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ABSTRACT
Glucagon-Like Peptide-1 (GLP-1) is an important peptide hormone secreted by L-cells in the 
gastrointestinal tract in response to nutrients. It is produced by the differential cleavage of the 
proglucagon peptide. GLP-1 elicits a wide variety of physiological responses in many tissues that 
contribute to metabolic homeostasis. For these reasons, therapies designed to either increase 
endogenous GLP-1 levels or introduce exogenous peptide mimetics are now widely used in the 
management of diabetes. In addition to GLP-1 production from L-cells, recent reports suggest that 
pancreatic islet alpha cells may also synthesize and secrete GLP-1. Intra-islet GLP-1 may therefore 
play an unappreciated role in islet health and glucose regulation, suggesting a potential functional 
paracrine role for islet-derived GLP-1. In this review, we assess the current literature from an islet- 
centric point-of-view to better understand the production, degradation, and actions of GLP-1 within 
the endocrine pancreas in rodents and humans. The relevance of intra-islet GLP-1 in human 
physiology is discussed regarding the potential role of intra-islet GLP-1 in islet health and 
dysfunction.
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Introduction

The proglucagon gene GCG is expressed in pan-
creatic alpha cells, intestinal L-cells, and neurons in 
the nucleus tractus solitarus.1 Differential proces-
sing of proglucagon by Prohormone Convertase 2 
(PC2, encoded by the PCSK2 gene) yields glucagon, 
whereas PC1/3 (encoded by the PCSK1 gene) yields 
GLP-1 and GLP-2.2,3 It is generally accepted that 
glucagon production and secretion are largely 
restricted to the alpha cells within pancreatic islets, 
whereas GLP-1 production and secretion are con-
fined to the enteroendocrine L-cells and the central 
nervous system. However, as early as 1985, GLP-1 
expression was predicted in both the gastrointest-
inal tract and pancreas.4 Moreover, GLP-1 expres-
sion was documented in human pancreatic extracts 
and proglucagon-producing pancreatic tumors,5 

and early HPLC analysis of human and porcine 
alpha cell extracts identified glucagon and small 
quantities of N-terminally extended GLP-1.6 

Subsequent papers have identified GLP-1 in the 
human pancreas where it is co-packaged within 
the glucagon secretory granules of an alpha cell 

subpopulation.7–9 Conversely, recent evidence sug-
gests that L-cells can secrete glucagon.10 This rela-
tively unexpected pancreatic source of GLP-1 
suggests a potential paracrine role for alpha cell- 
derived GLP-1 and suggests plasticity in the differ-
ential processing of the proglucagon peptide in 
both alpha cells and L-cells.

The incretin effect is characterized by the glucose- 
dependent insulinotropic action of gut-derived 
peptides.11 These peptides include GLP-1 and 
Glucose-dependent Insulinotropic Polypeptide 
(GIP), hormones that are released upon nutrient sen-
sing in the gastrointestinal tract.11–13 In the classical 
incretin model, oral nutrient intake initiates the 
release of GLP-1 and GIP from L- and K-cells in the 
gut, respectively. These incretin hormones pass 
through the portal circulation and reach their respec-
tive canonical receptors in the pancreas and other 
target organ systems. With respect to the pancreas, 
GLP-1 potentiates insulin secretion in a glucose- 
dependent manner via its receptors on beta cells.14,15 

GIP similarly potentiates beta cell insulin secretion, 
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but GIP also enhances glucagon secretion from alpha 
cells during hypoglycemia.16 Recent research has led 
to further refinements of the existing incretin model 
and these findings now indicate that GLP-1 can act 
locally in the enteric afferent nervous system, signal-
ing directly to the central nervous system. Central 
signals are then relayed to the pancreas through the 
efferent autonomic nervous system, indirectly indu-
cing insulin secretion in response to gastric stimuli.17 

Currently, the relative incretin contributions of the 
recently-described gut-brain-axis versus the well- 
established gut-portal-pancreas axis are still unclear 
and are under active investigation.

The importance of the incretin effect on glucose 
homeostasis has been elegantly demonstrated by 
the use of double incretin receptor knockout 
“DIRKO” mice. Mice lacking both GLP-1 and GIP 
receptors (GLP-1R and GIPR, respectively) have 
impaired oral glucose tolerance but intact intraper-
itoneal glucose tolerance.18–20 This confirms that 
incretin hormones and their receptor-activation 
are vital for coordinated insulin release in feeding. 
In addition to potentiating insulin secretion, GLP-1 
also plays a crucial role in islet health, with basal 
GLP-1R activation contributing to maintaining 
beta cell function and survival, especially under 
conditions of islet stress and dysfunction.21 

Interestingly, GIP’s effects are dampened in meta-
bolic disease, whereas GLP-1 signaling remains 
intact.1 This has resulted in GLP-1 becoming an 
effective therapeutic target for managing obesity 
and Type 2 Diabetes (T2D). In vitro, GLP-1 and 
GLP-1R agonists protect alpha and beta cell lines 
from apoptosis.22–24 Drugs that increase the actions 
of endogenous GLP-1 are also known to promote 
beta cell survival in isolated human and rodent 
islets.14,22,25–27 These drugs include synthetic 
GLP-1 mimetics and inhibitors of GLP-1’s enzy-
matic breakdown by Dipeptidyl Peptidase 4 
(DPP4).

The enzymatic degradation of GLP-1 also plays 
a significant role in regulating glucose metabolism. 
In a seminal paper, Kieffer et al.28 demonstrated 
that DPP4 is the enzyme responsible for inactivat-
ing GLP-1 and GIP in vivo. Other groups extended 
this finding to human serum and consequently laid 
a foundation for early clinical trials with DPP4 
inhibitors.29,30 To use these therapies to their 

maximum potential, we must also consider the 
expression of islet-derived GLP-1 and DPP4 in 
the context of human health and disease.

The mechanisms controlling GLP-1 and GIP 
secretion from L-cells and K-cells, respectively, 
and their systemic effects and target organs have 
been studied and reviewed extensively.31–35 In con-
trast, the existence and potential physiological roles 
of intra-islet GLP-1 have only recently begun to be 
examined more comprehensively. This potentially 
important aspect of GLP-1 pharmacology has 
received less attention, perhaps due to the conflict-
ing evidence in the literature.

Herein, we aim to provide a comprehensive 
review of the evidence for the existence of islet- 
derived GLP-1 and consider the expression, degra-
dation, and paracrine actions of this localized 
source of GLP-1 within pancreatic islets. 
Specifically, we review the literature on the exis-
tence of intra-islet GLP-1 in animal models and 
humans and then discuss the potential underlying 
signaling pathways that may regulate the proces-
sing and secretion of GLP-1 from islet alpha cells. 
Finally, we consider the role of the GLP-1R on 
alpha, beta, and delta cells, and GLP-1’s potential 
contribution as a paracrine signaling factor in the 
islet.

Evidence for GLP-1 expression in rodent islets

Islet-derived GLP-1 has been documented in sev-
eral rodent islet models where alpha cells begin to 
differentially process proglucagon and secrete 
GLP-1 in response to beta cell destruction.36 

Moreover, GLP-1 is produced from alpha cells in 
rats after several injections of streptozotocin (STZ; 
50 mg/kg per day for five days), and its production 
partially protects the islet from further beta cell 
loss.37 The sand rat rodent model “Psammomys 
obesus” develops obesity and insulin-resistance 
when placed on a regular laboratory rodent chow 
diet. In these rodents, intra-islet GLP-1 produc-
tion begins during the development of T2D symp-
toms and persists with fasting hyperglycemia.38 

GLP-1 and PC1/3 expression are elevated during 
the progression of T2D and hyperglycemia in the 
db/db mouse model.39 All three rodent models 
experience cellular stress and beta cell damage 
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before the detection of GLP-1. In a study using 
non-diabetic C57BL/6 J mice, researchers identi-
fied a subpopulation of GLP-1 expressing alpha 
cells in dispersed islets.40

As these studies used isolated primary islet sam-
ples, it has been suggested that islet-isolation and 
culturing may cause sufficient islet stress to induce 
GLP-1. This stress-induced GLP-1 production may 
be a potential mechanism to prevent further islet 
cell damage. While this type of experimental non- 
physiological stress may well induce GLP-1 proces-
sing from proglucagon, recent studies using genetic 
mouse models that alter intra-islet GLP-1 produc-
tion in vivo demonstrate that islet-derived GLP-1 
may play an important role in glucose homeostasis 
in the whole animal.8,41 Therefore, the available 
evidence indicates that rodent islet alpha cells can 
process proglucagon to produce and secrete GLP-1. 
Whether or not this occurs in vivo in non- 
genetically modified mice remains to be deter-
mined conclusively.

Evidence for GLP-1 expression in human islets

For obvious reasons, the existence and roles of 
intra-islet GLP-1 have been more extensively 

studied in rodents, although several studies 
have confirmed that human alpha cells are cap-
able of processing and secreting GLP-1 through 
the use of isolated, intact human islets.42–44 In 
this regard, our group reported that isolated 
human islets secrete ~50-fold more active 
GLP-1 than mouse islets in culture, despite 
only possessing approximately 3-4-fold more 
alpha cells than mouse islets.44 These studies 
confirm that intact human islets can both 
synthesize and secrete significant amounts of 
GLP-1. It should be mentioned that isolated 
islets may not behave like islets in situ and the 
possibility remains that the presence of intra- 
islet GLP-1 may represent an artifact resulting 
from islet stress induced by their isolation and 
subsequent culturing. However, our group 
recently analyzed living-donor biopsy sections 
that provides direct evidence for GLP-1 pro-
duction existing in human islets in the absence 
of cadaveric islet isolation and subsequent islet 
culturing. Although the biopsy-donors in this 
study had underlying pancreatic cancer or pan-
creatitis, the islet sections also contained 
a substantial subpopulation of GLP-1 positive 
alpha cells.45 Therefore, it is important to 

Figure 1. Alpha cell differential proglucagon processing to glucagon or GLP-1 and the signaling pathways that may regulate this 
process via PC2 and PC1/3 expression.
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determine whether intra-islet GLP-1 production 
is a consequence of islet stress or if it is con-
stitutively secreted and plays a physiological 
role in the healthy adult human pancreas. 
Future research using a perfused whole human 
pancreas model from donors without diabetes 
or pancreatic disease is therefore warranted to 
help definitively answer this important ques-
tion. Whether or not alpha cell GLP-1 is 
secreted in normal human physiology, there is 
compelling evidence to suggest that human 
alpha cells are capable of producing and releas-
ing GLP-1 and that its production is elevated in 
disease-states like diabetes.

Regulation of alpha cell proglucagon processing 
and GLP-1 secretion

Although induction of the GCG gene is critical for 
proglucagon production, the subsequent proces-
sing of proglucagon into glucagon or glucagon- 
related peptides (such as GLP-1 and GLP-2) is 
critically dependent on the relative expression 
levels of PC2 and PC1/3 (Figure 1). Greater PC1/3 
expression favors GLP-1 production, whereas 
greater PC2 expression favors glucagon production 
(Figure 1). In this regard, PC1/3 is highly expressed 
in juvenile human islets, although its expression is 
decreased in adult alpha cells. Instead, mature islets 
preferentially express the nonfunctional “long- 
noncoding” PC1/3 gene lncPCSK1.46 Despite its 
decreased expression in aging, alpha cell PC1/3 
expression is still well-documented in adult alpha 
cells where it correlates positively with BMI.47 

Indeed, PC1/3 expression is detectable in FACS- 
sorted alpha cells from the adult, non-diabetic 
human pancreas and alpha cell PC1/3 expression 
is elevated in T2D alpha cells.44,48 This is supported 
by our own recent research that demonstrates that 
islets from T2D donors contain a higher proportion 
of GLP-1 positive alpha cells than islets from non- 
diabetic donors.44 While there is substantial evi-
dence that the adult human endocrine pancreas 
can express intra-islet GLP-1, the precise signaling 
pathways regulating alpha cell PC1/3 expression is 
an active research area and several potential path-
ways that regulate alpha cell PC1/3 expression have 
been identified and are described below.

Interleukin-6 (IL-6)

IL-6 is a cytokine with both pro- and anti- 
inflammatory properties that is released during 
exercise and low-grade inflammation and has 
been identified as an important driver of PC1/3 
expression in islets.49–51 Systemic IL-6 production 
is also chronically elevated in the context of obesity 
and T2D;49 instances where levels of intra-islet 
GLP-1 are also found to be elevated.44 IL-6 recep-
tors (IL-6 R) are highly expressed on endocrine 
cells of the gastrointestinal tract and pancreas. In 
islets, IL-6 R expression is elevated in alpha cells 
compared to beta or delta cells.49,51 IL-6 R blockade 
decreases plasma GLP-1 levels in both mice and 
humans,51 and IL-6 R KO decreases the amount 
of GLP-1 r eleased from cultured mouse islets.52

Taken together, this evidence reinforces the rele-
vance of IL-6 R signaling to the production and 
secretion of GLP-1 from intestinal sources, as we 
would expect the gut to be the most substantial 
source of circulating GLP-1. However, the contri-
bution of IL-6 signaling in the production of pan-
creatic GLP-1 is less clear, although the reduction 
of GLP-1 secretion from isolated islets in the pre-
sence of an IL-6 R blockade indicates a strong reg-
ulatory role for IL-6 in pancreatic GLP-1 
processing. However, IL-6 receptor signaling is 
not required for normal islet function and 
development,49 suggesting that this pathway may 
be activated only under specific physiological or 
pathophysiological conditions.

IL-6 enhances the induction of the PCSK1, PCSK2, 
and GCG gene transcription in both alpha cells and 
L-cells via the IL-6 R/JAK/STAT3 pathway (Figure 1). 
24,50,52,53 Although levels of PC1/3 and PC2 are both 
increased by IL-6, there is no acute increase in gluca-
gon secretion in cultured human and rodent islets. 
Instead, IL-6 treatment increases proglucagon and 
GLP-1 levels in acute exposure, while glucagon levels 
only increase after chronic (24 hours) IL-6 
exposure.49,50 Acute increases in islet-derived GLP-1 
are thought to play a protective role in beta cells. This 
protective effect is two-fold as IL-6 directly improves 
beta cell survival by potentiating autophagic flux,54 

and IL-6 promotes beta cell health via intra-islet GLP- 
1 production.50 IL-6 also protects alpha cells from 
lipo- and gluco-toxicity, contributing to alpha cell 
expansion in murine high-fat diet models.49
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In addition to its release from active immune cells, 
IL-6 can also be produced from exercising skeletal 
muscle, adipocytes, and endocrine tissues.42,51,55 

Furthermore, IL-6 is basally expressed in smooth 
muscle tissue, and the presence of soluble DPP4 
can increase its production.56 This may be especially 
relevant in the islet vasculature, where endothelial 
cell-derived soluble DPP4 and IL-6 are both readily 
expressed. Adipose tissue is a primary source of the 
cytokines IL-6 and IL-1beta in obesity and T2D.50 

However, the concomitant increase in adipose- 
derived IL-1beta may limit IL-6’s beneficial effects 
and favor a more pro-inflammatory environment. 
While IL-1beta pretreatment does not impair IL-6 
dependent GLP-1 production in cultured islets, IL- 
1beta treatment alone inhibits GLP-1 secretion.50,52 

GLP-1’s sister incretin hormone GIP stimulates IL-6 
production in alpha cells and decreases IL-6 produc-
tion in beta cells,52 leading to an increase in measur-
able GLP-1 and insulin release from cultured islets.

Taken together, the available evidence strongly 
supports a key role for IL-6 signaling in the control 
of proglucagon processing and GLP-1 production 
from alpha cells. As IL-6 is produced from exercis-
ing skeletal muscle,42,49–51 it is tempting to specu-
late that exercise-derived IL-6 may promote islet 
health and function through this IL-6/GLP-1 axis. 
In this regard, Ellingsgaard et al.50 confirm that 
exercise acutely elevates both plasma IL-6 and 
GLP-1, although the effects of regular exercise on 
intra-islet IL-6 and GLP-1 production have yet to 
be examined.

Metabolite G-Protein Coupled Receptors (GPCRs)

GPCRs that recognize specific metabolites have 
also been implicated in increasing PC1/3 expres-
sion via activation of the pro-survival kinase Akt. 
Moreover, many GPCRs that induce PC1/3 
expression in intestinal L-cells are also present 
on alpha cells. For example, GPR120 is 
a candidate for triggering GLP-1 secretion from 
both alpha and L-cells. This receptor is a member 
of the rhodopsin-like family of GPCRs that senses 
oleate, palmitate, and other structurally-similar 
fatty acid metabolites.24 GPR120 agonists can 
activate the PCSK1 promoter region in both 
alpha and L-cell lines, favoring PC1/3 and subse-
quent GLP-1 production(Figure 1).43

Amino acids are also a potent stimulant of glu-
cagon secretion from alpha cells, and are candidates 
for triggering alpha cell hyperplasia.57 Another rho-
dopsin-like GPCR, GPR142, functions as an 
L-tryptophan sensor. GPR142 signaling increases 
Akt activation, ultimately increasing PC1/3 expres-
sion in both alpha and L-cells (Figure 1).22 GPR142 
agonism augments insulin secretion in a GLP-1R 
dependent manner,22,58,59 but it is not required for 
basal GLP-1 secretion. Indeed, GPR142 KO and 
control littermates have no apparent differences in 
glucose tolerance and exhibit similar insulin secre-
tion profiles in response to intraperitoneal and oral 
glucose.59 This latter finding argues against a major 
physiological role for GPR142 alone, although this 
receptor may act in concert with other GPCRs to 
fine-tune islet cell function. While it is not explicitly 
shown to regulate PC1/3 expression, GPR119, 
a monoacylglycerol sensing GPCR, can potentiate 
glucagon granule release from alpha cells in 
hypoglycemia,60 and its activation elevates intracel-
lular cAMP.61 When considering the co-packaging 
of glucagon and GLP-1 in secretory granules, it is 
plausible that GPR119 activation may regulate 
GLP-1 secretion.

The ligands for these GPCRs are all nutrient 
metabolites that are readily available in the gut, 
but they may come from the bloodstream or more 
localized sources in the islet. For example, aromatic 
amino acids sensed by GPR142 may be produced 
by the autophagy of nearby cells, while monoacyl-
glycerols and long-chain fatty acids are released 
from localized lipolysis.61 Taken together, these 
findings indicate that proglucagon synthesis and 
its differential processing and secretion may be 
under the control of certain nutrients in the local 
islet microenvironment. Furthermore, the reported 
effects of GPR119 and 120 agonism on PC1/3 
expression and GLP-1 processing in L-cells may 
complement the increased demand for GLP-1 
secretion that is also observed when these GPCRs 
are activated,62 and the same may be true for islet 
alpha cells, although this remains to be tested 
experimentally.

Stromal cell-derived factor-1 alpha (SDF-1α)

The chemokine SDF-1α augments PC1/3 expres-
sion in alpha cells in response to beta cell stress or 

36 S. A. CAMPBELL ET AL.



injury (Figure 1). In the healthy adult rodent islet, 
SDF-1α is restricted to vascular endothelial and 
stromal cells and is not expressed in the beta 
cells.63 However, beta cell injury is proposed to 
activate the SDF-1α/CXCR4 axis and initiate tis-
sue regeneration.63 Using MIN6 and INS-1 beta 
cell lines, Liu et al.63 show that cellular stressors 
such as cytokines, thapsigargin, and STZ can 
induce SDF-1α expression. These findings 
demonstrate that inflammation, ER stress, and 
beta-cell toxins activate the SDF-1α/CXCR4 
axis.63 Furthermore, SDF-1α treatment of the 
alpha cell line αTC1 and mouse islets induced 
GLP-1 production and secretion. GLP-1 and 
SDF-1α are proposed to act synergistically to 
increase beta cell survival and are thought to 
protect beta cells from further injury.64

The expression of SDF-1α in the beta cells of 
adult islets appears to be an initiation of a fetal 
developmental program.65 In support of this con-
cept, Kayali et al.65,66 found that SDF-1α and 
CXCR4 are expressed in the fetal pancreas, and 
that inhibition of the CXCR4 receptor in islet-like 
clusters with the CXCR4 inhibitor AMD3100 inhi-
bits islet development. As adult alpha and beta cells 
express the CXCR4 receptor, the proposed model 
for SDF-1α induced GLP-1 secretion in islets 
involves activation of the CXCR4 receptor on 
both cell types. SDF-1α can activate the CXCR4 
receptor on beta cells in an autocrine manner to 
increase expression of SDF-1α. The increase in 
SDF-1α may also induce PC1/3 expression in the 
nearby alpha cells via paracrine signaling. Upon 
binding the CXCR4 receptor on the alpha cell, 
SDF-1α can initiate signaling through the JAK/ 
STAT pathway, eventually activating Akt to induce 
PC1/3 expression and the subsequent processing 
and secretion of GLP-1.63,67

Other factors that may mediate alpha cell PC1/3 
expression

There is evidence that PC1/3 expression in 
alpha cells may be induced by conditions and 
cellular mechanisms in addition to IL-6, meta-
bolite sensing GPCRs, and SDF-1α. For exam-
ple, hyperglycemia induces PC1/3 expression in 
alpha cells,24 although the precise mechanisms 
underlying this effect are unclear. Furthermore, 

increased PC1/3 and GLP-1 expression is asso-
ciated with hyperglycemia in rats treated with 
multiple low dose STZ (Figure 1).37 Indeed, 
individuals suffering from chronic hyperglyce-
mia express elevated PC1/3 in alpha cells com-
pared to non-diabetic alpha cells.48 The 
expression of PC1/3 in alpha cells can be 
experimentally induced through the sustained 
elevation of cAMP with forskolin and IBMX 
(Figure 1).43 Therefore, signaling pathways 
that involve cAMP also have the potential to 
induce PC1/3 expression, and additional undis-
covered cAMP-mediated pathways may exist in 
alpha cells.

Our group has recently examined biopsies 
from donors with pancreatitis or pancreatic can-
cer for GLP-1 expression and has identified 
a large subpopulation of GLP-1 expression alpha 
cells.44 It may be the case in these donor samples 
that sustained chronic low-grade inflammation 
results in the local production and release of IL- 
6 and SDF-1α, thereby enhancing alpha cell PC1/ 
3 expression. Tissue damage, local lipolysis, and 
cellular autophagy may also be enhanced in these 
disease-states, in turn, activating key metabolite 
GPCRs that are also implicated in alpha cell PC1/ 
3 expression.

In summary, the production of GLP-1 is 
dependent on the induction of the PCSK1 gene 
and subsequent PC1/3 expression in islet alpha 
cells. Factors that increase PC1/3 expression com-
monly function through the downstream activa-
tion of Akt. Examples include activation of the 
JAK/STAT pathway by IL-6 or SDF-1α and acti-
vation of Akt by Rhodopsin-like GPCRs. The 
signaling molecules that can promote PC1/3 
expression via receptor-mediated signaling are 
diverse and include cytokines (e.g., IL-6, SDF-1), 
fatty acids (e.g., palmitate, oleate), and amino 
acids (e.g., L-tryptophan). Therefore, it is likely 
that these molecules act in concert to control the 
glucagon/GLP-1 secretory phenotype of alpha 
cells depending on factors such as the nutrient 
or inflammatory state of the localized islet envir-
onment (Figure 1). The resulting increase in 
GLP-1 secretion may protect islet cells by pro-
moting survival under stress and maintaining 
insulin secretion in the face of increased insulin 
resistance.
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Degradation of incretins by intra-islet dipeptidyl 
peptidase 4 (DPP4)

DPP4 is a serine exopeptidase that cleaves the two 
N-terminal residues from GLP-1, GIP, SDF-1α, and 
other various peptide hormones and cytokines.25,29,30 

It is generally accepted that the resultant truncated 
peptides are largely inactive at their respective cano-
nical receptors and DPP4 functions to regulate the 
actions of GLP-1 in the blood, contributing to its 
short circulating half-life. Indeed, DPP4 inactivates 
considerable amounts of GLP-1 within 1–2 minutes 
of its release.1 One of the primary challenges to the 
classical incretin model is that the short half-life and 
low circulating concentrations of GLP-1 (<10 pM) 
may limit its effectiveness to activate GLP-1Rs on 
beta cells. This is further complicated by the wide-
spread expression of DPP4 throughout the body.

Significant sources of DPP4 include endothelial 
cells, haematopoietically derived Tei2+ cells, enter-
ocytes, and hepatocytes, although DPP4 expression 
is ubiquitous.56,68 DPP4 can exist in soluble and 
membrane-bound forms, and, depending on its 
origin, DPP4 shows substrate preference. In the 
presence of denosumab, a human monoclonal anti-
body used in the treatment of osteoporosis, levels of 
circulating DPP4 are reduced, whereas levels of 
GLP-1 are increased.69 This indicates that osteo-
clasts represent a large pool of DPP4-producing 
cells and may substantially impact glucoregulation. 
By creating tissue-specific DPP4 KO models, 
researchers have identified hematopoietic cell- 
derived DPP4 as vital for GIP inactivation, while 
endothelial cell-derived DPP4 is vital for the glu-
coregulatory effects of DPP4 inhibitors.19

Endothelial cell-derived DPP4 is involved in 
modulating cytokine levels and immune cell activity. 
DPP4 inhibition by sitagliptin significantly alters 
plasma cytokine levels yet favors an anti- 
inflammatory environment.68 Interestingly, the 
modulation of immune cells by DPP4 may be both 
catalytically dependent and independent, while its 
effects on existing cytokines may be strictly enzy-
matic. This is confirmed by experiments outlining 
that hematopoietic cell-derived DPP4 can still 
reduce levels of pro-inflammatory cytokines in the 
presence of a DPP4 inhibitor. Indeed, DPP4 can 
interact with the extracellular matrix proteins of 
various cell types to induce downstream signaling, 

independent of its peptidase function.69 This is 
a likely mechanism for the reduction of pro- 
inflammatory cytokines with the use of sitagliptin.

Within the human endocrine pancreas, DPP4 
expression seems to be highly enriched in alpha 
cells. Consequently, DPP4 expression in human 
islets has been used as a surface marker to sort for 
enriched alpha cell populations by FACS, while 
DPP4 gene expression has been considered 
a signature gene to identify alpha cells in transcrip-
tomic studies.70 Indeed, DPP4 is found in human 
alpha cell multivesicular bodies,46,55,71–73 and these 
compartments are distinct from glucagon- 
containing secretory granules.20 DPP4 is also 
derived from endothelial cells, therefore, a local 
source of soluble DPP4 produced in the islet 
vasculature.74,75 This local source of DPP4 may 
act to further inactivate any incretin peptides that 
reach the pancreas after passing through hepatic 
portal circulation.1 In rodents islets, the available 
evidence suggests that DPP4 expression is limited 
mainly to beta cells rather than alpha cells.20 This 
observation was made using histochemical techni-
ques, and it would be worthwhile confirming these 
interesting results with other techniques, such as 
using flow cytometry to analyze dissociated islets, 
or identifying enriched DPP4 gene expression in 
rodent islet transcriptomic studies. At this point, 
the role of this species-specific difference in islet cell 
DPP4 expression remains unclear.

Overall levels of DPP4 are not impacted by cir-
culating insulin, incretins, or DPP4 inhibitors.8,55 

However, DPP4 levels are elevated in obese and 
high-fat diet rodent models.68,69,71 Indeed, there 
are well-documented increases in plasma DPP4 
documented in high-fat diet rat models, resulting 
in decreased circulating GLP-1 when compared to 
rats on a control diet.69 In humans, levels of islet- 
derived DPP4 are enhanced in obesity20 and 
chronic hyperglycemia,76 but islet-DPP4 activity is 
compromised.14,20 Despite decreased islet-specific 
DPP4 activity, peripheral DPP4 levels and activity 
is enhanced in chronic hyperglycemia and plasma 
DPP4 activity is correlated positively with both 
HbA1c and fasting glycemia.69 These results sug-
gest that intra-islet GLP-1 inactivation may be 
compromised in T2D, and this may contribute to 
maintaining islet health and insulin secretion in 
disease. However, separating the relative effects of 
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L-cell versus alpha cell-derived GLP-1 in humans is 
experimentally problematic, and this concept is 
difficult to test directly.

DPP4 inhibition has an array of beneficial anti- 
diabetic effects on islets as both islet-derived 
DPP472 and endothelial-cell derived DPP419 are 
sensitive to DPP4 inhibitors. Since soluble, 
endothelial cell-derived DPP4 has a greater contri-
bution to systemic inflammation in obesity and 
chronic hyperglycemia,19,56,68,76 its inhibition may 
reduce local islet inflammation and promote beta 
cell survival.26 The DPP4 inhibitor sitagliptin sta-
bilizes active GLP-1 and augments insulin 
secretion.20,26 Beta cells are also protected against 
cytokine-induced toxicity; however, this effect is 
independent of GLP-1 and likely due to DPP4’s 
actions on other peptide hormones.14,77 Overall, 
the use of DPP4 inhibitors in the management of 
T2D improves beta cell health, function, and survi-
val via the anti-inflammatory and incretogenic 
effects of this widely-used clinical drug class.

DPP4 inhibitors and intra-islet substrates

DPP4 inhibition protects beta cells from lipo- and 
glucotoxicity,14,26,78 and improves islet survival in 
culture.26,78 Intra-islet DPP4, whether endothelial 
or endocrine cell-derived, may reduce GLP-1 con-
centrations, limiting the GLP-1 mediated protec-
tion of beta cells. As discussed above, DPP4 
inhibitors have the potential to increase active 
GLP-1 concentrations in the local islet microenvir-
onment. This may represent an under-recognized 
mechanism underlying the therapeutic efficacy of 
DPP4 inhibitors for the treatment of T2D. 
Furthermore, there is an increased opportunity to 
enhance GLP-1-mediated paracrine signaling 
between human alpha and beta cells through islet 
DPP4 inhibition due to the difference in human 
versus rodent islet morphology as alpha cells are 
greater in number and interspersed throughout the 
human islet when compared to rodent islets.79–81

DPP4 inhibition in islets likely alters paracrine 
signaling of other islet peptides that are DPP4 sub-
strates, with the potential to increase insulin secre-
tion and islet survival. For example, SDF-1α is 
another known DPP4 substrate, and it is secreted 
by islets in beta cell injury.25 SDF-1α may be 
induced in human islets from donors with diabetes 

due to chronic beta cell stressors such as low-grade 
inflammation, hyperglycemia, and lipotoxicity. As 
such, DPP4 inhibition in the islet microenviron-
ment has the potential to maintain active forms of 
SDF-1α and promote increases in PC1/3-mediated 
GLP-1 processing and secretion.

The therapeutic potential of DPP4 inhibitors 
may also reach beyond the treatment of overt 
T2D. If intra-islet GLP-1 is relevant to human 
glucose homeostasis, then the use of DPP4 inhibi-
tors may provide clinical benefit in obesity and 
prediabetes by increasing intra-islet GLP-1 levels 
as the islets adapt to metabolic stress. While direct 
clinical evidence for such an effect is sparse, we 
have recently demonstrated that patients with 
T2D who receive the DPP4 inhibitor with metfor-
min at first diagnosis have improved HbA1c levels 
and are less likely to require insulin therapy when 
compared to those receiving metformin alone or 
when a DPP4 inhibitor is prescribed later on in the 
progression of T2D.82 In their recent review, 
Trzaskalski et al.69 hypothesize that concomitant 
treatment with sitagliptin and metformin robustly 
improves HbA1c levels through 1) stabilizing active 
incretin peptides and 2) increasing the expression 
of GLP-1R and GIPR on beta cells. In summary, 
these findings indicate that there may be a clinical 
benefit to the use of DPP4 inhibitors at the time of 
T2D diagnosis. Furthermore, patients with predia-
betes might even benefit from DPP4 inhibition.

Concerning autoimmune Type 1 Diabetes 
(T1D), DPP4 inhibitors may possess clinical utility 
in islet transplantation to preserve or increase beta 
cell mass in culture before transplant. Our group 
treated human islet cultures with sitagliptin and 
measured an increase in intra-islet GLP-1 levels. 
Interestingly, higher levels of active GLP-1 in cul-
ture correlated with less cell death in these human 
islet preparations. This finding suggests that sita-
gliptin, and other DPP4 inhibitors, may preserve 
healthy beta cell mass during the pre-transplant 
culture period and increase beta cell survival imme-
diately post-transplant.78 Finally, DPP4 inhibitors 
may increase GLP-1 secretion from the remaining 
alpha cells in T1D, as many T1D patients are iden-
tified with residual functional beta cell mass.83 

These patients may benefit from increased active 
GLP-1 levels local to the beta cell, with potentially 
less need for exogenous insulin and a reduced risk 

ISLETS 39



of hypoglycemia. Although it remains unclear 
whether the islet-DPP4 axis contributes to whole- 
body glucose regulation, there is evidence that 
DPP4 inhibition improves local beta cell 
function.69 The increased intra-islet GLP-1 as 
a result of DPP4 inhibition may protect remaining 
beta cells, even potentially induce de novo beta cell 
proliferation. As DPP4 inhibitors possess an excel-
lent safety profile, they are perhaps ideal for target-
ing additional patient populations with prediabetes 
and even T1D.

GLP-1 receptor signaling in the endocrine 
pancreas

Researchers have identified a compelling role for 
islet-derived GLP-1 in postprandial glucose regula-
tion using an alpha cell-specific GCG KO mouse 
model.41 In these animals, tissue-specific reactiva-
tion of GCG results in a variable glucoregulatory 
phenotype. L-cell GCG reactivation improves oral 
but not intraperitoneal glucose tolerance.41 This is 
consistent with the well-characterized incretin 
effect. Interestingly, while exendin-9 causes glucose 
intolerance in control mice, mice with intestinal 
GCG reactivation were not significantly influenced 
by exendin-9. Instead, alpha cell GCG reactivation 
made mice sensitive to the negative glucoregulatory 
influence of exendin-9. Chambers et al.41 con-
cluded that pancreatic but not intestinal GLP-1 
expression is vital for proper glucoregulation. The 
administration of exendin-9 to intact cultured 
mouse41 and human44 islets results in impaired 
glucose-stimulated insulin secretion (GSIS), con-
firming that GLP-1R signaling is critical in main-
taining regular insulin dynamics. Isolated GCG KO 
islets also exhibit markedly decreased glucose and 
amino acid-stimulated insulin secretion from lost 
alpha-to-beta cell communication.12

As glucagon and GLP-1 are both derived from 
GCG, these effects may be explained by the loss of 
glucagon production and secretion from these ani-
mal models, although the phenotype of GCG 
null versus GCGR null mice is significantly different 
with respect to insulin signaling.41 Indeed, GCGR 
null mice have reduced fasting blood-glucose with 
no increased risk of hypoglycemia, whereas GCG 
null mice had a comparable metabolic phenotype to 
GCGR/GLP-1R double KO mice,41,57 where both 

GCG null and GCGR/GLP-1R double KO mice 
exhibit mild fasting hyperglycemia and increases 
in insulin secretion.40,41 In order to assess the spe-
cific effects of GLP-1 production in alpha cells, 
researchers have used genetic and pharmacological 
approaches to target PCSK1 and the GLP-1R.

Traub et al.84 demonstrated the importance of 
islet-derived GLP-1 in adapting to metabolic stress 
by developing alpha cell PCSK1 KO mice. Mice 
lacking the ability to produce alpha cell PC1/3 
exhibit impaired glucose tolerance in metabolic 
stress.84 Wideman et al.85 used a different approach 
to elegantly outline the protective effects of islet- 
derived GLP-1 in vivo. The xenotransplant of PC1/ 
3 expressing alpha cells into STZ-treated mice par-
tially restores glucose tolerance and preserves exist-
ing beta cell mass, whereas PC2 expressing alpha 
cells have no beneficial effect and promote mild 
fasting hyperglycemia.85 The protective effect of 
the PC1/3 expressing alpha cell xenotransplant 
was attenuated in GLP1R KO mice, confirming 
that increases in GLP-1 production and signaling 
play a vital role in this mouse model.85 Taken 
together, these animal models confirm that proglu-
cagon processing into GLP-1 has a beneficial glu-
coregulatory effect in mice, and that changes in 
alpha cell PC1/3 expression can modulate these 
effects. Presumptively, changes of PC1/3 expression 
primarily influences proglucagon processing into 
GLP-1, although the alternative effects of PC1/3 
expression in alpha cells have yet to be examined.

GLP-1Rs have been identified on alpha, beta, and 
delta cells.47,86–88 Interestingly, GLP-1Rs are only 
detected in a subpopulation of alpha cells, and their 
relevance to normal physiology remains 
unclear.88,89 The GLP-1R belongs to the Family 
B Gαs GPCRs, where ligand binding results in the 
activation of adenylyl cyclase and elevation of 
cAMP.12 GLP-1R agonists reduce islet inflamma-
tion, while the genetic ablation of GLP-1R results in 
mild fasting hyperglycemia and defective GSIS.90 

GLP-1 acts at multiple receptors: the canonical 
GLP-1R and the glucagon receptor (GCGR). 
Using a chimeric GCGR/GLP-1R, researchers iden-
tified each receptor’s N-terminal domain as critical 
for ligand selectivity.91 These findings indicate that 
the GLP-1R is relatively promiscuous with respect 
to ligand selectivity, such that it can bind multiple 
proglucagon-related peptides. These peptides 
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include GLP-1(7–36), GLP-1(9–36), and 
glucagon.12,92–94 Similarly, the GCGR can bind 
and interact with both GLP-1 and glucagon, 
although GLP-1’s precise signaling pathway via 
this receptor is not well-characterized.95 While glu-
cagon’s actions at the GLP-1R in vivo have note-
worthy effects on glycemic control, the effect of 
GLP-1 at the GCGR may be less significant in vivo 
due to its lower affinity at this receptor compared to 
the GLP-1R.57 This aspect of GLP-1R pharmacol-
ogy has significant implications regarding the bio-
logical function of proglucagon-derived peptides, 
as all of these peptide-ligands are present within 
the localized islet environment.

GLP-1(7–36)amide is considered the active form 
of human GLP-1 and has the most well- 
documented biological actions in beta cells where 
its signaling augments GSIS.94,96 GLP-1R activation 
results in elevated levels of cAMP that can interact 
with CREB elements in the beta cell. This protects 
beta cells from cytokine-induced apoptosis.54 

Furthermore, GLP-1R signaling also includes the 
Wnt/beta-catenin cascade that promotes beta cell 
proliferation.53 In rodent islets, GLP-1R activation 
increases the availability of betacellulin, an EGFR 
agonist, and activates PI3K to induce beta cell pro-
liferation and insulin biogenesis.97 GLP-1R activa-
tion can also induce beta cell autophagy in high 
glucose conditions through modulation of 
AMPK.23 Both GLP-1(7–36) and GLP-1(9–36) 
administration increases the release of insulin and 
c-peptide in vivo. Upon its binding, GLP-1(9–36) 
stimulates proinsulin production via PKA signal-
ing, whereas canonical GLP-1(7-36)-induced insu-
lin secretion is mediated by the GTPase exchange 
factor EPAC (Exchange Protein Activated by 
cAMP).98 In summary, the GLP-1R orchestrates 
multiple intracellular signaling cascades, some of 
which are preferentially activated by different 
ligands.

Alpha cell signaling

GLP-1Rs have only been detected in 
a subpopulation of alpha cells.88,89,99 Despite this, 
alpha cell-specific GLP-1R ablation results in 
impaired intraperitoneal glucose tolerance.100 

Although the GLP-1R may only be present in 
a subpopulation of alpha cells, its role is significant 

in coordinating the dynamics of glucagon release. 
Canonical signaling of GLP-1(7–36) at its receptor 
results in PKA-dependent inhibition of P/Q-type 
voltage-gated Ca2+ channels, inhibiting glucagon 
granule release.101 In hyperglycemia, GLP-1R acti-
vation is glucagonostatic, whereas alpha cell gran-
ule secretion is stimulated in hypoglycemia.100 

Interestingly, isolated alpha cells tend to secrete 
glucagon in response to elevated glucose levels, 
implying some sort of paracrine inhibition of glu-
cagon secretion at high glucose in vivo.57 However, 
in this model, GLP-1 secretion was not assessed. 
The inhibition of alpha cell granule release is well- 
characterized; however, its potentiation in hypogly-
cemia is so-far poorly characterized.

Products of DPP4-mediated breakdown of GLP- 
1 also exhibit pharmacological activity in alpha 
cells. GLP-1(9–36) is bioactive at the GLP-1R and 
inhibits glucagon secretion. Unlike the glucagono-
static effects of GLP-1(7–36), GLP-1(9–36) does 
not require PKA signaling to inhibit glucagon 
release.95 The dipeptide fragment released from 
the N-terminal of GLP-1(7–36) breakdown can 
potentiate glucagon secretion. This effect is dose- 
dependent, although the receptor and mechanism 
of action have not yet been identified.102 In sum-
mary, GLP-1(7–36), GLP-1(9–36), and dipeptide 
fragments have pharmacological action in alpha 
cells. When considering alpha cell-derived GLP-1, 
these findings are indicative of an autocrine signal-
ing network within alpha cells. Indeed, GLP-1, 
DPP4, and metabolites of DPP4-mediated GLP-1 
breakdown can modulate the secretion of both glu-
cagon and GLP-1.

It is unclear whether GLP-1Rs are only expressed 
on a subpopulation of alpha cells or if currently- 
available detection methods have failed to identify 
its presence consistently. A recent investigation by 
Gray et al.103 utilized scRNAseq and validated 
GLP-1R antibody staining to discern that adult 
mouse islets do not express Glp1r mRNA or the 
GLP-1R protein. Researchers also confirmed that 
the GLP1R promoter is inactive in wild-type mur-
ine alpha cells.103 In the absence of a GLP-1R, alpha 
cells can still respond to the downstream effects of 
GLP-1 signaling within the islet. So far, the litera-
ture suggests that the glucagonostatic effect of GLP- 
1 can occur directly via the GLP-1R on alpha cells 
and indirectly via GLP-1-mediated somatostatin 
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secretion at delta cells as well as insulin secretion 
from beta cells.89,101 Both autocrine and paracrine 
inputs may be relevant to the coordination of alpha 
cell hormone release and overall islet function, 
however, interspecies differences in GLP-1R 
expression between human and rodent islets may 
complicate the investigation of these inputs.

Beta cell signaling

Proglucagon-derived hormones are vital for normal 
beta cell function. In the absence of alpha cell GCG 
expression, beta cells exhibit markedly decreased 
glucose and amino acid-stimulated insulin 
release.12 Indeed, modulation of intracellular 
cAMP by glucagon and GLP-1(7–36) alters the 
beta cell’s ability to secrete insulin.12,92–94 

Classically, glucagon acts on its canonical receptor 
on beta cells to potentiate insulin secretion; how-
ever, there is strong evidence that glucagon’s bind-
ing to the GLP-1R potentiates insulin release.12,57,92 

In beta cell-specific GCGR KO mice, the infusion of 
glucagon can still elicit insulin secretion, but this 
effect requires an intact GLP-1R.104–106 Glucagon 
signaling via the GLP-1R on beta cells may have 
a more meaningful contribution to insulin 
dynamics than glucagon’s signaling through its 
canonical receptor. Interestingly, these mice have 
comparable glycemic excursions and glucose clear-
ance when compared to their control littermates.12 

This raises the important question: is GLP-1 
required for normal beta cell function, or is GLP- 
1R activation by an alternate ligand sufficient? 
Future studies must assess the contribution of glu-
cagon signaling at the GLP-1R in different cell- 
types, including alpha and delta cells, to determine 
the relevance or redundancy of endogenous alpha 
cell GLP-1 production.

The potentiation of insulin release by GLP-1 has 
several downstream paracrine effects in other islet 
cell types. Indeed, insulin receptors on alpha cells 
are vital for glucose tolerance and glucagon 
dynamics. Alpha cell-specific insulin receptor KO 
mice exhibit hyperglucagonemia, hyperglycemia, 
and glucose intolerance.107 These findings indicate 
that islet-derived GLP-1 has the potential to limit 
its own release through the downstream effects of 
insulin release. Insulin release can indirectly inhibit 
alpha cell hormone release via stimulation of 

somatostatin secretion from delta cells. Insulin’s 
effects on delta cells were investigated using 
a ‘somatostatin-secreting delta cell insulin receptor 
knockout’ (SIRKO) mice; these mice experience 
impaired insulin-stimulated somatostatin release 
and impaired insulin sensitivity.108 Taken together, 
proglucagon-related peptides can interact with beta 
cells to induce insulin secretion. Insulin interacts 
with its receptors on adjacent alpha and delta cells 
to modulate the islet’s hormonal profile.

Delta cell signaling

In recent years, GLP-1Rs have been characterized 
in delta cells, where receptor activation potentiates 
glucose-dependent somatostatin release.89,99 Upon 
its secretion, somatostatin inhibits insulin and glu-
cagon release via its interactions with the somatos-
tatin receptor SSTR2.87–89 SSTR2 activation results 
in adenylyl cyclase inhibition and the opening of 
G-protein coupled K+ channels, ultimately main-
taining the alpha or beta cell in a negatively- 
polarized non-excitable state and suppressing hor-
mone secretion.60 While GLP-1 potentiates insulin 
and somatostatin release, somatostatin inhibits 
insulin release.60 Therefore, depending on soma-
tostatin availability, GLP-1 can indirectly inhibit 
insulin rather than potentiate its release.

Somatostatin may also inhibit the secretion of 
alpha cell-derived GLP-1, as glucagon and GLP-1 
are co-packaged in secretory granules.9 In the 
absence of somatostatin input, alpha cells release 
excessive quantities of glucagon.87 This speaks to 
the critical role of somatostatin dynamics in regu-
lating islet-hormone release. Of relevance to this 
somatostatin pathway, intra-islet GLP-1 may acti-
vate GLP-1Rs on delta cells in a paracrine manner, 
thus potentiating somatostatin release and indir-
ectly inhibiting glucagon and GLP-1 secretion via 
SSTR2 signaling. This concept has been tested and 
confirmed through the use of SSTR2-specific 
antagonists in perfused rodent pancreas models, 
although only glucagon levels were 
investigated.87–89 Co-infusion of GLP-1 and 
a selective SSTR2 antagonist partially attenuate 
GLP-1 mediated inhibition of glucagon secretion 
in cultured rat islets.98 This confirms that somatos-
tatin is important in inhibiting glucagon release, 
and GLP-1 has a direct and indirect inhibitory 
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effect in alpha cells. The contribution of islet- 
derived GLP-1 in somatostatin dynamics must be 
further studied to understand the complexities of 
this possible paracrine network.

Paracrine networks between islet endocrine cells

Alpha cell-derived peptides potentiate insulin 
release from beta cells and somatostatin release 
from delta cells. This occurs primarily via GLP-1 
and glucagon signaling at the GLP-1R, and the 
relevance of beta cell GCGR activation by GLP-1 
is unclear due to GLP-1’s relative potency at this 
receptor. GLP-1 has a bidirectional effect on alpha 
cells, whereby receptor activation in hyperglycemia 
inhibits alpha cell hormone release, and GLP-1 
potentiates hormone release in hypoglycemia. So 
far, the GLP-1R has only been identified in 
a subpopulation of alpha cells. Insulin released 
from beta cells inhibits alpha cell hormone release 
and potentiates somatostatin release from delta 
cells. SSTR2 activation on both alpha and beta 
cells inhibits further hormone secretion by hyper-
polarizing cells into a less-excitable state.

Only considering insulin, somatostatin, and pro-
glucagon-derived peptides, there are multiple pos-
sible network interactions. For example, alpha cell- 
derived GLP-1 can potentiate GSIS, insulin can 
stimulate delta-cell hormone release, and somatos-
tatin can inhibit both GLP-1 and insulin release 
from alpha and beta cells, respectively. The effects 
of glucose and other metabolites further modulate 
these complex network interactions, as described 
below. The paracrine action between alpha, beta, 
and delta cells is essential for the coordination of 
insulin release in vivo and in the presence of phar-
macological agents. Indeed, GLP-1R and GCGR 
agonists lose their effectiveness in controlling 
plasma-glucose levels in the absence of intact beta 
cells, as seen in many STZ treated T1D mouse 
models.57

Glucose is an essential regulator of islet hormone 
secretion. Both beta and delta cells rely on glucose- 
stimulated secretion pathways, where hyperglycemia 
favors the release of insulin and somatostatin from 
the islet. In beta and delta cells, glucose entry and 
metabolism results in the closure of KATP channels, 
membrane depolarization, elevated intracellular cal-
cium, and hormone secretion. This pathway in delta 

cells is more dependent on calcium-induced Ca2+ 

release, whereas beta cells depend on the activation 
of voltage-gated Ca2+ channels.60 The sodium- 
glucose transporter SGLT2 is expressed in 33–58% 
of human delta cells, and its current contributes to 
insulin-induced somatostatin secretion.108 In the 
presence of SGLT2 inhibitors like dapagliflozin, 
insulin-stimulated somatostatin secretion is mod-
estly suppressed.108,109 As previously stated, the 
actions of GLP-1 in alpha cells are also glucose- 
dependent. In hyperglycemia, GLP-1R activation 
inhibits alpha cell hormone release, while receptor 
activation in hypoglycemia potentiates hormone 
secretion.100

GPR120, a metabolite sensing receptor that can 
potentiate PC1/3 expression alpha cells, is also 
expressed in delta cells.61 In the presence of fatty 
acids, including oleate and palmitate, GPR120 acti-
vation can inhibit somatostatin secretion by up to 
50%.60 In the presence of localized lipolysis, the 
availability of GPR120 ligands may favor GLP-1 
production and limit somatostatin release. 
Omega-3 fatty acids and palmitate can activate 
GPR40 expressed in beta cells,61 and GPR40 activa-
tion can potentiate glucose-stimulated insulin 
release.60 Therefore, the transient elevation of pal-
mitate levels in the islet can increase GLP-1 pro-
duction, potentiate GSIS and inhibit glucose- 
dependent somatostatin secretion. In the presence 
of palmitate, the islet’s local hormonal profile could 
shift toward a net insulin-secreting profile due to 
elevated GLP-1 production and decreased somatos-
tatin release.

Summary

This review has summarized and discussed the 
experimental evidence that GLP-1 can be expressed 
and secreted from human and rodent alpha cells, 
and that GLP-1Rs are widespread throughout the 
endocrine pancreas. The expression of alpha cell 
PC1/3, and therefore proglucagon processing to 
GLP-1, can be induced by various cytokines and 
metabolites, many of which are elevated in T2D 
and obesity. Intra-islet GLP-1 and DPP4 have func-
tional roles in glucose homeostasis, although their 
contribution to the clinical effectiveness of DPP4 
inhibitors has yet to be investigated. Finally, GLP-1 
has been demonstrated to possess significant 
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pharmacological activity in the islet, modulating 
insulin, glucagon, and somatostatin secretion. 
Similarly, the hormonal microenvironment of the 
islet can modulate alpha cell glucagon and GLP-1 
release. Taken together, islet-derived GLP-1 has the 
potential for paracrine and autocrine roles in the 
endocrine pancreas, where its secretion and meta-
bolism can alter the specific hormonal secretory 
phenotype in the islet.

Future perspectives

Future studies are therefore warranted to further 
investigate the paracrine effects of glucagon- 
derived peptides in human islets. To this end, 
a concerted effort to accurately identify the GLP- 
1R in alpha, beta, and delta cells would help 
immensely to establish the functional role of intra- 
islet GLP-1 in the pancreas. The nonspecific nature 
of many commercially available GLP-1R antibodies 
is well documented and an over-reliance on anti-
bodies for identification of the GLP-1R has fueled 
controversy over the expression of the receptor in 
different islet cell types.109 However, new validated 
specific monoclonal antibodies for the GLP-1R 
have been developed and should bring a greater 
level of certainty to detection of GLP-1R 
protein.110 The use of transcriptomics to study 
GLP-1R expression promises to aid in the identifi-
cation of the receptor, and yet researchers should 
proceed with caution as this technique may not 
consistently or accurately measure transcripts 
from genes with low expression.111

The clear and proper identification of progluca-
gon-derived peptides has also been controversial, 
largely again because of the reliance of antibodies 
for identification. The use of mass spectrometry to 
identify proglucagon-derived peptides would com-
plement antibody-based identification and increase 
certainty around the detection of important pep-
tides such as active GLP-1. In addition, the recent 
development of protocols that combine mass spec-
trometry with imaging for mouse and human pan-
creatic tissue allows for in situ detection of 
proteins.112 This exciting alternative to immuno-
histochemical methods affords great promise and 
would help to identify and confirm heterogeneity of 
alpha cell proglucagon-derived peptide expression 
in the islet.

Given that GLP-1 secretion from human alpha 
cells is potentially important for islet function, 
the advent of a method for creating human 
stem-cell derived alpha cells is exciting for the 
field.113 Currently, there is no human alpha cell 
line available to study GLP-1 secretion, and this 
potentially limitless source of human alpha cells 
would be amenable to genetic manipulation. For 
example, CRSPR-Cas9 could be used to knock-
out or mutate the prohormone convertases with 
the goal of studying the effect on GLP-1 expres-
sion. Furthermore, the signaling pathways for 
GLP-1 expression and secretion could be exam-
ined in this human alpha cell model. From 
a translational perspective, gene editing technol-
ogies may also be employed to generate stem cell 
derived alpha cells with an enhanced GLP-1 
secretory phenotype that could be co- 
transplanted with beta cells to enhance post- 
graft cellular survival and function.

The key questions remaining to be answered are 
whether or not GLP-1 is constitutively expressed in 
the healthy adult pancreas and what role it may play 
in vivo rather than in isolated cellular systems? The 
role of intra-islet GLP-1 in the metabolically 
stressed islet must also be further characterized in 
order to provide a more complete understanding of 
this potential signaling axis in disease states. Several 
of the most effective recently developed therapeutic 
strategies for obesity, T1D and T2D target the GLP- 
1 pathway and it is important that the relevance of 
intra-islet GLP-1 be determined in order to opti-
mize the effectiveness of these pharmacological 
agents used in treating these diseases.
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