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Electromyography (EMG) pattern recognition is one of the widely usedmethods to control

the rehabilitation robots and prostheses. However, the changes in the distribution of

EMG data due to electrodes shifting results in classification decline, which hinders its

clinical application in repeated uses. Adaptive learning can solve this problem but takes

additional time. To address this, an efficient scheme is developed by comparing the

performance of 12 combinations of three feature selection methods [no feature selection

(NFS), sequential forward search (SFS), and particle swarm optimization (PSO)] and

four classification methods [non-adaptive support vector machine (N-SVM), incremental

SVM (I-SVM), SVM based on TrAdaBoost (T-SVM), and I-SVM based on TrAdaBoost

(TI-SVM)] in the classification of EMG data of 12 subjects for 5 consecutive days. Our

results showed that TI-SVM achieved the highest classification accuracy among the

classification methods (p < 0.05). The SFS method achieved the same classification

accuracy as that of the scheme trained with the feature vectors selected by the NFS

method (p = 0.999) while achieving a lower training time than that of TI-SVM combined

with the NFS method (p= 0.043). Although the PSO method outperformed the NFS and

SFS methods by achieving reduced training and response times (p < 0.05), the PSO

method achieved a considerably lower classification accuracy than that of the scheme

trained with the feature vectors selected by the NFS (p = 0.001) or SFS (p = 0.001)

method. Furthermore, TI-SVM combined with the SFS method outperformed the CNN

method with fine-tuning in classification accuracy on a small data set (p = 0.001). The

results indicate that TI-SVM combined with the SFS method is suitable for improving the

performance of EMG pattern recognition in repeated uses.
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INTRODUCTION

Electromyography (EMG) pattern recognition is widely used
in myoelectric control devices, such as rehabilitation robots
(Lunardini et al., 2016) and prostheses (Farmer et al., 2014).
This scheme enables rehabilitation robots and prostheses to
perform the user’s actions by extracting the movement intention
implied in the multichannel EMG signals (Al-Quraishi et al.,
2017; Yang et al., 2017; Teramae et al., 2018). Previous studies
have attempted to identify the most suitable scheme by extracting
EMG features of high separability through finding an appropriate
feature selection method and an effective classification method
(Phinyomark et al., 2010; Guo et al., 2015). These studies
reported high classification accuracy above 90% in a laboratory
environment. However, their clinical applicability is still limited

in daily life (Simao et al., 2019). The reason for this limitation is
that the donning and doffing of the electrodes in every use change
the positions and skin impedance of the electrodes, which leads
to differences in distribution of acquired EMG data. The model
trained in an earlier use exhibits poor performance in a different
use because of the electrodes shifting (Young et al., 2012). Re-
selecting features and retraining the model of a myoelectric

control device before every use can solve this problem. However,
these processing methods increase the time-consuming burden
on users.

Various studies have attempted to solve the problem of
performance decline in models due to the differences in data
distribution caused by electrodes shifting across repeated uses.

Some studies attempted to extract an invariant EMG feature of
specific motions to strengthen the robustness of the EMG pattern
recognition model and improve the classification accuracy
in repeated uses (Boostani and Moradi, 2003; Tkach et al.,
2010; Phinyomark et al., 2013). Some researchers adopted an
unsupervised adaptive classification method, which enables the
model to adapt EMG data with different distributions (Liu, 2015;
Huang et al., 2017; Prahm et al., 2019). Although extracting an
invariant EMG feature or applying an unsupervised adaptive
classification method can improve the classification accuracy
of schemes to an extent, the classification accuracy achieved
by these methods cannot satisfy the requirements under the
conditions of changes of electrode positions in repeated uses.
In addition, supervised adaptive classification methods have
been adopted to address the problem of the decrease in the
classification accuracy of an EMG pattern recognition scheme
across every use (Liu et al., 2016; Vidovic et al., 2016; Ameri
et al., 2020). This method was used successfully in deep learning
and achieved satisfactory performance. For example, Ameri et al.
(2020) proposed a convolutional neural network (CNN) with a
fine-tuning method to reduce the influence of electrode shifting
on the classification accuracy of an EMG pattern recognition
scheme. However, a CNN model requires a huge amount of
data for training in order to avoid overfitting (Phinyomark
and Scheme, 2018). An incremental support vector machine (I-
SVM) was proposed to improve the classification accuracy of
an EMG pattern recognition scheme when the data distribution
changed. I-SVM is a supervised adaptive classification method
in which the classification model is updated according to data

with labels from a new use, thereby improving the performance
of the EMG pattern recognition scheme in repeated uses (Liang
and Li, 2009; Xu et al., 2014; Liu, 2015; Huang et al., 2017).
However, the distribution of data from a new use is changed
because of the electrodes shifting (Gama et al., 2014). After the
data distribution changes, the outdated data from an earlier use
have a different distribution from the data in the new use and
hinder the adaptation process of I-SVM in the new use (Huang
et al., 2017). Transfer learning methods have been proposed to
reduce the influence of data distribution changes on EMGpattern
recognition (Pan and Yang, 2010; Matasci et al., 2012; Wei et al.,
2015; Jayaram et al., 2016; Hossain et al., 2018; Li et al., 2021).
For example, SVM with the TrAdaBoost algorithm (T-SVM)
has reduced the data distribution differences by discarding the
outdated data from an earlier use to improve pattern recognition
performance compared with a typical SVM (Matasci et al., 2012).
Inspired by this, we propose a novel adaptive classification
method by combining TrAdaBoost and I-SVM (TI-SVM) to
improve the performance of I-SVM. The performance of TI-SVM
was verified by comparing it with those of non-adaptive SVM
(N-SVM), I-SVM, and T-SVM.

In addition, the dimension reduction performance of two
widely used feature selection methods [sequential forward search
(SFS) and particle swarm optimization (PSO)], as well as that
of no feature selection (NFS), was compared to find a proper
feature selectionmethod to avoid re-selecting features in different
uses. The robustness of the features selected by different feature
selection methods is an important element of the scheme’s
performance. However, previous studies rarely evaluated the
performance of the features selected by the feature selection
method in repeated uses (Nazarpour et al., 2007; Liu, 2014;
Adewuyi et al., 2016; Zhou et al., 2016; Purushothaman and
Vikas, 2018). The performance of the features selected by these
methods was therefore investigated.

In this study, we developed a proper scheme to improve
the performance of EMG pattern recognition in repeated uses
by comparing the performance of the combinations of three
feature selection methods (NFS, SFS, and PSO) and four
classification methods (N-SVM, I-SVM, T-SVM, and TI-SVM)
in the classification of EMG data of 5 consecutive days. The
classification accuracy, training time, and response time of the
12 combinations were evaluated for data of 5 consecutive days.
To evaluate the effectiveness of the scheme we developed, the
classification accuracy of the scheme was also compared with that
of CNN with fine-tuning, which was the most effective method
previously reported for solving the problem of classification
accuracy decline due to electrodes shifting.

MATERIALS AND METHODS

EMG data acquisition, feature extraction, feature selection,
and classification were adopted to construct an EMG pattern
recognition scheme. We mainly focused on improving the
performance of the EMG pattern recognition scheme in different
uses by optimizing the feature selectionmethod and classification
method. The optimization process is shown as follow (Figure 1).
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FIGURE 1 | Schematic illustrating the optimization process in this study.

The performance of 12 combinations of three feature selection
methods and four classification methods was compared to
identify a proper scheme that provides robust performance for
EMG pattern recognition in repeated uses.

EMG Data Acquisition
EMG signals were acquired from 12 healthy subjects using
a commercial system (NORAXON Desktop DTS) with seven
channels. We conducted an experiment for 5 consecutive days
to simulate the different uses of the EMG pattern recognition
scheme. Before the experiment, all subjects were fully informed
about the experimental procedure. All the subjects have been
informed and signed informed consent before the experiments.
The study was approved by the ethics committee of Changchun
University of Science and Technology (CUST), 20190013, August
3, 2019.

EMG signals were recorded from seven positions
corresponding to the following muscles: the anterior deltoid,
middle deltoid, posterior deltoid, biceps, triceps, brachioradialis,
and flexor carpi radialis (Figure 2). Before placing the electrodes,
75% alcohol was used to clean the skin at the required locations
to reduce the impedance between the skin and the electrodes.
The EMG signals were sampled at 1500Hz and band-pass filtered
between 20 and 450Hz with a 50Hz notch filter.

On each day of the acquisition, all subjects were asked to stand
in front of a computer screen and keep their right hand relaxed.
All subjects were asked to perform 11 different motions: shoulder
flexion (SF), shoulder abduction (SA), shoulder posterior flexion
(SPF), elbow flexion (EF), elbow extension (EE), shoulder flexion,
and elbow flexion (SFEF), shoulder flexion and elbow extension
(SFEE), shoulder abduction and elbow flexion (SAEF), shoulder
abduction and elbow extension (SAEE), shoulder posterior
flexion and elbow flexion (SPFEF), and shoulder posterior flexion
and elbow extension (SPFEE) (Figure 3). The EMG data from
one repetition of one motion was treated as a trial and each
motion was repeated five times. Each trial lasted for 7 s and was
followed by a 5-s rest period. In order to ensure the stability of the
acquired signal, we selected the data of the central 5 s of each trial
for subsequent analysis. Overall, 55 trials (11 motions × 5 trials)
were acquired from each subject for each day.

FIGURE 2 | Experimental configuration of EMG sensors with dual electrodes

on the right arm of subjects. (A) Positions of sensors on the anterior deltoid,

biceps, brachioradialis, and flexor carpi radialis. (B) Positions of sensors on the

middle deltoid, posterior deltoid, and triceps.

FIGURE 3 | Examples of the trajectories of the 11 motions performed by the

subjects in this study.

All data were processed on a computer with Intel Core i7-8700
CPU, NVIDIA Quadro P620 GPU, and 256 GB of RAM.

Feature Extraction
All trials were segmented using a 250-ms sliding window with a
50-ms overlap. Thus, each trial was divided into 96 overlapping
segments. In total, 5,280 segments (11 motions × 5 trials ×

96 windows) were obtained each day. Fourteen commonly used
EMG features—nine time-domain (TD) features, two frequency-
domain (FD) features, and three time-frequency (TF) features—
were extracted from these sliding windows (Tkach et al., 2010;
Phinyomark et al., 2013; Zhang et al., 2017; Gu et al., 2018).
The nine TD features were mean absolute value (MAV), variance
(VAR), root mean square (RMS), slope sign change (SSC), zero
crossing (ZC), waveform length (WL), fifth-order auto-regressive
model (AR5), sixth-order auto-regressive model (AR6), and
cepstral coefficient (CC) (Tkach et al., 2010; Phinyomark et al.,
2013). The two FD features were mean frequency (MNF) and
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median frequency (MDF) (Zhang et al., 2017). The three TF
features were wavelet transform waveform length (WTWL),
wavelet transform variance (WTVAR), and wavelet transform
mean absolute value (WTMAV) (Gu et al., 2018). The 14 EMG
features are detailed as next.

MAV

MAV =
1

N

N
∑

i = 1

|xi| (1)

Where xi is the ith EMG sample of a sliding window. N is the
number of samples in a sliding window. Since the window length
was 250ms, N was set to 375.

VAR

VAR =
1

N − 1

N
∑

i=1

x2i (2)

Where xi represents the i
th EMG sample of a sliding window and

N represents the number of EMG samples in a sliding window.N
was set to 375.

RMS

RMS =

√

√

√

√

1

N

N
∑

i=1

x2i (3)

Where xi represents the i
th EMG sample of a sliding window, N

represents the number of EMG samples in a sliding window. N
was set to 375.

SSC

SSC =

N
∑

i=2

[

f [(xi − xi−1) × (xi − xi+1)]
]

,

f (x) =

{

1, if x ≥ threshold
0, otherwise.

(4)

Where xi represents the i
th EMG sample of a sliding window. N

is the number of EMG samples in a sliding window. N was set to
375 and the threshold was set to 10.

ZC

ZC =

N−1
∑

i=1

[

sgn(xi × xi+1)
⋂

|xi − xi+1| ≥ threshold

]

,

sgn (x) =

{

1, if x < 0
0, otherwise.

(5)

Where xi represents the i
th EMG sample of a sliding window and

N represents the number of EMG samples in a sliding window.N
was set to 375 and the threshold was set to 25.

WL

WL =

N
∑

i=1

|xi+1 − xi| (6)

Where xi represents the i
th EMG sample of a sliding window and

N represents the number of EMG samples in a sliding window. N
was equal to 375 in this study.

Auto-Regression Model (AR)

xi =

p
∑

k=1

akxi−1 + ei (7)

Where ak represents AR coefficients, p is the order of the AR
model, and ei is the white noise. In this study, the coefficients of
AR5 and AR6 models were extracted.

CC

c1 = −a1, ck = −ak −

k−1
∑

i=1

(

1−
i

k

)

akck−1 (8)

Where ak represents AR coefficients, k represents the order of
the CC coefficients. Where ck represents CC coefficients. In this
study, k was set to 5.

MNF

MNF =

∑N
i fipi

∑N
i pi

(9)

Where fi is the frequency value of the spectrum at the frequency
bin i, pi is the EMG power spectrum at the ith frequency bin,
N is the number of frequency bins. Boxcar window was used
to calculate the power spectrum of the signal. The length of the
Boxcar window was set to 375.

MDF

MDF =
1

2

N
∑

i=1

pi (10)

Where pi is the EMG power spectrum at the ith frequency bin,
N is the number of frequency bins. Boxcar window was used to
calculate the power spectrum of the signal. The length of Boxcar
window was set to 375.

Wavelet Transform (WT)
WT is widely used as a tool to analyze the TF characteristics
of the EMG signal. It can provide the TD and FD information
of the signal at different scales. In this study, five-level wavelet
decomposition was employed using the Daubechies2 (Db2)
algorithm. After wavelet decomposition of the EMG signal of
a sliding window, the cA5, cD1, cD2, cD3, cD4, and cD5
coefficients were selected. Finally, the WTWL, WTVAR, and
WTMAV features were extracted from these coefficients.
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Feature Selection
The dimension reduction performance of three feature selection
methods (NFS, SFS, and PSO) were compared to select a
suitable feature selection method to shorten the training time
and response time of the EMG pattern recognition scheme in
repeated uses.

NFS
NFS served as a no-selection baseline method to evaluate the
effectiveness of the other two feature selection methods.

SFS
In the SFS feature selection method, a Fisher’s discriminant ratio
J3 value was used to sort the separability of 14 EMG features in
descending order (Nazarpour et al., 2007). To calculate the J3
value, three types of matrices were defined: within-class scatter
matrix, between-class scatter matrix, and mixture matrix.

A within-class scatter matrix can be described using (1):

Sw =

M
∑

i=1

1

M
E[(x− ui)(x− ui)

T] (11)

where M represents the total number of classes, x represents the
feature vectors, and ui represents the mean value of the feature
vector of class i.

A between-class scatter matrix can be described using
Equation (2):

Sb =

M
∑

i=1

1

M
E[(ui − u0)(ui − u0)

T] (12)

where u0 represents the global mean value of all feature vectors.
A mixture scatter matrix can be described using Equation (3):

Sm = Sb + Sw (13)

Finally, the J3 value can be defined as follows:

J3 = trace(S−1
w Sm) (14)

The greater the J3 value is, the better the separability of the EMG
feature is.

In the SFS method, we reconstructed the original feature
vectors by selecting the most informative features from the 14
features. First, the original feature vectors were divided into a
different fourteen-feature vector set according to the 14 EMG
features. Then, the J3 value of each EMG feature vector set was
calculated. Subsequently, two feature sets were established: Set
A and Set B. Set A was an empty set and Set B contained the
fourteen-feature vector sets sorted in descending order of J3
values. The SFS method selected the feature vector set in Set
B that had the highest J3 value and moved it to Set A as the
first feature vector set in Set A. Then, the SFS method iteratively
paired each of the remaining feature vector sets in Set B with all
the feature vector sets in Set A. The feature vector set in Set B that
was paired with all the feature vector sets in Set A and produced
the highest J3 value was identified and moved to Set A. In each

iteration, one feature vector set in Set B was selected and moved
to Set A as the most informative feature vector set. When each of
the remaining feature vector sets in Set B was paired with those
in Set A and could not increase the J3 value, the SFS method
was stopped. The feature vector sets in Set A were then linearly
combined as the final feature vector set.

PSO
PSO is a feature selection method based on the movement of
birds in search of food (Purushothaman and Vikas, 2018). PSO
creates a swarm of particles in high-dimensional space; each
particle has its own position and velocity. Each particle moves to
the global best position and the local best position to iteratively
update its position and velocity. The update process of position
and velocity of each particle is described as follows:

xj(t + 1) = xj(t)+ vj(t + 1) (15)

vj(t + 1) = wvj(t)+ c1rand1(pbest − xj(t))

+ c2rand2(gbest − xj(t)) (16)

where t is the number of iterations; w represents the constriction
factor set to 0.7; c1 and c2 represent the learning factors and
were both set to 2 in this study; rand1 and rand2 represent
random numbers between 0 and 1; xj represents the position of
the j th particle; vj represents the velocity of the j th particle;
pbest represents the local best position of the j th particle; and
gbest represents the global best position of the j th particle.

In the PSO method, the 14 features were linearly constructed
as a high-dimensional feature vector. Among the 14 features,
the dimension number of the feature vectors of MAV, VAR,
RMS, SSC, ZC, WL, MNF, and MDF features were 1; the
dimension number of the feature vectors of AR5 and CC were
5; and the dimension number of the feature vectors of AR6,
WTMAV,WTWL, andWTVAR were 6. Considering the number
of channels, a 294-dimensional feature vector was obtained
from each sliding window. In this study, each particle searched
in a 294-dimensional space to find a suitable dimension of
EMG feature vectors that produces the maximum classification
accuracy. The numbers of the particles and iterations were chosen
from various tests to determine which achieved the best result.
The number of particles was set to 80. The maximum number of
iterations was 50. However, this performance may be enhanced
by a dynamic PSO method.

After the feature selection, a new feature vector was obtained
from the original feature vectors of Day 1. In order to evaluate
the effectiveness of the new feature vectors, 5280 feature vectors
from Day 1 were divided into two different data sets: four-fifths
of the feature vectors served as a training set, and one-fifth of the
feature vectors served as a validation set. An SVM classification
model was trained with the training set. The classification model
was used to classify the vectors of the validation set, and the
classification accuracy was used as the criterion for evaluating the
selected feature vectors for the EMG pattern recognition scheme.
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Classification
The performances of the four classification methods based on
SVM were compared (i.e., N-SVM, I-SVM, T-SVM, and TI-
SVM). The linear kernel function was used as the kernel function
of the four classification methods. N-SVM served as a baseline
method to evaluate the performance of its adapted version. Three
adaptive classification methods (I-SVM, T-SVM, and TI-SVM)
were adopted to adapt the N-SVM model trained using the
training set of Day 1. Days 2–5 served as the target days. The
EMG data from the target days were collected to simulate the
application condition of the EMG pattern recognition scheme
in a new use after donning and doffing of the electrodes. The
dimensions of the feature vectors extracted from the data of
Days 2–5 were selected according to the dimensions of the
original feature vectors selected by the corresponding feature
selection methods on Day 1. To test the performance of different
classificationmethods, a five-fold cross-validation was conducted
on each target day. A reverse leave-out cross-validation was
conducted by using one-fifth of the data from each target day
as a calibration set to adapt the model and the remaining data
from the same day as a test set to evaluate the performance
of the adapted model. The classification methods are described
as follows.

N-SVM
N-SVM was adopted as the baseline method for comparison
with its adapted version. N-SVM was trained by only using the
training set of Day 1. There was no adaptation to N-SVM. Its
performance was evaluated on the test set of each target day.

I-SVM
The I-SVMmodel was obtained by incrementally adapting the N-
SVM model using the calibration set of a target day. First, an N-
SVMmodel was trained using the training set from Day 1. Then,
a typical strategy was used to adapt the N-SVM using the samples
from the calibration set. The calibration set was segmented into
different batches. The batch size was set to 48 by conducting a
large number of experiments. Because the calibration set of each
target day had 1,056 feature vectors (one-fifth of 5,280 vectors
of a target day), there were 22 batches in the calibration set.
The first batch of data was combined with the support vector
samples of the training set of Day 1 to adapt the model. The new
support vector samples were obtained from the adapted model
and combined with the data of the next batch to adapt a new
model again. After all batches participated in the adaptation, the
performance of the adapted model was evaluated using the test
sets of the same target day.

T-SVM
T-SVM is an adaptive classification method based on the
TrAdaBoost algorithm (Matasci et al., 2012).

First, the data from the training set of Day 1 and the
calibration set of a target day were weighted. Then, these data
were combined into a new training set to train a new model.
Subsequently, the new model was used to classify the data from
the training set of Day 1. The weight of wrongly classified data
of the training set was reduced, and the low-weight data in the

training set was discarded while the training set was updated. The
data of the calibration set were also classified by the new model.
The weight of the data from the calibration set was increased
if the data was wrongly classified by the model. The data with
higher weight in the calibration set would be combined with the
updated training set to form a new training set to train a new
model. Then, the new model was used to classify the updated
training set and the original calibration set to construct a new
training set again. After n adaptations, n models were obtained.
According to various experiments conducted, n was set to 26 in
this study. From the last half of the n models, we selected the
model with the most data selected from the calibration set as
the adapted model. The performance of the adapted model was
evaluated using the test set of the same target day.

TI-SVM
Both the TrAdaBoost algorithm and I-SVM were used in this
model. First, the training set of Day 1 and the calibration
set of a target day were used to construct a new training set
using the TrAdaBoost algorithm. Then, a new SVM model
was trained using the new training set. Finally, the new model
was incrementally adapted using the calibration set of each
corresponding target day. The performance of the adapted model
was evaluated using the test set of the same target day.

CNN With Fine-Tuning
To evaluate the effectiveness of the developed scheme, we
compared its classification accuracy with that of the CNN with
fine-tuning. A CNN with fine-tuning is the most satisfactory
method previously reported in the literature to solve the problem
of EMG pattern recognition classification accuracy decline
caused by electrodes shifting (Ameri et al., 2020). The structure of
the CNN is presented in Ameri et al. (2020), which was inspired
by GoogLeNet (inception V3). An input picture was constructed
from the raw EMG data of a 250-ms sliding window from seven
channels. Four-fifths of EMGdata fromDay 1 served as a training
set to train an initial CNN model, and the rest of the EMG data
from Day 1 served as a validation set to validate the effectiveness
of the CNN model. One-fifth of EMG data from a target day
served as a calibration set to fine-tune the CNN model trained
on Day 1. Four-fifths of the EMG data from the same target
day served as a test set to evaluate the effectiveness of the fine-
tuned CNNmodel on that target day. A five-fold cross-validation
was also conducted to evaluate the performance of the CNN
with fine-tuning.

Performance Index and Statistical Analysis
There were three performance indices for evaluating the
performance of the schemes: classification accuracy, training
time, and response time. The classification accuracy of a scheme
was the proportion of the feature vectors of the test set from
each target day that were correctly classified by the scheme. The
training time for the schemes using the I-SVM, T-SVM, or TI-
SVMmodel included the time for training the initial SVMmodel
using the training set of Day 1 and the time for adapting the initial
SVM model using the calibration set. In contrast, the training
time for the scheme using the N-SVM model included only the
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TABLE 1 | Dimension numbers of the feature vectors selected by different feature

selection methods.

Dimension number of feature vectors

NFS SFS PSO

Subject 1 294 252 36

Subject 2 294 287 59

Subject 3 294 294 102

Subject 4 294 245 70

Subject 5 294 294 78

Subject 6 294 252 77

Subject 7 294 287 92

Subject 8 294 252 58

Subject 9 294 252 113

Subject 10 294 294 62

Subject 11 294 287 138

Subject 12 294 287 90

time to train the initial SVM model using the training set of Day
1. Furthermore, the response time of a scheme refers to the time
it took to classify the EMG feature vectors of the test set of each
target day.

The results of the classification accuracy, training time and
response time were analyzed using a repeated measure analysis of
variance (ANOVA) with factors including classification method
(N-SVM, I-SVM, T-SVM, and TI-SVM) and feature selection
method (NFS, SFS, and PSO) with a significance level of 0.05.
Then, a paired samples t-test was performed to compare the
classification accuracy of the proposed schemes with that of CNN
with fine-tuning. We set the significance level at 0.05. All results
were analyzed using IBM R© SPSS Statistics 22 software.

RESULTS

Dimension Number of the Feature Vectors
Selected by Different Feature Selection
Methods
The dimensions of the feature vectors of Day 1 selected by
different feature selectionmethods for each subject were reported
(Table 1).

The results of multiple comparisons showed that the
dimension number of the feature vectors selected by the NFS
method was significantly higher than those of the SFS (p< 0.017)
and PSO (p < 10−3) methods. Similarly, the dimension number
of the feature vectors selected by the SFSmethod was significantly
higher than that of the PSO method (p < 10−3).

Classification Accuracy of Different EMG
Pattern Recognition Schemes
We reported the classification accuracy of 12 schemes that
combined three feature selection methods and four classification
methods (Figure 4).

The ANOVA analysis indicated that both classification
method [F(3,9) = 15.692, p= 0.001] and feature selection method
[F(2,10) = 14.134, p = 0.001] had a significant effect on the

FIGURE 4 | Average classification accuracy of 12 schemes across 12

subjects.

classification accuracy of the 12 combinations. No significant
interaction was found between classification method and feature
selection method [F(6,6) = 3.880, p= 0.062].

Multiple comparison results showed that the classification
accuracy of TI-SVM was significantly higher than those of N-
SVM (p = 0.001), I-SVM (p = 0.011), and T-SVM (p = 0.001).
The classification accuracy of T-SVM was significantly higher
than that of N-SVM (p = 0.015). However, the classification
accuracy of T-SVM was significantly lower than that of I-SVM (p
= 0.001). The classification accuracy of I-SVM was significantly
higher than that of N-SVM (p= 0.001).

Multiple comparison results showed that the classification
accuracy of the scheme trained with the feature vectors selected
by the NFS method was significantly higher than that of the
same scheme trained with the feature vectors selected by the
PSO method (p = 0.001). There was no significant difference
in classification accuracy between the scheme trained with the
feature vectors selected by the NFS method and the scheme
trained with the feature vectors selected by the SFS method (p
= 0.999). However, the classification accuracy of the scheme
trained with the feature vectors selected by the SFS method was
significantly higher than that of the scheme trained with the
feature vectors selected by the PSO method (p= 0.001).

Time Consumption of Different EMG
Pattern Recognition Scheme
The training times of 12 schemes that combined three feature
selection methods and four classification methods were reported
(Figure 5).

The ANOVA analysis indicated that both classification
method [F(3,9) = 198.828, p< 10−3] and feature selectionmethod
[F(2,10) = 6.308, p = 0.017] had a significant influence on the
training time of the schemes. Because a significant interaction
between classification method and feature selection method
was noted, we further analyzed the simple effect between the
classification method and feature selection method [F(6,6) =

527.099, p < 10−3].
The analysis of the simple effect between classificationmethod

and feature selection method revealed that classification method

Frontiers in Neurorobotics | www.frontiersin.org 7 June 2021 | Volume 15 | Article 699174

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Li et al. Improvement of EMG Pattern Recognition

FIGURE 5 | Average training time of different EMG pattern recognition

schemes of 12 subjects.

had a significant effect on the training time of the schemes trained
with the feature vectors selected by NFS [F(3,9) = 334.913, p <

10−3], SFS [F(3,9) = 300.485, p < 10−3], or PSO [F(3,9) = 24.636,
p < 10−3] method.

Under three feature selection methods, the training time
of TI-SVM was significantly longer than those of N-SVM
(p < 0.005), I-SVM (p < 0.005), and T-SVM (p < 10−3).
The training time of T-SVM was significantly longer than
those of N-SVM (p < 0.005) and I-SVM (p < 0.005). The
training time of I-SVM was significantly longer than that of
N-SVM (p < 10−3).

A simple effect analysis revealed that feature selection method
had a significant effect on the training time of N-SVM [F(2,10)
= 472.402, p < 10−3], I-SVM [F(2,10) = 492.173, p < 10−3], T-
SVM [F(2,10) = 5.220, p= 0.028], and TI-SVM [F(2,10) = 6.385, p
= 0.016].

Under N-SVM, I-SVM, and TI-SVM, the training time of the
scheme trained with the feature vectors selected by NFS method
was significantly longer than those of the schemes trained with
the feature vectors selected by SFS (p < 0.05) or PSO (p < 0.05)
method. The training time of the scheme trained with the feature
vectors selected by the SFS method was significantly longer than
that of the scheme trained with the feature vectors selected by the
PSO method (p < 0.05).

Under T-SVM, there was no significant difference in training
time between the scheme trained with the feature vectors selected
by the NFS method and the scheme trained with the feature
vectors selected by the SFSmethod (p= 0.056). The training time
of the scheme trained with the feature vectors selected by the NFS
method was significantly longer than that of the scheme trained
with the feature vectors selected by the PSO method (p= 0.018).
The training time of the scheme trained with the feature vectors
selected by the PSO method was significantly shorter than that of
the scheme trained with the feature vectors selected by the SFS
method (p= 0.02).

The response time of 12 schemes that combined three feature
selection methods and four classification methods were reported
(Figure 6).

FIGURE 6 | Average response time of different EMG pattern recognition

scheme of 12 subjects.

A repeated measures ANOVA on response time showed a
significant effect of classification method [F(3,9) = 14.989, p =

0.001] and feature selection method [F(2,10) = 373.092, p <

10−3]. There was a significant interaction between classification
method and feature selectionmethod [F(6,6) = 16.184, p= 0.002].
Thus, we further analyzed the simple effect between classification
method and feature selection method.

The analysis of the simple effect between classificationmethod
and feature selection method revealed that classification method
had a significant effect on the response time of the schemes
trained with the features selected by the NFS [F(3,9) = 14.951, p
= 0.001], SFS [F(3,9) = 8.141, p= 0.006], or PSO [F(3,9) = 12.535,
p= 0.001] method.

Under the NFS and SFS methods, the response time of TI-
SVM was significantly longer than those of N-SVM (p < 0.01),
I-SVM (p < 0.01), and T-SVM (p < 0.01). The response time of
T-SVM was longer than those of N-SVM (p < 0.02) and I-SVM
(p < 0.02). There was no significant difference in response time
between N-SVM and I-SVM (p > 0.5).

Under the PSO method, the response time of TI-SVM was
similar to those of N-SVM (p = 0.137) and I-SVM (p = 0.999).
The response time of TI-SVM was significantly longer than that
of T-SVM (p = 0.001). The response time of T-SVM was similar
to those of N-SVM (p = 0.999) and I-SVM (p = 0.999). The
response time of I-SVM was significantly longer than that of
N-SVM (p= 0.001).

The analysis of the simple effect between classificationmethod
and feature selection method revealed that feature selection
method had a significant effect on the response time of N-SVM
[F(2,10) = 286.747, p < 10−3], I-SVM [F(2,10) = 405.599, p <

10−3], T-SVM [F(2,10) = 340.710, p< 10−3], and TI-SVM [F(2,10)
= 356.841, p < 10−3].

Under all classification methods, the response time of the
scheme trained with the feature vectors selected by the NFS
method were significantly longer than that of the same scheme
trained with the feature vectors selected by the PSO method (p <

10−3). However, there was no significant difference in response
time between the scheme trained with the feature vectors selected
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TABLE 2 | Comparison of classification accuracy of CNN with fine-tuning and

TI-SVM trained with feature vectors selected by different feature selection

methods.

Classification accuracy (%)

CNN with fine-tuning NFS-TI-SVM SFS-TI-SVM PSO-TI-SVM

92.00 ± 2.99 94.59 ± 3.00 94.63 ± 2.98 93.23 ± 3.47

by the NFS method and the scheme trained with the feature
vectors selected by the SFS method (p> 0.05). The response time
of the scheme trained with the feature vectors selected by the SFS
method was significantly longer than that of the same scheme
trained with the feature vectors selected by the PSO method
(p < 10−3).

Comparison of CNN With Fine-Tuning and
TI-SVM
As TI-SVM achieved the highest classification accuracy among
the four classification methods, to verify the effectiveness of
TI-SVM, we compared the classification accuracy of TI-SVM
trained with feature vectors selected by different feature selection
methods with that of CNN with fine-tuning (Table 2). Analysis
of a paired samples t-test revealed that the classification accuracy
of TI-SVM trained with the features selected by the NFS (p
= 0.001) or SFS (p = 0.001) method was significantly higher
than that of CNN with fine-tuning. However, there was no
significant difference in classification accuracy between TI-SVM
trained with the feature vectors selected by PSO and CNN with
fine-tuning (p= 0.111).

DISCUSSION

In this study, the classification performance of 12 combinations
of three feature selectionmethods and four classificationmethods
on 4 target days were compared to find a proper EMG pattern
recognition scheme for repeated uses. Our findings revealed that
the TI-SVM trained with the feature vectors selected by SFS
achieved a considerable performance in classification accuracy
and reduction in training time. TI-SVM achieved the highest
classification accuracy among the four classification methods.
Moreover, TI-SVM can improve the performance of I-SVM by
discarding outdated data from the training set and focusing
on data from the calibration set, which are difficult to classify
correctly. Compared with the NFS method, the SFS method is a
robust feature selection method that can reduce the training time
of TI-SVM andmaintain the classification accuracy of the scheme
in repeated uses. Although the PSO method outperformed the
SFS method in the reduction in training and response times, it
significantly reduced the classification accuracy of the scheme
trained with the feature vectors selected by the NFS or SFS
methods. Thus, TI-SVM combined with the SFS method is a
proper scheme for EMG pattern recognition in repeated uses.
Most importantly, TI-SVM trained with the feature vectors
selected by the SFS method required only a little amount of data
(only 5 s of data per motion was used to adapt themodel) to adapt

the model and achieved considerable classification accuracy that
outperformed CNN with fine-tuning.

TI-SVM is a suitable classification method for the condition
of electrodes shifting in repeated uses when compared with
the other three tested classification methods. I-SVM maintained
a considerable classification accuracy when compared with N-
SVM over 4 target days. This finding is consistent with that
of a previous study (Liang and Li, 2009). Thus, I-SVM was
a robust classification method for EMG pattern recognition
despite the electrodes shifting across every use. However, the
classification accuracy of I-SVM was significantly lower when
compared with that of TI-SVM. A previous study indicated
that outdated samples in the training set would decrease the
performance of I-SVM (Huang et al., 2017). TrAdaBoost can
solve this problem by discarding the samples whose distribution
in the training set is different from that in the test set, and
selecting the samples that are difficult to classify correctly in the
test set (Matasci et al., 2012). Although the classification accuracy
of T-SVM was lower than that of I-SVM, the TrAdaBoost
algorithm indeed played a role in improving the classification
accuracy of I-SVM in repeated uses. Previous studies using
transfer learning to solve the decline in classification accuracy
due to data with different distributions have achieved many
considerable achievements (Liu et al., 2016; Vidovic et al., 2016;
Ameri et al., 2020). Our research combined transfer learning
and incremental learning methods and proved that transfer
learning can enhance the performance of incremental learning.
Thus, we speculate that transfer learning can also play a role
in improving the classification accuracy of the other supervised
adaptive classification methods such as CNN with fine-tuning.
Moreover, previous studies only adopted adaptive classification
methods to solve the problem of classification accuracy decline
due to electrodes shifting and ignored the application to the
real-time performance of the scheme. The real-time performance
of the adaptive classification methods should be considered in
more depth. With the increase in new data and the iterations
of adaptive classification methods, the model becomes more
complex. The complex model increases the time consumption
of the scheme. Therefore, the time consumption of the adaptive
classification method needs to be further investigated.

In this study, two widely used feature selection methods were
used to reduce the dimensions of EMG feature vectors to improve
the real-time performance of the classification schemes. The
NFS method served as the base line method to evaluate the
effectiveness of the two methods. Our findings indicate that the
schemes trained with the feature vectors selected by the SFS
or PSO methods did not improve the classification accuracy
compared with that of the feature vectors selected by the NFS
method in repeated uses. These findings are inconsistent with
a previous study that stated that feature selection can improve
the classification accuracy of an EMG pattern recognition
scheme (Liu, 2014; Adewuyi et al., 2016; Purushothaman and
Vikas, 2018). Unlike the previous studies, our study includes
the factor of electrodes shifting in repeated uses. We think
it more appropriate to discuss the robustness of the feature
vectors selected by different feature selection methods for clinical
application. The robustness of the feature vectors selected by
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the PSO method was weaker than that of the feature vectors
selected by the SFS method in repeated uses. This finding may be
due to the fact that the PSO method selected fewer informative
dimensions of EMG feature vectors than did the SFS method,
which increased the difference in data distribution between
different uses. The SFS method can select more information from
the original high-dimensional feature vectors and maintain the
robustness of EMG feature vectors across repeated uses. For time
consumption reduction, the schemes trained with the feature
vectors selected by the PSO method consumed a significantly
shorter training time and response time than those of the schemes
trained with the feature vectors selected by the NFS or SFS
methods. Although the PSO method outperformed the NFS and
SFS methods in reducing the training and response times, the
PSO method considerably reduced the classification accuracy of
the schemes trained with the feature vectors selected by the NFS
or SFS method. The SFS method can maintain the robustness
of the original feature vectors while reducing the training time
of TI-SVM. Thus, the SFS method is a suitable feature selection
method for TI-SVM in repeated uses.

Previous studies adopted deep learning technologies for
EMG pattern recognition (Ameri et al., 2020). However, it
is difficult to collect a huge amount of data from a single
subject to train a considerably deep network. If deep learning
techniques are applied to the classification of a small sample
data set, overfitting will occur. Establishing a large data set
with data from different subjects or using a few-shot learning
method can address this problem; however, this decreases
the performance of the classification model and increases the
difficulty of training the model. In this study, we trained TI-
SVM with SFS on a small data set for each subject and achieved
a considerable performance that outperformed CNN with fine-
tuning.

CONCLUSION

In this study, we optimized the feature selection and classification
methods in the EMG pattern recognition scheme to develop a
suitable scheme that combines the TI-SVM model with the SFS
method to improve the robustness of the scheme in repeated
uses. The developed scheme not only maintained its classification
accuracy in different uses, but also provided a considerable
real-time performance. The method also demonstrated good

performance on a small EMG data set, which implies that a user
need not collect voluminous EMG data to train a classification
model. Based on the findings of our study, TrAdaBoost
significantly improves the performance of I-SVM. Thus, we
speculate that transfer learning can also improve the performance
of supervised adaptive classification methods using deep learning
methods. Nevertheless, in this study, we ignored the influence
of long-term use without electrode shifting and different muscle
contraction levels on the EMG pattern recognition scheme. Thus,
in a future work, the effectiveness of the proposed scheme will be
verified under the influence of combined factors.
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