieved surprising results, which 
will greatly promote the development of oncology and even overturn the 
original oncology research results [5,6]. 

This review highlights the research and application of multiple SCS 
technologies in five of the most common gastrointestinal cancers, which 
will help to introduce single-cell technologies into the clinical arena 
better. We believe that the clinical application of single-cell multi-omics 
binding to traditional omics will contribute to the diagnosis and treat-
ment of digestive system cancers and ultimately improve patient 
survival. 

1.1. The overall development of SCS technology 

It has been more than 10 years since the earliest experiments in 
single-cell mRNA sequencing, DNA sequencing, and exon sequencing, 
but this field has rapidly developed [7,8]. In particular, the development 
of microdroplets, microfluidic, and nanopore technologies has made it 
possible to sequence thousands of cells simultaneously and greatly 
reduced sequencing costs [9–11]. The advent of commercial SCS prod-
ucts, represented by 10 ×Genomics, has further advanced research in 
this area. Unique molecular identifiers (UMIs) have also helped. These 
tag many molecules, such as the DNA genome, transcriptome, proteome, 
and immunological profiles, based on different sequencing targets [2, 
12]. These techniques are based on cell separation methods, and various 
single-cell isolation techniques have been fully developed. For 
single-cell preparation, the specimen should be as fresh as possible, and 
once it has been separated, it should be put right away in RPMI-1640 or 
DMEM medium with 20% fetal bovine serum on ice. The work should be 
finished within 10 h, and it should include washing the tissues in PBS, 
breaking them down with collagenase and hyaluronidase, and sorting 
the cells, among other things. The specimen should then be used right 
away for transcription or amplification steps [13]. 

Another critical step in obtaining genetic information from single 
cells is the amplification of the single-cell genome and transcriptome 
[3]. Amplification requires sensitivity, accuracy, and unbiasedness [14, 
15]. Single-cell epigenomics, single-cell proteomics, and integration 
with spatial omics have also received much attention [2,16]. This sec-
tion will illustrate the relevant histological techniques of single-cell 
genomics, transcriptomics, epigenomics, proteomics, and ST. Fig. 1 
summarizes the common technology platforms used for single-cell omics 
and their features. 

Fig. 1. The SCS technology platforms and features. Common SCS technology platforms and their various features are now available for you. For instance, scEpi-
genomics makes use of ATAC-seq to investigate chromatin accessibility, and DOP-PCR is mostly employed for discovering CNVs in individual cells. 
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1.2. Comparison of amplification methods used for single-cell genomic 
sequencing 

Single-cell DNA sequencing (scDNA-seq) reveals unresolved biolog-
ical questions in different fields, such as organism development, somatic 
mutations, genome function, and lineage evolution [17]. Cancer re-
searchers mostly use whole genome sequencing (WGS) or whole exome 
sequencing (WES) to find structural variants (SV), copy number variants 
(CNV), and specific single nucleotide variants (SNV) [2]. Among them, 
CNV mapping analysis is more widely used [14]. Normal human cells 
contain two gene copies; the gene content is only at the pg level. 
Therefore, before sequencing, hundreds of thousands of amplifications 
of DNA must be performed using whole genome amplification (WGA) 
technology [5,18]. At the moment, the most common ways to copy the 
genome of a single cell are Degenerate oligonucleotide primer PCR 
(DOP-PCR) [19], Multiple displacement amplification (MDA) [20], and 
Multiple Annealing and Looping Based Amplification Cycles (MALBAC) 
[21]. Among them, DOP-PCR and DMA are the two most commonly used 
methods [16]. Overall, scDNA-seq is more challenging than scRNA-seq. 

1.3. Single-cell RNA-seq—the most frequently applied SCS 

Single-cell RNA sequencing (scRNA-seq) has many limitations, such 
as a low capture rate and amplification bias. However, with the great 
development in the past 10 years, scRNA-seq is undoubtedly the most 
mature SCS method [2]. It finds unique molecular features by looking at 
data on gene expression, exon splicing, and allele expression. This shows 
how different cell types work, as well as certain signals and cancer 
processes [14]. As with single-cell genomes, whole transcriptome 
amplification (WTA) is required before sequencing [22]. There are two 
ways to do WTA: quantitative reverse transcription PCR (RT-qPCR) for a 
small group of target genes, like 3 or 5′ sequencing, or full RNA 
sequencing of the whole transcriptome, like SMART-Seq2. It has been 
tried by scientists to get rid of amplification bias by using UMIs, 
high-fidelity enzymes, digital PCR instead of regular PCR, and better 
computer methods to fix amplification bias [23]. In terms of improving 
capture efficiency, it has been helpful to use high-viability single cells, 
improve cell lysis methods, use high-quality RNA, and tweak PCR con-
ditions [24]. 

Thanks to the development of microfluidics, microwells, droplet 
technology, and technologies such as in situ barcoding and spatial 
transcriptome analysis, the throughput of scRNA-seq has increased from 
a few cells to hundreds of thousands of cells, and the cost has been 
greatly reduced [25]. Commercial sequencing products have made 
scRNA-seq simpler and more convenient. Currently, the two dominant 
technologies on the market are plate-based SMART-Seq2 and micro-
droplet-based 10 × Chromium 3′ sequencing, both of which have been 
successfully applied to the study of many diseases. In practice, which 
method is more suitable depends on the purpose of the study. For 
example, SMART-Seq2 captures full-length and is needed to study iso-
forms or gene fusions, which are more suitable for low-throughput sit-
uations. In contrast, 10 × Chromium 3′ sequencing captures a larger 
number of cells, allowing a comprehensive understanding of the tran-
scriptional heterogeneity of cell populations [26]. 

Single-cell transcriptome sequencing has been widely used in 
immunology, developmental biology, oncology, and other fields in 
recent years, but the spatial structure information of tissues is lost during 
tissue dissociation. By integrating with scRNA-seq, ST fills this gap, 
allowing for spatio-temporal analyses of tissue function and pathological 
changes, as well as studying cellular component heterogeneity and 
transcriptional levels at the single-cell resolution level [27]. A specific 
description of spatial transcriptome technologies will be presented in 
Chapter 1.5. At present, single-cell transcriptome sequencing combined 
with ST is the most rapidly developing new technology in the field of 
single-cell omics combined with spatial omics, leading a new trend in 
the development of spatiotemporal genomics, which is promoting the 

development of cancer and tumor research, developmental biology, and 
other fields [28]. 

1.4. Single-cell sequencing in epigenomics 

Epigenetics is the total number of genetic changes in DNA that do not 
alter the DNA sequence. It includes DNA methylation, histone modifi-
cations, chromatin accessibility, the spatial structure of chromosomes, 
etc. [29]. Researchers realize that single-cell epigenomics is crucial for 
the study of cancer and other diseases. However, single-cell epigenomics 
remains one of the most important technical challenges for SCS [16]. 

Despite the obvious technical hurdles, several new techniques have 
been developed (Table 3), such as scHi-C, scBS-seq, scRRBS, and 
scATAC-seq (10 ×Genomics) [15,30,31]. Among them, scATAC-seq has 
become the most widely used assay to measure single-cell chromatin 
accessibility. Open chromatin regions are labeled with Tn5 transposase 
as sequencing aptamers, amplified, and sequenced by PCR. Early ATAC 
technologies relied on FACS and labeling chemistry or microfluidic 
platforms. Later, a microdroplet platform (10 ×Genomics) for 
scATAC-seq was developed, which increased the cell throughput from 
hundreds to 10,000 cells in a single experiment. Subsequently, 
scATAC-seq was applied to T-cell receptor (TCR) studies, and the tran-
scriptional marker ATAC-SEQ was reported. The technology has been 
widely promoted and recognized in cancer and immunology research 
[14,32,33]. 

1.5. Challenges in single-cell proteomics 

Proteins are key performers in biological processes and cellular 
functions, making proteomics at single-cell resolution of particular in-
terest to researchers [34]. Technological advances have made it possible 
to measure single-cell proteins so that we can analyze the cell types and 
states present in complex tissues. However, there are three major chal-
lenges in analyzing single-cell proteomics. (1) Mass spectrometry (MS) 
can only analyze the most abundant proteins and can miss 
low-abundance proteins [35]. (2) Amino acids and proteins are much 
more complex in type and structure than nucleic acids. (3) Proteins 
cannot be amplified, and sample loss during preparation needs to be 
minimized [36]. 

Four technologies are presently in existence. (1) The most well- 
known single-cell protein analysis method based on fluorescein- 
labeled antibodies is flow cytometry (FC), which has a high 
throughput and multiplicity but can only identify a small number of 
predefined proteins [37]. (2) MS-based, unlabeled proteomics tech-
niques are more suitable for identifying proteomes in an untargeted 
mode. It includes label-free and multi-tagging methods. The label-free 
method is simple and easy to use, but only one single-cell sample can 
be analyzed at a time, with low throughput; the multi-tagging method 
can analyze multiple single-cell samples at the same time, with high 
throughput but requires the use of special chemical tags, among which 
the mass spectrometry flow-through (CyTOF) technology developed in 
2002 uses lanthanide metal-tagged antibodies, which can detect as 
many as 51 proteins at a single time and is now widely applied. Later in 
2019, the MS flow-based ScopE2-MS technology was developed, which 

Table 3 
Differences between scRNA-seq and ST used in combination and alone.  

Feature/ Function scRNA-seq ST scRNA-seq + ST 

Spatial resolution No Yes Yes 
Cell type identification Yes Yes Yes 
Gene expression profiling Yes Yes Yes 
Regulatory network analysis Yes No Yes 
Cell type development analysis Yes Yes Yes 
Tissue microenvironment analysis No Yes Yes 
Mechanism of tissue development analysis Yes Yes Yes 
Therapy development Yes Yes Yes  
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can detect up to 100 proteins simultaneously. It uses ScopE2 dyes for 
multi-tagging, which has higher sensitivity and accuracy, and it is a 
single-cell protein sequencing technology with a promising application 
that is still in the developmental stage and has already been used in 
immunology, oncology, and neuroscience research [38,39]. (3) 
NGS-based single-cell proteomics using antibody-oligonucleotide cou-
plings (e.g., CITE-seq, RAID, etc.) for the detection of proteins on the cell 
surface or inside the cell [34,40]. (4) Imaging-based technologies that 
combine single-cell proteomics with spatial imaging for mapping the 
location of proteins in cells and tissues, such as multiplexed immuno-
fluorescence mIF, spatial mass spectrometry imaging (SMSI), and im-
aging mass spectrometry flow-through (IMC), in which mIF is typically 
used for cell samples in cell culture dishes or sections and is widely used 
in clinical diagnostics. SMSI is typically used for tissue samples, focusing 
on disease pathology. IMC, on the other hand, combines flow cytometry 
and MS with high throughput, high sensitivity, and high resolution and 
is commonly used in cell and tissue samples to simultaneously detect the 
expression levels and subcellular localization of multiple proteins, 
making it a very beneficial tool in the fields of immunology, cancer 
research, and histology [41,42]. 

1.6. Spatial transcriptome 

Spatial transcriptomics (ST) technology is an emerging technology 
that has been developing rapidly in recent years. It is capable of 
simultaneously obtaining information about the gene expression of a cell 
and the specific location of the cell in tissue space [43]. The application 
of ST can help researchers better understand the structure and function 
of cells within tissues, as well as the interactions between cells [44]. 

ST techniques can be categorized according to how the spatial in-
formation is acquired, and there are four main categories: (1) Micro-
dissection techniques: these use lasers or microfluidic devices to 
separate and capture individual cells or small areas of interest from 
tissue sections, such as LCM and Tomo-seq [45]. (2) In-situ hybridiza-
tion methods: use of fluorescent or colorimetric probes in fixed tissue 
sections to detect specific RNA molecules. The probes can be 
pre-designed or generated in situ by enzymatic reactions. Imaging 
platforms or microscopy can show the spatial distribution of the probes. 
Examples of in situ hybridization methods include MERFISH, seqFISH, 
and ST [46]. (3) In situ sequencing methods: These methods use syn-
thetic sequencing or ligation reactions to sequence RNA molecules 
directly in fixed tissue sections. Sequencing reactions can be performed 
on the tissue surface or within the tissue matrix. The spatial coordinates 
of the sequenced molecules can be recorded through a microscope or 
imaging platform. Examples of in situ sequencing (ISS) methods include 
FISSEQ and Slide-seq [47]. (4) In situ capture methods: these methods 
use spatially barcoded primers or probes to capture RNA molecules in 
fixed tissue sections. The captured RNA molecules can then be released 
and subjected to RNA sequencing or other molecular analysis. By using 
spatial barcoding, it is possible to retrieve the spatial information of the 
captured molecules. Examples of in situ capture methods include 
Slide-seqV2, 10 ×Visium, and STARmap [45]. In conclusion, various ST 
technologies have been updated and upgraded in recent years and in-
tegrated with single-cell transcriptome technologies to vigorously pro-
mote the development of developmental biology, immunology, cancer 
research and other fields [47]. 

1.7. Integration of multiple SCS technologies offers advantages over use 
alone 

SCS technologies, while powerful, all have limitations, and to be 
more useful, researchers have endeavored to integrate different SCS 
tools effectively [48]. A few examples are briefly described below to 
illustrate the advantages of such integration. 

(1) Integration of scRNA-seq with bulk RNA-seq. The use of bulk 
RNA-seq to assist scRNA-seq is particularly common for multi-omics 

studies. When used alone, bulk RNA-seq does not provide information 
about gene expression in individual cells, and scRNA-seq does not 
directly correspond to cell populations for specific phenotypes. By 
combining scRNA-seq and bulk RNA-seq, researchers can obtain a 
complete picture of a sample’s transcriptomic landscape, which helps 
identify subpopulations of cells with different gene expression profiles 
and phenotypes, which can help in understanding disease progression 
and developing targeted therapies [49,50]. The advantages of using the 
two together over using them alone are shown in Table 1. 

(2) Combination of scRNA-seq and scDNA-seq. To link gene expres-
sion to genotype, researchers usually use single-cell transcriptomes and 
single-cell genomes in conjunction, and Table 2 shows the advantages of 
combining the two. First, cell lineage and evolution can be determined. 
By analyzing cell expression patterns and genetic alterations, re-
searchers can reconstruct lineage relationships between different cell 
types and track the evolution of cell populations over time. This infor-
mation is critical to understanding the development of cancer and other 
diseases caused by cellular heterogeneity [51]. Second, subpopulations 
can be identified and characterized: through combined analysis, re-
searchers can identify and characterize cellular subpopulations defined 
by a combination of gene expression patterns and genetic alterations. 
This information can be used to study the heterogeneity of complex 
tissues and identify new drug targets [52]. Overall, combining 
scRNA-seq and scDNA-seq provides a powerful tool for understanding 
cellular landscapes and unraveling disease mechanisms. 

(3) Combination of scRNA-seq and scATAC-seq. scRNA-seq is 
particularly useful for studying gene expression patterns in heteroge-
neous cell populations (e.g., those found in tissues or tumors). However, 
scRNA-seq is unable to distinguish between the presence or absence of 
genes, and it is difficult to accurately quantify the expression of genes 
with low or highly variable levels of expression. scATAC-seq measures 
the accessibility of chromatin, the physical state of DNA that determines 
the accessibility of transcription factors and other regulatory proteins. 
This information is critical to understanding how chromatin regulates 
gene expression. However, ATAC-seq can only measure open chromatin 

Table 1 
Differences between scRNA-seq and bulk RNA-seq used in combination and 
alone.  

Feature/ 
Function 

scRNA-seq bulk scRNA-seq scRNA-seq + bulk 
scRNA-seq 

Resolution Single-cell Population of cells The mixture of 
single cells and the 
population of cells 

Applications Identifying and 
characterizing rare 
cell populations, 
studying cell 
interactions, 
tracking cell 
differentiation, and 
developing new 
therapeutic targets 

Studying overall 
trends and 
differences in gene 
expression 
between 
conditions and 
identifying 
differentially 
expressed genes 

Comprehensive 
study of cellular 
heterogeneity, 
identification of 
cell-type-specific 
gene expression 
patterns, and 
validation of 
scRNA-seq results 

Cost More expensive Less expensive Reasonable use, 
cost-effective 

Advantages High-resolution 
view of gene 
expression, ability 
to identify rare cell 
populations, and 
study cell 
interactions 

It can be 
performed on a 
large number of 
samples and 
provides a 
population-level 
view of gene 
expression 

It combines the 
strengths of both 
scRNA-seq and bulk 
scRNA-seq 

Disadvantages More expensive and 
time-consuming 
than bulk scRNA- 
seq, it can be 
difficult to analyze 
data from large 
numbers of cells 

Can mask 
heterogeneity in 
gene expression 
but may not be 
able to identify 
rare cell 
populations 

Requires more 
complex 
computational 
analysis  
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and cannot distinguish between active and inactive chromatin. By 
combining scRNA-seq and ATAC-seq, researchers can gain a more 
comprehensive understanding of cellular heterogeneity and regulatory 
mechanisms. scRNA-seq can provide information about the expression 
of actively transcribed genes, while ATAC-seq can provide information 
about the regulatory elements that control gene expression. This com-
bined information can be used to identify new regulatory mechanisms 
and develop new therapeutic strategies [53]. 

(4) Combination of scRNA-seq and ST. ScRNA-seq, in conjunction 
with ST, provides a powerful tool for studying tissue structure and 
function. ScRNA-seq can be used to identify cell types and subtypes, 
while ST can be used to study the distribution of these cell types in 
tissues [54]. This information can be used to study a wide range of 
biological questions, including: 

Understanding tissue structure: by combining scRNA-seq and ST 
data, researchers can identify the different cell types that make up a 
tissue and how they are arranged [54]. 

Identifying cellular interactions: By studying the co-localization of 
different cell types, researchers can identify which cells interact with 
each other [55]. 

Understanding disease progression: By studying spatial and temporal 
changes in gene expression patterns in diseased tissues, researchers can 
identify the molecular mechanisms and targets behind disease pro-
gression [56]. 

In summary, by combining the two technologies, scRNA-seq and ST, 
researchers can obtain a complete picture of the structure and function 
of tissues, which is important for biology, medicine, and biotechnology. 
Table 3 below summarizes the advantages of combining scRNA-seq and 
ST. 

2. The application of SCS in the digestive system cancer study 

SCS technology is developing particularly rapidly in digestive system 
cancer research, and the extent of its application depends on the ease of 
obtaining samples from disease species. For example, the explosion of 
articles on single-cell analysis of liver cancers and CRCs has provided 
additional opportunities for growth in this field. To better understand 
the research ideas and technical details, we will describe in detail in 
some sections the number of cases, sequencing platform, key clinical 
patient information, sampling method, and key findings provided for 
specific studies. Fig. 2 is a snapshot of the second part of the article. 

2.1. SCS in esophageal cancer (ESCC) research 

There are two main subtypes of esophageal cancer: esophageal 
squamous cell carcinoma (ESCC) and esophageal adenocarcinoma 
(EAC). ESCC accounts for approximately 90% of esophageal cancers 
[57]. ESCC is a common aggressive malignant tumor with typical 
intratumoral and intertumoral heterogeneity, which is one of the main 
reasons for the limited therapeutic efficacy. SCS helps to decipher the 
mechanisms governing tumor heterogeneity and has the potential to 

develop precise and effective therapeutic approaches for ESCC patients. 
Among them, the most commonly used SCS technology is scRNA-seq. 
scRNA-seq based on the SMART-seq2 platform is widely used for 
drug-resistant recurrence in ESCC, with the most applications in radio-
therapy resistance [58,59]. Among these drug resistance studies, there 
are not only studies using patient specimens but also studies based on 
human ESCC cell lines treated with radiation to simulate human treat-
ment [59]. There are also studies using mouse models to simulate the 
different stages of human ESCC development, which have well-mapped 
the development of ESCC [60]. 

It is easy to see from Table 4 that 10 ×Genomics is also a popular 
scRNA-seq platform for researchers. These SCS studies for patients with 
cancerous species usually fall into two categories: cancerous tissue from 
the same patient, diseased tissue at different distances from the 
cancerous species, and so-called normal tissue 5 cm away. Either cancer 
specimens from patients with different stages of ESCC [61]. Instead of 
using SCS technology, some studies used data from databases to analyze 
to get the experimental results they wanted [62,63]. Spatial omics are 
commonly used with mIF technology [64]. ST, on the other hand, is 
more used by the 10 ×Genomics Visium platform, which has obvious 
advantages in revealing cellular interactions in ESCC [47,65]. Another 
study utilized the scRNA-seq database and Nano-String spatial 
whole-transcriptome analysis technology to effectively use biopsy tissue 
specimens easily accessible in the ESCC clinic, leading to the finding of 
early cancer markers. 

These studies also made good use of the currently popular organoid 
technology for result validation [66]. It can be seen that scRNA-seq in-
tegrates multiple histological techniques and plays a significant role in 
revealing the molecular mechanisms of tumor heterogeneity and drug 
resistance in ESCC, and early cancer prediction markers. 

2.2. SCS in gastric cancer (GC) research 

According to the World Health Organization (WHO), gastric cancer 
(GC) ranks fifth in the global cancer incidence. It is one of the more 
common cancers worldwide [71]. GC usually has multiple stages, from 
no atrophic gastritis (NAG) to chronic atrophic gastritis (CAG) to 
gastrointestinal metaplasia (IM) to GC. At different stages, the cellular 
mapping, cellular functions, and interactions with other cells in gastric 
tissues change all the time and are full of complexity [60,65]. GC is 
characterized by difficulties in early diagnosis, insidious progression, 
and an extremely low survival rate in late stages, which is related to the 
intratumoral heterogeneity of tumors, a lack of good therapeutic targets, 
and factors such as tumor microenvironment (TME) and immune escape. 
To overcome these problems, researchers have fully utilized SCS for 
their studies. It includes the analysis of cellular heterogeneity and the 
subpopulation of GC tissues, which helps to understand the cellular di-
versity within the tumor [72]. It can also be used to construct the 
developmental trajectory of tumor cells, tracking the development of 
cells from origin to maturity and helping to identify key events that may 
affect tumor development [59]. Of course, it can also be used to analyze 
the gene expression patterns of different subpopulations, including the 
detection of differentially expressed genes, to discover potential thera-
peutic targets [59]. The TME is very important for therapeutic sensi-
tivity. Using SCS, we can study the distribution and interactions of 
immune and non-immune cells in the TME, which can help us gain in-
sights into the impact of the microenvironment on tumor development 
and drug resistance, thus facilitating the development of new drugs [73, 
74]. Organoid technology has also been fully applied in this field, and 
this technology provides a great help for GC research [67,75]. 

In addition, there have been a series of novel studies in the field of 
ST. One of them is a spatial metabolomics study of 362 GC patients using 
high-resolution imaging mass spectrometry. This study provides valu-
able information for the molecular classification system of GC, which 
helps doctors choose the appropriate therapeutic approaches [76]. 
Another study on intratumor heterogeneity in GC, which analyzed 

Table 2 
Differences between scRNA-seq and scDNA-seq used in combination and alone.  

Feature/ Function scRNA- 
seq 

scDNA- 
seq 

scRNA-seq 
+ scDNA-seq 

Measures gene expression Yes No Yes 
Measures genetic variation (CNVs, 

SNPs, structural variants) 
No Yes Yes 

Can identify different cell types Yes No Yes 
Can identify genetic variants No Yes Yes 
Can study gene regulation Yes No Yes 
Can track cell differentiation and 

development 
Yes No Yes 

Can identify genetic variants 
associated with cell types 

No No Yes  
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Fig. 2. Single-cell omics technology is employed to investigate digestive system cancers in several disease models. This diagram provides an overview of the ap-
plications of single-cell multi-omics, the different disease models employed in the research, and the current integration of the most often utilized single-cell multi- 
omics technologies. For instance, SCS is usually combined with bulk-seq, whereas scRNA-seq is frequently applied with CyTOF (scProteomics), and the widely used 
ST technologies are mostly employed with scRNA-seq as well. Indeed, the integration of traditional omics techniques is prevalent, and it is rather common to combine 
two or even many omics methods. 
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cancer tissues from 64 GC patients by transcriptome, third-generation 
sequencing technology (Nanostring), DNA copy number, and 
histo-morphometric phenotypes, found that gene expression and muta-
tion profiles differed significantly between superficial and deep tumor 
regions and metastatic lymph nodes, which suggests that future clinical 
trials of targeted therapies must consider evaluating deep regions of 
primary tumors and/or metastases [77]. The last article is about the 
spatial expression profile and gene regulatory network of the human 
gastric body epithelium, which explains the epigenetic regulation of key 
genes in the human gastric body epithelium through the integrated 
analysis of scRNA-seq, ST, and single-cell transposase-accessible chro-
matin sequencing (scATAC-seq) technologies and also identifies a 
stem/progenitor cell population, which systematically understands the 
gastric body epithelial cellular New insights into diversity and homeo-
stasis [78]. To allow for better differentiation and emulation, we have 
taken a categorized approach to presenting these studies, as detailed in  
Table 5. 

As summarized in Table 5, most of the studies on gastric adenocar-
cinoma are dominated by scRNA-Seq, and more than 80% of scRNA-seq 
is based on the 10 × Genomics platform, which tends to be stable and 
maneuverable, as well as having mature data analysis methods. How-
ever, fewer use a particular technique alone, and more are combined 
with bulk RNA-seq, qPCR, immunofluorescence, immunohistochem-
istry, and other techniques. In the last 5 years, a large number of studies 
based on SCS technologies have been published, and more than 60% of 
them have combined bulk RNA-seq tools. Interestingly, after 2022, more 
than 30% of the articles do not collect samples for sequencing but 
instead rely on data from existing databases to re-mine or develop al-
gorithms to create new models to predict GC prognosis or disease- 
specific targets. In terms of sample collection, with the widespread use 
of endoscopic technology, fresh tissue specimens can be obtained 
through upper gastrointestinal endoscopy in addition to surgical speci-
mens, allowing more SCS studies to be conducted. For single-cell prep-
aration of tissue samples, traditional collagenase IV-based combinations 
are widely used, and solid tumor-based single-cell isolation kits have 
also been used more frequently in recent years due to the rapid 
advancement of technologies. The integration and application of the 
latest spatial histology and related technologies based on organoid 
culture techniques have also promoted the development of the GC field. 
Organoids derived from patient samples are a good alternative to in situ 
cancer tissues. These organoids can be preserved in a deep cryogenic 
refrigerator for a certain period of time, compensating for the depen-
dence on fresh specimens for SCS procedures [78]. 

SCS-based research has brought many new ideas and thoughts in the 
direction of cancer cell evolution law, microenvironment analysis, im-
mune characterization, drug resistance, and immunotherapy effect 
prediction of GC, which will ultimately open up new therapeutic 
methods and drugs for GC. 

2.3. SCS in colorectal cancer (CRC) research 

Colorectal cancer (CRC) is the third-most deadly and fourth-most 
common cancer worldwide. CRC is characterized by a variety of 
genomic, epigenomic, and transcriptomic changes, as well as multiple 
cellular processes that promote tumorigenesis [97]. SCS techniques are 
more widely used in CRC than in other gastrointestinal tumors, which is 
related to the high rate of CRC surgeries and easier sample acquisition. 
The research of SCS applied to CRC focuses on the following issues: first, 
tumor heterogeneity; second, tumor immune microenvironment; third, 
the mechanism of CRC metastasis and recurrence; and lastly, the dis-
covery of new drug targets. We organize some application cases of SCS 
technology in CRC research in Table 6 for your reference and study. 

Technology-wise, we find that scRNA-seq has been the mainstay of 
SCS technology for the last 5 years, but its actual platforms and methods 
are more colorful, although 10 ×Genomics is still dominant. The 
coupling of more than two SCS technologies also appears to be very 

Table 4 
Summary of the application of SCS technology in ESCC research.  

ScSeq-method/ 
platform 

Sampling 
method 

Sample 
information 

Key findings and 
novelties 

Ref 

scRNA-seq: 
SMART-seq2 

cell 
experiment 

37 KYSE-30 
cells; 73 
paclitaxel- 
resistant KYSE- 
30 cells 

Paclitaxel 
resistance 
mechanisms 

[58] 

scRNA-seq: 
SMART-seq2 

biopsy 
and/or 
surgery 

3 primary ESCC 
patients; 2 
primary EAC 
patients 

Intratumoral 
heterogeneity 
and genetic 
characteristics of 
ESCC and EAC 

[67] 

scRNA-seq: 
SMART-seq2 

cell 
experiment 

human ESCC cell 
line KYSE-180 
were irradiated 
with 2 Gy X-rays 
using a linear 
accelerator 

Transcriptional 
change; 
radioresistance in 
ESCC 

[68] 

scRNA-seq: 
SMART-seq2 

cell 
experiment 

ESCC cell lines 
KYSE180 with 
and without 
fractionated 
irradiation (FIR) 

radiation 
resistance in 
ESCC 

[69] 

scWES: MDA 
+ bulk WES 

biopsy 
and/or 
surgery 

74 longitudinal 
biopsy samples 
collected from 
40 patients; 2 
surgical samples 
(carcinoma and 
adjacent normal 
tissues) from 2 
ESCC patients 

Sensitivity and 
resistance gene 
mutations; 
radiation therapy 
relapse 

[59] 

scRNA-seq: 
10 × Genomics 

animal 
experiment 

Mice were 
treated with 
4NQO (100 μg/ 
ml) in drinking 
water for 16 
weeks to induce 
multi-staged 
ESCC 
carcinogen 

A mouse model 
mimicking 
human ESCC 
development; 
single-cell ESCC 
development 
map 

[60] 

scRNA-seq: 
10 × Genomics 

surgery Five ESCC and 
five 
corresponding 
non-malignant 
samples from 
10ESCC patients 

Heterogeneity; 
gene expression 
and CNV status 

[70] 

scRNA-seq: 
10 × Genomics 

surgery tumors and 
adjacent normal 
tissues from 60 
ESCC patients 
(stage I, stage II, 
and stage III) 

ecosystem and 
TME of ESCC; 
patient survival 
markers 

[61] 

scRNA-seq: 
10 × Genomics 
+ Spatial 
transcriptomics: 
10x Genomics 
Visium 

surgery ScRNA-seq: 79 
surgically 
removed 
esophageal 
samples 
including NOR, 
LGIN, HGIN, and 
tumors from 29 
patients with 
ESCC; ST: 20 
samples from 5 
patients 

ANXA1/FPR2 
signaling is an 
important 
crosstalk 
mechanism 
between 
epithelial cells 
and fibroblasts in 
promoting ESCC 

[65] 

ST: Nano-String 
spatial whole- 
transcriptome 
analysis 
+ scRNA-seq 
data from 
database 

biopsy 4 slides were 
employed for 
spatial WTA 
sequencing: 5 
micrometers 
slices of ESPL 
and ESCC 
patient FFPE 
tissue 

Using biopsy 
tissue specimens; 
ST technology 
combined with 
scRNA-seq data; 
predictors of 
ESCC risk that 
could help 
prevent and early 
intervene in ESCC 

[66]  
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common. Particularly worth introducing is the use of SCS technology 
combined with ST to explore the immune spectrum of CRC liver me-
tastases, which reveals the impact of neoadjuvant chemotherapy on the 
immune microenvironment of liver metastases and provides new ideas 
for the treatment of liver metastases [120]. Some studies have investi-
gated the interactions between stromal cells (e.g., CAF) and immune 
cells in the CRC TME using SCS-integrated spatial omics technology, 
providing good clues for elucidating the mechanisms of cancer pro-
gression and metastasis. Firstly, CRC tissues were analyzed by ST in 
combination with public scRNA-seq mapping to identify cell-cell in-
teractions at the invasion front, and it was found that CRC cells are 
exclusively located at the invasion front, and these CRC cells are specific 
to the immune cell environment [122]. Another similar study used 
single-cell and spatial analyses of cells from tumors and adjacent tissues 
to characterize the cellular composition and elucidate the potential 
origin and regulation of tumor-enriched cell types in CRC, demon-
strating the interaction of FAP+ fibroblasts and SPP1+ macrophages in 
CRC. These two studies provide a potential therapeutic strategy to 
improve immunotherapy by disrupting the interaction of associated fi-
broblasts and SPP1+ macrophages. Two studies in 2023 on liver 
metastasis in CRC both used ST binding RNA-seq to map cellular profiles 
of CRCs and matched liver metastatic CRCs. One of these compared 
cellular transcriptome differences between primary and liver metastatic 
tumors [123]. While another focused on heterogeneity between pa-
tients, between paired lesions in the same patient, and within individual 
lesions, and identified a reactive and suppressive immune 

microenvironment as a driver of CRC metastatic progression [124]. 
In terms of sample use, most studies still use surgical or biopsied 

cancerous and paracancerous tissues based on patient sources, and if 
metastasis-related issues are being studied, patient peripheral blood is 
used for immune cell isolation or specific immune cells are isolated from 
tumor tissues for immune microenvironment analysis. It is well known 
that the intestine is the first structure to be cultured organoids. As 
organoid technology has improved, many articles have used organoids 
from crypt structures in the intestine for studies related to colorectal 
cancer cell lines or tumor tissues [125]. Some of them are used as 
sequencing samples, and some of them are used as models for validation 
experiments. In general, organoids are becoming more and more pop-
ular in CRC research [99,117]. Additionally, a part of the research fo-
cuses on circulating tumor cell (CTCs). Analysis of the heterogeneity of 
CTCs in patients’ peripheral blood will help to understand the metastasis 
mechanism of CRC [100]. Another part of the research focuses on the 
study of tumor-infiltrating immune cells, which requires the separation 
of cancerous or paracancerous tissues into single-cell suspensions and 
then the use of sorting and other methods to isolate the immune cells of 
interest [98,105]. The actual research process requires a rational sample 
grouping design according to the research purpose. 

Similar to GC, after 2021, a considerable number of studies no longer 
directly collect cancer specimens for sequencing, but based on SCS data 
in the existing GEO database and bulk RNA-seq data in the TCGA 
database for data mining and algorithm development, which has yielded 
good results in several aspects. For example, the construction of 

Table 5 
Summary of the application of SCS technology in GC research.  

ScSeq-method/platform Sampling method Sample information Key findings and novelties Ref 

scRNA-seq (10 ×Genomics) 
+ scCNVs: (10 ×Genomics) 

cell experiment GC cell lines (9 species) Heterogeneity; GC evolution in vitro [79] 

scRNA-seq (10 ×Genomics) animal experiment gastric tissues from mice (Healthy/ inflammatory) Lineage-Specific Epithelial Responses; gastric corpus 
metaplasia 

[80] 

gastric organoids by 
air-liquid culture 

Gastric organoids (stomach bodies and antrum of 
P53-/- mice) 

Heterogeneity; gastric tissue niche [81] 

Gastric organoids (CD44-Cre/Cdh1loxP/loxP/tdTomato 
mice) 

Mechanism of HDGC triggered by CDH1 deletion; 
Specific markers of early tumor lesions 

[82] 

surgery GC and paired paracancerous tissues Heterogeneity of T cells; Immunity and 
immunotherapy 

[83] 

surgery GC and paired paracancerous tissues; Intestinal 
metaplasia tissues 

TME; cellular reprogramming [84] 

biopsy biopsy specimen excised by upper gastrointestinal 
endoscopic from GC or non-GC patients 

Heterogeneity; Malignant epithelial cell features; 
Rare subtype of GC 

[85] 

surgery tumor tissues and matched normal tissues from 
untreated non-metastatic GC patients 

active cell subtypes and interaction; TME; 
Heterogeneity; Immunity and immunotherapy 

[86] 

surgery tumor samples and adjacent mucosal samples were 
resected during surgery from GC patients 

CAF affecting the prognosis of GC; TME; 
Heterogeneity; Immune cell subpopulation analysis 

[87] 

surgery GC and paired paracancerous tissues; metastatic 
organs or tissues (liver, peritoneum, ovaries, lymph 
nodes) 

Heterogeneity; TME; organ-specific metastatic 
features 

[88] 

biopsy and/or surgery tissues from GC patients (4 pre-treatment samples, 4 
post-treatment samples and 3 pre-post pairs) through 
biopsy and/or surgery 

TME after neoadjuvant chemotherapy; Therapeutic 
mechanism of NACT in GC 

[89] 

biopsy Antrum mucosa biopsy specimen from GC, chronic 
atrophic gastritis and intestinal metaplasia patients 

Single-cell network of premalignant lesions and early 
GC; biomarkers of gastric early-malignant cells 

[90] 

therapeutic peritoneal 
lavage and/or 
puncture 

Peritoneal lavage fluid from early/ advanced GC 
patients; ascites from untreated/systemically treated 
GC patients 

Developmental trajectories of cancer/ immune cells; 
Discovery of prognostic genes; Application of PDOs 
in validation experiments 

[91] 

therapeutic puncture GC patients with malignant ascites, peritoneal 
cancer cells were obtained during therapeutic 
puncture 

Intratumoral heterogeneity of metastatic GAC; 
Prognostic markers 

[92] 

surgery Primary tumor tissues and corresponding positive 
peri gastric lymph node samples after surgical 
resections 

Lymph node metastasis mechanism; TME; 
Heterogeneity 

[93] 

scRNA-seq (Smart-seq2) surgery primary cancer and paired metastatic lymph node 
cancer tissues from 

GC lymph node metastasis marker gene; GC 
evolutionary driver gene 

[94] 

scDNA-seq (SNV: MDA) surgery GC and paired paracancerous tissues from GC 
patients 

Heterogeneity; somatic mutation spectrum [95] 

scRNA-seq (10 ×Genomics) 
+ ST (NanoString) 
+ RNAscope ISH 

biopsy and/or surgery surgical resection and biopsy samples from GC 
patients 

TME; Heterogeneity; Cell Fate Trajectories; Rare Cell 
Populations; Application of PDOs in validation 
experiments 

[96]  
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prognostic models, the prognostic value analysis of certain genes, het-
erogeneity analysis, the prognostic value of CAF or immune cells, etc. 
[126–128]. It is no exaggeration to say that all these discoveries have 
promoted the development of cancer cell mapping, recurrence and 
metastasis mechanisms, target prediction, and new drug development. 

2.4. SCS in liver cancer research (including intrahepatic bile duct tumors) 

Liver cancer is one of the most common malignant tumors, with the 
highest morbidity and mortality rates in the world. According to the 
origin of cancer cells, it is divided into primary and secondary liver 
cancer. Primary liver cancer is further divided into hepatocellular car-
cinoma (HCC) and cholangiocarcinoma. Among them, HCC is the most 
common liver cancer, accounting for about 90% [129]. Currently, there 

are several major problems in liver cancer, such as difficulty in early 
diagnosis, easy of metastasizing, and limited and ineffective treatment 
methods. Among the reasons for poor therapeutic outcomes are the 
following: the heterogeneity and complexity of HCC; the susceptibility 
of HCC to drug resistance; the difficulty of early diagnosis; and the poor 
therapeutic outcomes in advanced patients. The emergence of SCS 
technology represents a powerful strategy to characterize the complex 
molecular landscape of cancer [130–132]. 

Researchers have fully utilized various SCS technologies to investi-
gate the pathogenesis and drug resistance mechanisms of HCC, 
including the clonal evolution and developmental trajectory of cancer 
cells. The heterogeneous immune microenvironment of HCC is an 
important factor in drug resistance and recurrence, and single-cell his-
tology methods, in combination with other methods, including flow 

Table 6 
Summary of the application of SCS technology in CRC research.  

ScSeq-method/platform Sampling method Sample information Key findings and novelties Ref 

scRNA-seq (10 ×Genomics) animal experiment mouse tissues from 3 groups (control, AB680-treated, PD- 
1-blocked-treated) 

Immunotherapy mechanism for targeting CD73 
and PD-1 in CRC 

[13] 

scRNA-seq: scWTA (BD 
Rhapsody WTA amplification 
kit) 

animal experiment 
+ T Cell Isolation 
Kit 

CRC tissues from Humanized PD-1/PD-L1 Knock-In CRC 
Mouse Models 

Photodynamic therapy mechanism; tumor- 
infiltrating T cell; humanized PD-1 mice 

[98] 

scRNA-seq (Fluidigm C1) 
+ scDNA-seq (Fluidigm C1) 

organoids mouse CRC model; Organoid culture of small intestinal 
cells 

Tumorigenesis; Intra-tumor heterogeneity; cancer 
evolutionary dynamics 

[99] 

scRNA-seq (Smart-seq V4) CTCs from 
peripheral blood 

27 patients with mCRC Circulating tumor cell (CTC); metastasis 
mechanism 

[100] 

scRNA-seq (DNBelab Single-Cell 
Kit [MGI, Shenzhen, China]) 

surgery 14 untreated CRC tumor samples (7 young-CRC: age <50 
years; 7 old-CRC: age ≥50 years) 

Heterogeneity; TME between Young-Onset and 
Old-Onset CRC 

[101] 

scRNA-seq (10 ×Genomics) surgery 16 samples (5 colon tumor, 3 colons matched normal, 3 
liver metastasis, 5 liver matched normal) 

Heterogeneity of CSC in CRC; CSC marker genes [102] 

scRNA-seq (10 ×Genomics) therapeutic 
puncture 

ascites from a CRC patient (before/after chemotherapy) Heterogeneity; ascites derived cells; 
chemotherapy susceptibility; resistance 
mechanisms 

[103] 

scDNA-seq: scWES (KAPA 
Biosystem) 

surgery tumors and adjacent normal colon of CRC patients Genetic characterization and clonal evolution of 
CRC initiation cells (CRCICs) 

[104] 

scDNA-seq: scWES surgery liver metastasis cancer tissues and adjacent non- 
cancerous tissues 

TME; heterogenicity; granulocytes enrichment in 
CRC liver metastases 

[105] 

scRNA-seq (Smart-seq2) surgery T cells isolated from peripheral blood, adjacent normal 
and tumor tissues of 12 CRC patients 

Basic characteristics of tumor-infiltrating T cells 
(TILs); A web-based application was developed for 
querying and customizing T cell datasets 

[106] 

Parallel Single-Cell Genome and 
Transcriptome Sequencing 
(KAPA Biosystem) 

surgery; animal 
experiment 

cancer and para-cancer tissues, peripheral blood, and 
lymph nodes of CRC patients with microsatellite stability; 
Peripheral blood of the elderly without cancer; transgenic 
(CRC) mouse model 

A five-gene fibroblast specific prognostic marker; 
Prevalent Genomic Alterations in tumor stromal 
cells 

[107] 

scDNA-seq: scWGA (Ampli1 Kit 
from Silicon Biosystems) 

warm autopsy 
and/or surgery 

multiple tumoral and normal tissue samples Heterogeneity of mtDNA [108] 

scDNA-seq: scWGA (Ampli1 Kit 
from Silicon Biosystems) 

surgery 60 cells collected from a liver metastasis and a recurrent 
liver lesion 

Cancer evolution, Chemotherapy, Mutational 
signatures 

[109] 

scRNA-seq (10 ×Genomics) surgery tissues from a CRC patient (73 years old, female, Stage III) Heterogeneity; cell markers [110] 
scRNA-seq (10 ×Genomics) surgery tissues from 6 CRC patients (3 left-sided and 3 right-sided 

CRC patients) 
Resolving the difference between left-sided and 
right-sided CRC 

[111] 

scRNA-seq (Smart-seq2) surgery 11 CRC patients (7 males and 4 females) Traditional Chinese medicine syndromes 
classification is associated with tumor cell and 
microenvironment heterogeneity 

[112] 

scRNA-seq (10 ×Genomics) 
+ CITE-seq 

surgery tumors and adjacent normal colon of 16 CRC patients prognostic and non-prognostic T cell types [113] 

scRNA-seq (10 ×Genomics) 
+ scATAC-seq + WES 

biopsy and/or 
surgery 

12 CRC patients Heterogeneity; phenotypic and functional 
diversity of tumor-associated macrophages and T 
cells 

[114] 

scDNA-seq: scWES (BGI, 
Shenzhen, China) 

surgery 7 patients with liver metastatic CRC (primary tumor, liver 
metastatic tumor, normal colonic tissue) 

Rare mutation; Phylogenetic tree of the mutant 
spectrum 

[115] 

scRNA-seq (10 ×Genomics) 
+ scT&R-seq 

surgery tissues from 8 patients with untreated primary CRC Features of CSC: telomeres are short, highly 
heterogeneous and plastic 

[116] 

scRNA-seq (STRT) + scWGS 
(MALBAC) 

surgery; organoids tumor tissue, normal tissue and corresponding organoids 
cultured in vitro from 7 patients with CRC 

Culture conditions and biological characteristics 
of organoids in patients with CRC were evaluated 

[117] 

scRNA-seq (Smart-seq2 +

DNBelab C4) 
surgery 18 CRC patients (primary tumor, adjacent noncancerous 

tissue and the brim of matched tumor) 
Immune microenvironment; Transcriptome map; 
B cell heterogeneity and function 

[118] 

scRNA-seq (10 ×Genomics) surgery tumor tissues from MSI-H/ dMMR mCRC patients (3 
sensitive, 3 resistant) 

Mechanism of anti-PD-1 resistance in MSI-H or 
dMMR mCRC 

[119] 

scRNA-seq (10 ×Genomics) 
+ ST (10 ×Genomics Visium) 

surgery tumor tissues and/or paired adjacent colon, liver 
metastasis, adjacent liver, colon lymph nodes and PBMC 

Immune; TME; liver metastasis; R package; 
scMetabolism Effects of neoadjuvant 
chemotherapy 

[120] 

scRNA-seq (10 ×Genomics) 
+ mIF 

surgery tumors and adjacent normal colon of 18 CRC patients Mechanism of bone marrow targeted therapy; 
TME 

[121]  
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cytometry, multicolor immunofluorescence (mIF) or multicolor immu-
nohistochemistry (mIHC), and spatial histology, have provided in-depth 
analysis of the immune microenvironment, thus providing more evi-
dence for the effectiveness of immunotherapy, targeted therapy, and 
other therapies, providing more evidence for the effectiveness of 
immunotherapy, targeted therapy and other therapies. Another part of 
the research is targeting a particular type of cell, such as immune cells in 
the tissue microenvironment, including T cells [133], macrophages 
[134], innate lymphoid cells [135], as well as a series of studies on 
hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) 
[136–138]. Whether using liver cancer tissue samples, paired paraneo-
plastic and metastatic tissues, liver cancer model animals, transgenic 
mice, or even directly using SCS data from databases, thus analyzing the 
efficacy of liver cancer treatment and predicting the sensitivity of 
chemotherapy or targeted therapy, all of these are very valuable. 

In this section, we will not discuss in detail the application scenarios 
of scRNA-seq represented by 10 ×Genomics and SMART-seq2 but focus 
on how to integrate scRNA-seq technology with proteomics, ST and 
other technologies for research. Among them, single-cell proteomic 
technology represented by mass spectrometry flow (CyTOF) technology 
is combined with scRNA-seq to achieve multidimensional character-
ization of specific cell subpopulations, which is especially suitable for 
the study of peripheral blood immune cells and tumor immune cells in 
the microenvironment [139–142]. Multicolor immunohistochemistry 
belongs to both proteomics and spatial histology techniques, and since 
cellular communication in the TME is particularly important for the 
immunosuppressive environment of tumors, a large number of studies 
have used multicolor immunohistochemistry or multicolor immunoflu-
orescence staining to confirm new cell subpopulations and targets 
identified by SCS omics. A recent study based on scRNA-seq and the 
coupling of imaging mass spectrometry (IMC) flow and multicolor 
immunofluorescence (mIF) constructed spatially resolved single-cell 
profiles from formalin-fixed and paraffin-embedded tissue sections 
from patients with nonalcoholic steatohepatitis-associated hepatocel-
lular carcinoma (NASH-HCC), viral HCC (HBV-HCC, and HCV-HCC), 
and demonstrated that myeloid-derived suppressor cells (MDSCs) and 
interactions between tumor-associated macrophages (TAMs) and 
effector T cells underlie NASH-HCC immunosuppression and are a viable 
therapeutic target [143]. 

In another study, using scRNA-seq in conjunction with ST and mIF 
techniques, they identified a specific immune barrier structure, TIB, in 
the HCC microenvironment, which is formed by the interaction of SPP1+

macrophages and CAF that can limit the efficacy of immunotherapy by 
restricting immune cell infiltration into malignant areas. They then 
tested their conclusions in mice and found that blocking SPP1 to disrupt 
the TIB structure increased the sensitivity of HCC cells to immuno-
therapy [138]. 

HCC organoids have attracted much attention because they can be 
used as in vitro models to understand the pathogenesis of cancer well 
and the accessibility of the methodology. Several studies have attempted 
to generate HCC organoids from human HCC specimens and maintain 
the growth of HCC spheroids in a three-dimensional culture system, 
which can be used for the construction of HCC organoid libraries, drug 
toxicity analysis, and drug screening and precision medicine research 
[144]. In addition, xenografts from patients with HCC are popular, as 
well as the NOD-SCID mouse model, which mimics the human immune 
system and allows for better research on the relationship between tumor 
cells and the immune system. Cai et al. (2023) used organoids and xe-
nografts from liver cancer patients to test how well cilengitide worked 
when combined with the γ-secretase inhibitor LY3039478. They found 
that this combination worked much better than cilengitide alone [145]. 
Another CRISPR-based genome-wide screening found that the combi-
nation of DOCK1 inhibition and metformin provided effective targeted 
therapy for metformin-resistant patients, using not only patient-derived 
HCC organoids and in vivo xenografted hepatocytes, but also HCC 
models from immune-activated mice [146]. Both liver cancer carcinoid 

organs and SCS-related technologies have become powerful tools 
applied in the screening of early diagnostic markers and prognostic 
markers, as well as drug resistance mechanisms and new drug discovery 
and development for HCC [147,148]. 

2.5. SCS in pancreatic cancer (PaCa) research 

Pancreatic cancer (PaCa) is the fourth-leading cause of cancer- 
related deaths in the world and is regarded as the deadliest cancer, 
characterized by a poor prognosis and the lowest 5-year survival rate of 
all solid tumors, mainly due to a late diagnosis and poor treatment. 
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of 
PaCa, accounting for 90% of PaCa cases [149]. 

As single-cell resolution technology becomes more widely available, 
there is a clearer understanding of the genetic landscape of PDAC, such 
that there are only a few major hard-to-treat driver lesions such as Kras 
and TP53 and a variety of additional genetic alterations, including low- 
frequency copy number variants that contribute to the genetic diversity 
of the disease [150]. The PDAC scenario involves a diverse range of 
immunosuppressive microenvironments, which consist of various types 
of immunosuppressive cells like tumor-associated macrophages (TAMs), 
cancer-associated fibroblasts (CAFs), and other stromal cells. Addition-
ally, the interactions between these immune cells, stromal cells and the 
extracellular matrix have significant impacts on the patients’ prognosis 
and their resistance to drugs. The SCS has revealed, at an unprecedented 
resolution, the complexity of the PDAC microenvironment heterogene-
ity [151]. Several findings have often overturned initial perceptions. For 
instance, ductal cells are not a major component of the PDAC TME, 
while tumor-infiltrating immune cells and pancreatic stellate cells 
accumulate during tumor progression [151,152]. 

In the pathogenesis of early-stage cancer and precancerous lesions, 
surgical or biopsy specimens at different levels of IPMN (Intraductal 
papillary mucinous neoplasms) have been used to perform SCS, single- 
cell genomics sequencing to uncover genetic heterogeneity of driver 
mutations, and single-cell transcriptomes to identify heterogeneity of 
epithelial and vesicular chemotaxis cells [153–155]. During the 
concomitant progression of PDAC, epithelial cells, stromal cells in the 
microenvironment, and fibroblasts undergo dynamic changes on which 
a large number of studies have focused [156]. Since most PDACs are 
detected at advanced stages, surgical specimens are quite limited, and 
samples for SCS analysis are no longer as readily available as those for 
CRCs and HCCs, a considerable number of studies have been based on 
biopsy tissue specimens as well as model animals such as genetically 
engineered mice [151,157,158]. These studies have utilized SCS anal-
ysis of pancreatic cancer tissue specimens from patients or mice at 
different disease stages to uncover important markers and dynamic 
changes associated with disease progression. To study pancreatic cancer 
metastasis, several studies have used single-cell resolution analysis of 
primary and metastatic cancer tissues in combination with proteomic 
and spatial data analysis to obtain metastasis-related prognostic and 
therapeutic information [157,159]. 

More studies have been conducted to address intratumor heteroge-
neity than intertumoral heterogeneity, which is also inseparable from 
the fact that surgical specimens for pancreatic cancer are more difficult 
to access. To compensate for the limitation of surgical specimens, the 
patient’s cancer tissue-derived organoids have also become a good 
medium for study. Some of these studies have utilized PDO as a target 
for functional and phenotypic analyses [152,159], while others have 
directly utilized PDO as a substitute for in situ tumors for single-cell 
analyses [156,160,161]. A study in 2022 on patient-specific modeling 
of stroma-mediated chemoresistance in PaCa utilized primary 
PDAC-derived organoids and patient-matched CAFs in 
three-dimensional (3D) co-culture and then used image-based drug as-
says to determine the sensitivity of different chemotherapeutic drugs. 
The findings demonstrated that the co-culture led to a rise in the growth 
of PDAC-like organoids and a reduction in cell death caused by 
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chemotherapy. Additionally, it induced a pro-inflammatory state in 
CAFs. Consequently, the co-culture system proves to be a valuable tool 
for analyzing personalized drug responses. [162]. 

PDAC is susceptible to resistance to both chemotherapy and immu-
notherapy, mainly caused by an immunologically heterogeneous 
microenvironment and dense extracellular matrix. Newer therapies, 
such as lysoviruses, can be effective in treating PDAC by remodeling the 
TME and damaging tumor cells by either directly killing tumor cells or 
augmenting the tumor immune response. In 2023, Liu et al.’s study on 
OX40L-armed lysosomal viruses enhanced T-cell responses and remod-
eled the TME using flow cytometric and single-cell RNA-seq analyses of 
tumor-infiltrating immune cells and stromal cells to gain insights into 
the stroma of lysosomal viral (OV) therapies, which demonstrated that 
OV-mOX40L in combination with anti-IL6 and anti-PD-1 significantly 
prolonged the lifespan of PDAC mice. This study provides a new thera-
peutic strategy for the treatment of pancreatic cancer [163]. 

To study immune dysfunction, researchers have made full use of 
spatially resolved multi-omics. scRNA-seq was combined with the ST, 
mIHC, and CyTOF to analyze untreated PDAC tumors and matched 
adjacent normal pancreatic tissue and immune cells in the systemic 
circulation. They delineated depletion phenotypes of CD8 + T cells, 
immunosuppressive signatures of bone marrow cells, and maps of im-
mune landscapes at spatial resolution. All of these provide comprehen-
sive resources for the functional study of PDAC and the exploration of 
therapeutic targets. [164]. Similarly, another study analyzed untreated 
and chemo-resistant pancreatic cancer tissues by single-cell/nucleus 
RNA sequencing, holistic proteomics and phosphorylated proteomics, 
ST, and cellular imaging, was able to identify tumors and overgrowth 
subpopulations with different histological features. The chemo-resistant 
samples contained triple-enriched inflammatory CAFs, all of which will 
help to understand the organization of PDAC contributing to improved 
treatment of the disease [165]. In addition to ST, flight mass cytometry 
is also widely used as a single-cell proteomics method. One of them is the 
use of CyTOF to analyze tumor growth, survival and immune function in 
mice. In conjunction with scRNA-seq, we analyzed whether combined 
inhibition of MEK and STAT3 can reprogram CAFs and the immune 
microenvironment to overcome PDAC resistance to immune checkpoint 
inhibitors [166]. In another study in metastatic pancreatic cancer, 38 
cell surface or intracellular markers in peripheral blood mononuclear 
cells were simultaneously detected using single-cell MS flow cytometry, 
providing potential prognostic features from immune correlations that 
could be used for patient stratification [167]. CyTOF, as a representative 
of single-cell proteomics technology, is a great tool for studying immune 
cells as well as the TME. Yi et al. (2023) analyzed and clustered multiple 
immune cells from normal liver and pancreatic cancer liver metastases 
(mice) by using scRNA-seq, followed by ICM to analyze 
epithelial-mesenchymal transition markers in pancreatic cancer liver 
metastases, and finally explained the iNKT cell-mediated anti-tumor 
immunity in PaCa liver metastases [168]. 

In conclusion, with more refined tissue imaging capabilities, single- 
cell analysis, and disease modeling, the mechanisms of PDAC resis-
tance, as well as the structure of complex tumor mechanisms, will be 
more fully resolved, which will provide a rich resource for the effective 
treatment of PaCa. 

3. Conclusion and perspective 

According to the WHO, digestive system cancers account for about 
22% of all cancers worldwide and are the most common type of cancer. 
Various digestive system cancers differ in their pathogenesis and treat-
ment approaches, but they also share many commonalities, including 
the prevalence of early diagnostic difficulties, tumor heterogeneity, and 
drug resistance, which in turn are very much related to the clonal evo-
lution of cancer cells and the microenvironment in which they reside. In 
addition to the cancer cells, the TME also includes a variety of immune 
cells, stromal cells (including various subtypes of CAFs), extracellular 

matrix, etc. These cells are not single but rather quite complex and 
diverse, and cell-cell interactions also play an important role in tumor 
development, metastasis and drug resistance. 

Although SCS technology has unique advantages in addressing such 
heterogeneous diseases as cancer, it also has certain limitations, such as 
the inability to independently correlate genotypes and phenotypes, 
which indicates the need for high-throughput, low-cost multi-omics 
technology to map the overall tumor tissue landscape. There are also 
technical costs, timeliness, and the difficulty of bioinformatics analysis. 
We provide the following outlook for the development of single-cell 
omics in digestive system cancers. 

First, each SCS technology needs to be improved. For scRNA-seq, it is 
critical to improve assay throughput and develop targeted amplification 
techniques suitable for the detection of non-polyadenylation RNA spe-
cies [169]. In single-cell epigenomics, nanopore-sequencing (nano-
pore-seq) technology allows the detection of DNA and protein 
modifications as well as the direct detection of RNAs. In addition, 
nanopore sequencing with longer sequencing read lengths is a promising 
new technology for SCS [170]. MS-based single-cell proteome analysis 
will be the future direction of development, which requires break-
throughs and improvements in sample preparation, data analysis, and 
standardization [171]. Meanwhile, MS based on imaging technology is 
also an important development direction in the field of single-cell 
multi-omics. 

Second, innovations must be made in upstream and downstream 
technologies for common SCS steps, such as tissue dissociation, up-
stream single-cell suspension preparation techniques, and downstream 
sequencing data analysis. Packaging the homogenization, reproduc-
ibility, and visualization of SCS data analysis into software and inte-
grating it into the instrumentation in the workflow is especially critical 
to determine whether SCS can truly serve clinical applications. 

Third, to promote the convergence of multiple SCS technologies and 
the development of single-cell multi-omics. This issue is of great sig-
nificance, and at the same time, the challenge is enormous. Integrating 
2D or multidimensional data depends on breakthroughs in cell labeling 
and bioinformatics, both in terms of experiments and data analysis. 
ScRNA-seq has been integrated with single-cell genomics and single-cell 
proteomics in many cases. On the other hand, the integration of SCS 
with in situ sequencing and spatial imaging technologies has also 
attracted much attention because the localization of cells in tumor tis-
sues and their roles in TME are critical for cellular function and identity, 
which is the driving force behind the rapid development of related 
technologies such as in situ sequencing and ST. 

Finally, SCS product packages are being developed to enable higher 
throughput, more automated, more convenient, and lower cost appli-
cations of SCS technology in digestive system tumors. Two points are 
worth mentioning: (1) Cell sponge products can be developed to obtain 
cells or secretions from the digestive tract through minimally invasive 
techniques for SCS analysis of some digestive system tumors. (2) 
Develop a method for isolating single cells from formalin-fixed paraffin- 
embedded (FFPE) tissue to make solid tumor specimens more conve-
nient. In addition, FFPE-based in situ sequencing technology and spatial 
multi-omics technology represented by ST are also development areas 
that need to be actively promoted. However, ST technology is not very 
mature; there are some limitations, and more breakthroughs need to be 
made to improve spatial resolution and reduce cost. 

There is still a long way to go for the clinical application of single-cell 
technology in digestive system cancers, but it has already made a fruitful 
contribution to early diagnosis of the disease, staging and typing of 
cancers, prediction of patient prognosis, prediction of the efficacy of 
therapeutic methods, and the development of new drugs. In these areas, 
more novel discoveries are being made now and in the future, as shown 
in Fig. 3. Tumors of the digestive system can be diagnosed with the help 
of endoscopic techniques, and their biopsy specimens are easy to obtain. 
A significant portion of the research is based on these biopsy specimens. 
It is believed that with the development of single-cell multi-omics 

S. Zhou et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 23 (2024) 431–445

442

technology, the diagnosis and treatment of digestive system cancers can 
break through the limitations of traditional cancer research in the 
future, and obtain more medical research and clinical translational re-
sults that will benefit patients. 
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[22] Kolodziejczyk AA, Lönnberg T. Global and targeted approaches to single-cell 
transcriptome characterization. Brief Funct Genom 2018;17(4):209–19. 

[23] Lafzi A, et al. Tutorial: guidelines for the experimental design of single-cell RNA 
sequencing studies. Nat Protoc 2018;13(12):2742–57. 

[24] Philpott M, et al. Nanopore sequencing of single-cell transcriptomes with 
scCOLOR-seq. Nat Biotechnol 2021;39(12):1517–20. 

[25] Jovic D, et al. Single-cell RNA sequencing technologies and applications: a brief 
overview. Clin Transl Med 2022;12(3):e694. 

[26] Baran-Gale J, Chandra T, Kirschner K. Experimental design for single-cell RNA 
sequencing. Brief Funct Genom 2018;17(4):233–9. 

[27] Zhou R, et al. Spatial transcriptomics in development and disease. Mol Biomed 
2023;4(1):32. 

[28] Duan H, Cheng T, Cheng H. Spatially resolved transcriptomics: advances and 
applications. Blood Sci 2023;5(1):1–14. 

[29] Wang KC, Chang HY. Epigenomics: technologies and applications. Circ Res 2018; 
122(9):1191–9. 

[30] Lo PK, Zhou Q. Emerging techniques in single-cell epigenomics and their 
applications to cancer research. J Clin Genom 2018;1(1). 

[31] Zhang R, Zhou T, Ma J. Multiscale and integrative single-cell Hi-C analysis with 
Higashi. Nat Biotechnol 2022;40(2):254–61. 

[32] Satpathy AT, et al. Transcript-indexed ATAC-seq for precision immune profiling. 
Nat Med 2018;24(5):580–90. 

[33] Mooijman D, et al. Single-cell 5hmC sequencing reveals chromosome-wide cell- 
to-cell variability and enables lineage reconstruction. Nat Biotechnol 2016;34(8): 
852–6. 

[34] Bennett HM, et al. Single-cell proteomics enabled by next-generation sequencing 
or mass spectrometry. Nat Methods 2023;20(3):363–74. 

[35] Peck Justice SA, et al. Boosting detection of low-abundance proteins in thermal 
proteome profiling experiments by addition of an isobaric trigger channel to TMT 
multiplexes. Anal Chem 2021;93(18):7000–10. 

[36] Kassem S, et al. Proteomics for low cell numbers: how to optimize the sample 
preparation workflow for mass spectrometry analysis. J Proteome Res 2021;20 
(9):4217–30. 

[37] Brennan DJ, et al. Antibody-based proteomics: fast-tracking molecular 
diagnostics in oncology. Nat Rev Cancer 2010;10(9):605–17. 

[38] Han G, et al. Metal-isotope-tagged monoclonal antibodies for high-dimensional 
mass cytometry. Nat Protoc 2018;13(10):2121–48. 

[39] Specht H, et al. Single-cell proteomic and transcriptomic analysis of macrophage 
heterogeneity using SCoPE2. Genome Biol 2021;22(1). 

[40] Lakkis J, et al. A multi-use deep learning method for CITE-seq and single-cell 
RNA-seq data integration with cell surface protein prediction and imputation. Nat 
Mach Intell 2022;4(11):940–52. 

[41] Moffitt JR, Lundberg E, Heyn H. The emerging landscape of spatial profiling 
technologies. Nat Rev Genet 2022;23(12):741–59. 

[42] Naderi-Azad S, et al. Research techniques made simple: experimental 
methodology for imaging mass cytometry. J Invest Dermatol 2021;141(3): 
467–473.e1. 

[43] Raredon MSB, et al. Comprehensive visualization of cell-cell interactions in 
single-cell and spatial transcriptomics with NICHES. Bioinformatics 2023;39(1). 

[44] Walker BL, et al. Deciphering tissue structure and function using spatial 
transcriptomics. Commun Biol 2022;5(1):220. 

[45] Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods 2022;19(5): 
534–46. 

[46] Zhou Y, et al. Encoding method of single-cell spatial transcriptomics sequencing. 
Int J Biol Sci 2020;16(14):2663–74. 

[47] Williams CG, et al. An introduction to spatial transcriptomics for biomedical 
research. Genome Med 2022;14(1):68. 

[48] Ren X, Kang B, Zhang Z. Understanding tumor ecosystems by single-cell 
sequencing: promises and limitations. Genome Biol 2018;19(1):211. 

[49] Liang L, et al. Integration of scRNA-Seq and Bulk RNA-Seq to Analyse the 
Heterogeneity of Ovarian Cancer Immune Cells and Establish a Molecular Risk 
Model. Front Oncol 2021;11:711020. 

[50] Sun D, et al. Identifying phenotype-associated subpopulations by integrating bulk 
and single-cell sequencing data. Nat Biotechnol 2022;40(4):527–38. 

[51] Ben-David U, et al. Genetic and transcriptional evolution alters cancer cell line 
drug response. Nature 2018;560(7718):325–30. 

[52] Choi JR, et al. Single-Cell RNA Sequencing and Its Combination with Protein and 
DNA Analyses. Cells 2020;9(5). 

[53] Berest I, Tangherloni A. Integration of scATAC-Seq with scRNA-Seq Data. 
Methods Mol Biol 2023;2584:293–310. 

[54] Longo SK, et al. Integrating single-cell and spatial transcriptomics to elucidate 
intercellular tissue dynamics. Nat Rev Genet 2021;22(10):627–44. 

[55] Wang X, Almet AA, Nie Q. The promising application of cell-cell interaction 
analysis in cancer from single-cell and spatial transcriptomics. Semin Cancer Biol 
2023;95:42–51. 

[56] Lein E, Borm LE, Linnarsson S. The promise of spatial transcriptomics for 
neuroscience in the era of molecular cell typing. Science 2017;358(6359):64–9. 

[57] Qie S, et al. Targeting glutamine-addiction and overcoming CDK4/6 inhibitor 
resistance in human esophageal squamous cell carcinoma. Nat Commun 2019;10 
(1):1296. 

[58] Wu H, et al. Single-cell transcriptome analyses reveal molecular signals to 
intrinsic and acquired paclitaxel resistance in esophageal squamous cancer cells. 
Cancer Lett 2018;420:156–67. 

[59] Yang L, et al. Identification of radioresponsive genes in esophageal cancer from 
longitudinal and single cell exome sequencing. Int J Radiat Oncol Biol Phys 2020; 
108(4):1103–14. 

[60] Yao J, et al. Single-cell transcriptomic analysis in a mouse model deciphers cell 
transition states in the multistep development of esophageal cancer. Nat Commun 
2020;11(1):3715. 

[61] Zhang X, et al. Dissecting esophageal squamous-cell carcinoma ecosystem by 
single-cell transcriptomic analysis. Nat Commun 2021;12(1):5291. 

[62] Wu H, et al. Single‑cell intratumoral stemness analysis reveals the involvement of 
cell cycle and DNA damage repair in two different types of esophageal cancer. 
Oncol Rep 2019;41(6):3201–8. 

[63] Zhao WJ, et al. Prognostic Biomarkers Identification in Esophageal Cancer Based 
on WGCNA and Single-Cell Analysis. Dis Markers 2022;2022:6595778. 

[64] Sun, C., et al., Multi-omics characterization of cellular state diversity and bidirectional 
tumor-stroma/immune interactions in cervical squamous cell carcinoma. 2023, 
Research Square. 

[65] Chen Y, et al. Epithelial cells activate fibroblasts to promote esophageal cancer 
development. Cancer Cell 2023;41(5):903–918.e8. 

[66] Liu X, et al. Spatial transcriptomics analysis of esophageal squamous 
precancerous lesions and their progression to esophageal cancer. Nat Commun 
2023;14(1):4779. 

[67] Wu H, et al. Single-cell RNA sequencing reveals diverse intratumoral 
heterogeneities and gene signatures of two types of esophageal cancers. Cancer 
Lett 2018;438:133–43. 

[68] Wu H, et al. Population and single‑cell transcriptome analyses reveal diverse 
transcriptional changes associated with radioresistance in esophageal squamous 
cell carcinoma. Int J Oncol 2019;55(6):1237–48. 

[69] Yang L, et al. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line 
with fractionated irradiation reveals radioresistant gene expression patterns. BMC 
Genom 2019;20(1):611. 

[70] Chen Z, et al. Dissecting the single-cell transcriptome network underlying 
esophagus non-malignant tissues and esophageal squamous cell carcinoma. 
EBioMedicine 2021;69:103459. 

[71] Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors 
and prevention. Prz Gastroenterol 2019;14(1):26–38. 

[72] Wang Z, Liu Y, Niu X. Application of artificial intelligence for improving early 
detection and prediction of therapeutic outcomes for gastric cancer in the era of 
precision oncology. Semin Cancer Biol 2023;93:83–96. 

[73] Li R, et al. Heterogeneous genomic aberrations in esophageal squamous cell 
carcinoma: a review. Am J Transl Res 2020;12(5):1553–68. 

[74] Xu B, et al. Immune characteristics and genetic markers of esophageal cancer by 
single-cell analysis: implications for immunotherapy. J Thorac Dis 2023;15(4): 
1805–22. 

[75] Seidlitz T, et al. Human gastric cancer modelling using organoids. Gut 2019;68 
(2):207–17. 

[76] Wang J, et al. Spatial metabolomics identifies distinct tumor-specific subtypes in 
gastric cancer patients. Clin Cancer Res 2022;28(13):2865–77. 

[77] Sundar R, et al. Spatial profiling of gastric cancer patient-matched primary and 
locoregional metastases reveals principles of tumour dissemination. Gut 2021;70 
(10):1823–32. 

[78] Dong J, et al. Spatially resolved expression landscape and gene-regulatory 
network of human gastric corpus epithelium. Protein Cell 2023;14(6):433–47. 

[79] Andor N, et al. Joint single cell DNA-seq and RNA-seq of gastric cancer cell lines 
reveals rules of evolution. NAR Genom Bioinforma 2020;2(2):lqaa016. 

[80] Bockerstett KA, et al. Single-cell transcriptional analyses identify lineage-specific 
epithelial responses to inflammation and metaplastic development in the gastric 
corpus. Gastroenterology 2020;159(6). 

S. Zhou et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref7
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref7
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref8
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref8
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref9
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref9
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref10
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref10
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref11
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref11
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref12
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref12
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref13
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref13
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref14
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref14
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref15
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref15
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref16
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref16
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref17
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref17
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref18
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref18
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref19
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref19
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref20
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref20
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref21
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref21
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref22
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref22
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref23
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref23
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref24
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref24
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref25
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref25
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref26
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref26
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref27
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref27
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref28
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref28
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref29
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref29
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref30
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref30
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref31
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref31
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref32
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref32
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref33
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref33
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref33
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref34
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref34
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref35
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref35
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref35
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref36
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref36
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref36
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref37
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref37
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref38
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref38
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref39
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref39
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref40
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref40
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref40
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref41
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref41
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref42
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref42
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref42
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref43
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref43
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref44
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref44
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref45
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref45
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref46
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref46
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref47
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref47
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref48
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref48
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref49
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref49
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref49
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref50
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref50
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref51
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref51
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref52
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref52
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref53
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref53
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref54
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref54
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref55
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref55
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref55
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref56
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref56
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref57
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref57
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref57
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref58
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref58
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref58
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref59
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref59
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref59
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref60
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref60
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref60
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref61
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref61
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref62
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref62
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref62
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref63
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref63
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref64
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref64
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref65
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref65
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref65
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref66
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref66
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref66
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref67
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref67
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref67
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref68
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref68
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref68
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref69
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref69
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref69
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref70
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref70
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref71
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref71
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref71
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref72
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref72
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref73
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref73
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref73
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref74
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref74
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref75
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref75
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref76
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref76
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref76
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref77
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref77
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref78
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref78
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref79
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref79
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref79


Computational and Structural Biotechnology Journal 23 (2024) 431–445

444

[81] Chen J, et al. Single-cell transcriptome analysis identifies distinct cell types and 
niche signaling in a primary gastric organoid model. Sci Rep 2019;9(1):4536. 

[82] Dixon K, et al. Modelling hereditary diffuse gastric cancer initiation using 
transgenic mouse-derived gastric organoids and single-cell sequencing. J Pathol 
2021;254(3):254–64. 

[83] Fu K, et al. Single-cell RNA sequencing of immune cells in gastric cancer patients. 
Aging 2020;12(3):2747–63. 

[84] Sathe A, et al. Single-cell genomic characterization reveals the cellular 
reprogramming of the gastric tumor microenvironment. Clin Cancer Res: J Am 
Assoc Cancer Res 2020;26(11):2640–53. 

[85] Zhang M, et al. Dissecting transcriptional heterogeneity in primary gastric 
adenocarcinoma by single cell RNA sequencing. Gut 2021;70(3):464–75. 

[86] Li Y, et al. Single-cell landscape reveals active cell subtypes and their interaction 
in the tumor microenvironment of gastric cancer. Theranostics 2022;12(8): 
3818–33. 

[87] Li X, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated 
fibroblast subgroup associated with poor clinical outcomes in patients with 
gastric cancer. Theranostics 2022;12(2):620–38. 

[88] Jiang H, et al. Revealing the transcriptional heterogeneity of organ-specific 
metastasis in human gastric cancer using single-cell RNA Sequencing. Clin Transl 
Med 2022;12(2):e730. 

[89] Chen Y, et al. Reconstruction of the gastric cancer microenvironment after 
neoadjuvant chemotherapy by longitudinal single-cell sequencing. J Transl Med 
2022;20(1):563. 

[90] Zhang P, et al. Dissecting the single-cell transcriptome network underlying gastric 
premalignant lesions and early gastric cancer. Cell Rep 2020;30(12):4317. 

[91] Huang XZ, et al. Single-cell sequencing of ascites fluid illustrates heterogeneity 
and therapy-induced evolution during gastric cancer peritoneal metastasis. Nat 
Commun 2023;14(1):822. 

[92] Wang R, et al. Single-cell dissection of intratumoral heterogeneity and lineage 
diversity in metastatic gastric adenocarcinoma. Nat Med 2021;27(1):141–51. 

[93] Qian Y, et al. Single-cell RNA-seq dissecting heterogeneity of tumor cells and 
comprehensive dynamics in tumor microenvironment during lymph nodes 
metastasis in gastric cancer. Int J Cancer 2022;151(8):1367–81. 

[94] Wang B, et al. Comprehensive analysis of metastatic gastric cancer tumour cells 
using single-cell RNA-seq. Sci Rep 2021;11(1):1141. 

[95] Peng L, et al. Characterization and validation of somatic mutation spectrum to 
reveal heterogeneity in gastric cancer by single cell sequencing. Sci Bull 2019;64 
(4):236–44. 

[96] Kumar V, et al. Single-cell atlas of lineage states, tumor microenvironment, and 
subtype-specific expression programs in gastric cancer. Cancer Discov 2022;12 
(3):670–91. 

[97] Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, 
mortality, survival, and risk factors. Prz Gastroenterol 2019;14(2):89–103. 

[98] Lee EJ, et al. Single-Cell RNA sequencing reveals immuno-oncology 
characteristics of tumor-infiltrating t lymphocytes in photodynamic therapy- 
treated colorectal cancer mouse model. Int J Mol Sci 2023;24(18). 

[99] Ono H, et al. Single-cell DNA and RNA sequencing reveals the dynamics of intra- 
tumor heterogeneity in a colorectal cancer model. Bmc Biol 2021;19(1). 

[100] Kozuka M, et al. Clinical significance of circulating tumor cell induced epithelial- 
mesenchymal transition in patients with metastatic colorectal cancer by single- 
cell RNA-sequencing. Cancers 2021;13(19). 

[101] Li GM, et al. Single-Cell RNA sequencing reveals heterogeneity in the tumor 
microenvironment between young-onset and old-onset colorectal cancer. 
Biomolecules 2022;12(12). 

[102] Lin KY, Shen JP. Elucidating cancer stem cells heterogeneity in colorectal cancer 
by single-cell RNA sequencing. Cancer Res 2022;82(12). 

[103] Poonpanichakul T, et al. Capturing tumour heterogeneity in pre- and post- 
chemotherapy colorectal cancer ascites-derived cells using single-cell RNA- 
sequencing. Biosci Rep 2021;41(12). 

[104] Zhang XY, et al. Single-cell sequencing reveals CD133<SUP>+</ 
SUP>CD44<SUP>-</SUP>- originating evolution and novel stemness related 
variants in human colorectal cancer. Ebiomedicine 2022:82. 

[105] Zhang Y, et al. Single-cell transcriptome analysis reveals tumor immune 
microenvironment heterogenicity and granulocytes enrichment in colorectal 
cancer liver metastases. Cancer Lett 2020;470:84–94. 

[106] Zhang Y, et al. Deep single-cell RNA sequencing data of individual T cells from 
treatment-naïve colorectal cancer patients. Sci data 2019;6(1):131. 

[107] Zhou Y, et al. Single-cell multiomics sequencing reveals prevalent genomic 
alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 2020; 
38(6). 

[108] Almeida J, et al. Single-cell mtDNA heteroplasmy in colorectal cancer. Genomics 
2022;114(2). 

[109] Alves JM, et al. Clonality and timing of relapsing colorectal cancer metastasis 
revealed through whole-genome single-cell sequencing. Cancer Lett 2022;543. 

[110] Dai W, et al. Single-cell transcriptional profiling reveals the heterogenicity in 
colorectal cancer. Medicine 2019;98(34):e16916. 

[111] Guo W, et al. Resolving the difference between left-sided and right-sided 
colorectal cancer by single-cell sequencing. Jci Insight 2022;7(1). 

[112] Lu YY, et al. Traditional chinese medicine syndromes classification associates 
with tumor cell and microenvironment heterogeneity in colorectal cancer: a 
single cell RNA sequencing analysis. Chin Med 2021;16(1). 

[113] Masuda K, et al. Multiplexed single-cell analysis reveals prognostic and 
nonprognostic T cell types in human colorectal cancer. Jci Insight 2022;7(7). 

[114] Mei Y, et al. Single-cell analyses reveal suppressive tumor microenvironment of 
human colorectal cancer. Clin Transl Med 2021;11(6). 

[115] Tang J, et al. Single-cell exome sequencing reveals multiple subclones in 
metastatic colorectal carcinoma. Genome Med 2021;13(1). 

[116] Wang H, et al. Colorectal cancer stem cell states uncovered by simultaneous 
single-cell analysis of transcriptome and telomeres. Adv Sci 2021;8(8). 

[117] Wang R, et al. Systematic evaluation of colorectal cancer organoid system by 
single-cell RNA-Seq analysis. Genome Biol 2022;23(1). 

[118] Wang W, et al. Multiregion single-cell sequencing reveals the transcriptional 
landscape of the immune microenvironment of colorectal cancer. Clin Transl Med 
2021;11(1). 

[119] Wu T, et al. Single-cell sequencing reveals the immune microenvironment 
landscape related to anti-PD-1 resistance in metastatic colorectal cancer with high 
microsatellite instability. Bmc Med 2023;21(1). 

[120] Wu YC, et al. Spatiotemporal immune landscape of colorectal cancer liver 
metastasis at single-cell level. Cancer Discov 2022;12(1):134–53. 

[121] Zhang L, et al. Single-cell analyses inform mechanisms of myeloid-targeted 
therapies in colon cancer. Cell 2020;181(2). 

[122] Ozato Y, et al. Spatial and single-cell transcriptomics decipher the cellular 
environment containing HLA-G+ cancer cells and SPP1+ macrophages in 
colorectal cancer. Cell Rep 2023;42(1):111929. 

[123] Wang F, et al. Single-cell and spatial transcriptome analysis reveals the cellular 
heterogeneity of liver metastatic colorectal cancer. Sci Adv 2023;9(24):eadf5464. 

[124] Wood CS, et al. Spatially resolved transcriptomics deconvolutes prognostic 
histological subgroups in patients with colorectal cancer and synchronous liver 
metastases. Cancer Res 2023;83(8):1329–44. 

[125] Taelman J, Diaz M, Guiu J. Human intestinal organoids: promise and challenge. 
Front Cell Dev Biol 2022;10:854740. 

[126] Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived 
genes in patients with colorectal cancer based on single-cell sequencing and 
transcriptomics. Front Immunol 2022;13. 

[127] Zhang X, et al. Single-cell RNA-Seq and bulk RNA-Seq reveal reliable diagnostic 
and prognostic biomarkers for CRC. J Cancer Res Clin Oncol 2023;149(12): 
9805–21. 

[128] Zheng H, et al. Integrated single-cell and bulk RNA sequencing analysis identifies 
a cancer associated fibroblast-related signature for predicting prognosis and 
therapeutic responses in colorectal cancer. Cancer Cell Int 2021;21(1). 

[129] Huang DQ, et al. Changing global epidemiology of liver cancer from 2010 to 
2019: NASH is the fastest growing cause of liver cancer. Cell Metab 2022;34(7): 
969–977.e2. 

[130] Llovet JM, et al. Hepatocellular carcinoma. Nat Rev Dis Prim 2021;7(1):6. 
[131] Hindson J. Single-cell RNA sequencing of early-relapse hepatocellular carcinoma. 

Nat Rev Gastroenterol Hepatol 2021;18(3):150. 
[132] Lu Y, et al. A single-cell atlas of the multicellular ecosystem of primary and 

metastatic hepatocellular carcinoma. Nat Commun 2022;13(1):4594. 
[133] Chen S, et al. Distinct single-cell immune ecosystems distinguish true and de novo 

HBV-related hepatocellular carcinoma recurrences. Gut 2023;72(6):1196–210. 
[134] Bao X, et al. Molecular subgroups of intrahepatic cholangiocarcinoma discovered 

by single-cell RNA Sequencing-assisted multiomics analysis. Cancer Immunol Res 
2022;10(7):811–28. 

[135] He Y, et al. Single-cell profiling of human CD127(+) innate lymphoid cells reveals 
diverse immune phenotypes in hepatocellular carcinoma. Hepatology 2022;76(4): 
1013–29. 

[136] Affo S, et al. Promotion of cholangiocarcinoma growth by diverse cancer- 
associated fibroblast subpopulations. Cancer Cell 2021;39(6):866–882.e11. 

[137] Zhu GQ, et al. CD36(+) cancer-associated fibroblasts provide immunosuppressive 
microenvironment for hepatocellular carcinoma via secretion of macrophage 
migration inhibitory factor. Cell Discov 2023;9(1):25. 

[138] Liu Y, et al. Identification of a tumour immune barrier in the HCC 
microenvironment that determines the efficacy of immunotherapy. J Hepatol 
2023;78(4):770–82. 

[139] Lee YH, et al. IFNγ(-)IL-17(+) CD8 T cells contribute to immunosuppression and 
tumor progression in human hepatocellular carcinoma. Cancer Lett 2023;552: 
215977. 

[140] Zhang L, et al. Endothelial DGKG promotes tumor angiogenesis and immune 
evasion in hepatocellular carcinoma. J Hepatol 2023. 

[141] Weng J, et al. Intratumoral PPT1-positive macrophages determine 
immunosuppressive contexture and immunotherapy response in hepatocellular 
carcinoma. J Immunother Cancer 2023;11(6). 

[142] Zheng B, et al. Trajectory and functional analysis of PD-1(high) CD4(+)CD8(+) T 
cells in hepatocellular carcinoma by single-cell cytometry and transcriptome 
sequencing. Adv Sci 2020;7(13):2000224. 

[143] Li M, et al. Spatial proteomics of immune microenvironment in nonalcoholic 
steatohepatitis-associated hepatocellular carcinoma. Hepatology 2023. 

[144] Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic 
applications. Gut 2019;68(12):2228–37. 

[145] Cai J, et al. Combined inhibition of surface CD51 and γ-secretase-mediated CD51 
cleavage improves therapeutic efficacy in experimental metastatic hepatocellular 
carcinoma. J Hepatol 2023. 

[146] Feng J, et al. Genome-wide CRISPR screen identifies synthetic lethality between 
DOCK1 inhibition and metformin in liver cancer. Protein Cell 2022;13(11): 
825–41. 

[147] Wang J, et al. N6-methyladenosine-mediated up-regulation of FZD10 regulates 
liver cancer stem cells’ properties and lenvatinib resistance through WNT/ 
β-catenin and hippo signaling pathways. Gastroenterology 2023;164(6): 
990–1005. 

S. Zhou et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref80
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref80
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref81
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref81
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref81
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref82
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref82
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref83
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref83
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref83
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref84
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref84
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref85
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref85
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref85
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref86
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref86
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref86
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref87
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref87
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref87
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref88
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref88
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref88
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref89
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref89
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref90
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref90
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref90
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref91
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref91
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref92
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref92
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref92
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref93
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref93
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref94
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref94
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref94
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref95
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref95
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref95
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref96
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref96
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref97
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref97
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref97
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref98
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref98
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref99
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref99
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref99
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref100
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref100
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref100
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref101
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref101
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref102
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref102
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref102
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref103
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref103
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref103
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref104
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref104
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref104
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref105
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref105
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref106
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref106
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref106
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref107
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref107
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref108
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref108
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref109
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref109
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref110
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref110
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref111
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref112
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref112
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref113
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref113
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref114
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref114
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref115
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref115
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref116
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref116
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref117
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref117
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref117
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref118
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref118
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref118
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref119
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref119
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref120
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref120
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref121
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref121
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref121
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref122
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref122
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref123
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref123
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref123
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref124
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref124
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref125
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref125
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref125
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref126
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref126
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref126
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref127
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref127
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref127
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref128
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref128
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref128
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref129
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref130
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref130
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref131
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref131
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref132
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref132
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref133
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref133
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref133
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref134
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref134
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref134
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref135
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref135
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref136
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref136
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref136
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref137
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref137
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref137
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref138
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref138
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref138
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref139
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref139
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref140
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref140
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref140
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref141
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref141
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref141
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref142
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref142
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref143
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref143
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref144
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref144
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref144
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref145
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref145
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref145
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref146
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref146
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref146
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref146


Computational and Structural Biotechnology Journal 23 (2024) 431–445

445

[148] Zhang D, et al. Normalization of tumor vessels by lenvatinib-based metallo- 
nanodrugs alleviates hypoxia and enhances calreticulin-mediated immune 
responses in orthotopic HCC and organoids. Small 2023;19(29):e2207786. 

[149] Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global 
trends, etiology and risk factors. World J Oncol 2019;10(1):10–27. 

[150] Kim MP, et al. Oncogenic KRAS recruits an expansive transcriptional network 
through mutant p53 to drive pancreatic cancer metastasis. Cancer Discov 2021;11 
(8):2094–111. 

[151] Chen K, et al. Single-cell RNA-seq reveals dynamic change in tumor 
microenvironment during pancreatic ductal adenocarcinoma malignant 
progression. EBioMedicine 2021;66:103315. 

[152] Carpenter ES, et al. KRT17High/CXCL8+ tumor cells display both classical and 
basal features and regulate myeloid infiltration in the pancreatic cancer 
microenvironment. Clin Cancer Res 2023. 

[153] Kuboki Y, et al. Single-cell sequencing defines genetic heterogeneity in pancreatic 
cancer precursor lesions. J Pathol 2019;247(3):347–56. 

[154] Bernard V, et al. Single-cell transcriptomics of pancreatic cancer precursors 
demonstrates epithelial and microenvironmental heterogeneity as an early event 
in neoplastic progression. Clin Cancer Res 2019;25(7):2194–205. 

[155] Schlesinger Y, et al. Single-cell transcriptomes of pancreatic preinvasive lesions 
and cancer reveal acinar metaplastic cells’ heterogeneity. Nat Commun 2020;11 
(1):4516. 

[156] Juiz N, et al. Basal-like and classical cells coexist in pancreatic cancer revealed by 
single-cell analysis on biopsy-derived pancreatic cancer organoids from the 
classical subtype. Faseb J 2020;34(9):12214–28. 

[157] Lin W, et al. Single-cell transcriptome analysis of tumor and stromal 
compartments of pancreatic ductal adenocarcinoma primary tumors and 
metastatic lesions. Genome Med 2020;12(1):80. 

[158] Hosein AN, et al. Cellular heterogeneity during mouse pancreatic ductal 
adenocarcinoma progression at single-cell resolution. JCI Insight 2019;5(16). 

[159] Williams HL, et al. Spatially resolved single-cell assessment of pancreatic cancer 
expression subtypes reveals co-expressor phenotypes and extensive intratumoral 
heterogeneity. Cancer Res 2023;83(3):441–55. 

[160] Jeong YJ, et al. Morphology-guided transcriptomic analysis of human pancreatic 
cancer organoids reveals microenvironmental signals that enhance invasion. 
J Clin Invest 2023;133(8). 

[161] Monberg ME, et al. Occult polyclonality of preclinical pancreatic cancer models 
drives in vitro evolution. Nat Commun 2022;13(1):3652. 

[162] Schuth S, et al. Patient-specific modeling of stroma-mediated chemoresistance of 
pancreatic cancer using a three-dimensional organoid-fibroblast co-culture 
system. J Exp Clin Cancer Res 2022;41(1):312. 

[163] Liu S, et al. OX40L-armed oncolytic virus boosts T-cell response and remodels 
tumor microenvironment for pancreatic cancer treatment. Theranostics 2023;13 
(12):4016–29. 

[164] Yousuf S, et al. Spatially resolved multi-omics single-cell analyses inform 
mechanisms of immune dysfunction in pancreatic cancer. Gastroenterology 2023; 
165(4):891–908.e14. 

[165] Cui Zhou D, et al. Spatially restricted drivers and transitional cell populations 
cooperate with the microenvironment in untreated and chemo-resistant 
pancreatic cancer. Nat Genet 2022;54(9):1390–405. 

[166] Datta J, et al. Combined MEK and STAT3 inhibition uncovers stromal plasticity by 
enriching for cancer-associated fibroblasts with mesenchymal stem cell-like 
features to overcome immunotherapy resistance in pancreatic cancer. 
Gastroenterology 2022;163(6):1593–612. 

[167] Nair N, et al. Single-cell immune competency signatures associate with survival in 
phase II GVAX and CRS-207 randomized studies in patients with metastatic 
pancreatic cancer. Cancer Immunol Res 2020;8(5):609–17. 

[168] Yi Q, et al. scRNA-Seq and imaging mass cytometry analyses unveil iNKT cells- 
mediated anti-tumor immunity in pancreatic cancer liver metastasis. Cancer Lett 
2023;561:216149. 

[169] Wang S, et al. The evolution of single-cell RNA sequencing technology and 
application: progress and perspectives. Int J Mol Sci 2023;24(3). 

[170] Wang Y, et al. Nanopore sequencing technology, bioinformatics and applications. 
Nat Biotechnol 2021;39(11):1348–65. 

[171] Slavov N. Single-cell protein analysis by mass spectrometry. Curr Opin Chem Biol 
2021;60:1–9. 

S. Zhou et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref147
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref147
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref147
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref148
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref148
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref149
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref149
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref149
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref150
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref150
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref150
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref151
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref151
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref151
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref152
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref152
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref153
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref153
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref153
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref154
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref154
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref154
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref155
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref155
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref155
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref156
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref156
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref156
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref157
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref157
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref158
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref158
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref158
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref159
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref159
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref159
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref160
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref160
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref161
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref161
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref161
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref162
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref162
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref162
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref163
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref163
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref163
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref164
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref164
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref164
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref165
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref165
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref165
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref165
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref166
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref166
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref166
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref167
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref167
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref167
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref168
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref168
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref169
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref169
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref170
http://refhub.elsevier.com/S2001-0370(23)00481-6/sbref170

	Single-cell multi-omics in the study of digestive system cancers
	1 Introduction
	1.1 The overall development of SCS technology
	1.2 Comparison of amplification methods used for single-cell genomic sequencing
	1.3 Single-cell RNA-seq—the most frequently applied SCS
	1.4 Single-cell sequencing in epigenomics
	1.5 Challenges in single-cell proteomics
	1.6 Spatial transcriptome
	1.7 Integration of multiple SCS technologies offers advantages over use alone

	2 The application of SCS in the digestive system cancer study
	2.1 SCS in esophageal cancer (ESCC) research
	2.2 SCS in gastric cancer (GC) research
	2.3 SCS in colorectal cancer (CRC) research
	2.4 SCS in liver cancer research (including intrahepatic bile duct tumors)
	2.5 SCS in pancreatic cancer (PaCa) research

	3 Conclusion and perspective
	Ethics approval and consent to participate
	Funding
	Author statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Consent for publication
	References


