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Chimeric antigen receptor (CAR)-T cell therapy has become an important method for the
treatment of hematological tumors. Lentiviruses are commonly used gene transfer vectors
for preparing CAR-T cells, and the conditions for preparing CAR-T cells vary greatly. This
study reported for the first time the influence of differences in infection temperature on the
phenotype and function of produced CAR-T cells. Our results show that infection at 4
degrees produces the highest CAR-positive rate of T cells, infection at 37 degrees
produces the fastest proliferation in CAR-T cells, and infection at 32 degrees produces
CAR-T cells with the greatest proportion of naive cells and the lowest expression of
immune checkpoints. Therefore, infection at 32 degrees is recommended to prepare
CAR-T cells. CAR-T cells derived from infection at 32 degrees seem to have a balance
between function and phenotype. Importantly, they have increased oncolytic ability. This
research will help optimize the generation of CAR-T cells and improve the quality of CAR-T
cell products.
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INTRODUCTION

Chimeric antigen receptor (CAR)-T cell therapy is a kind of adoptive immunotherapy that uses
genetic engineering to express one or more specific chimeric antigen receptors (CARs) on T cells (1–
3). CARs are artificial fusion proteins consisting of an antigen-recognition region connected to a
signal element through a hinge and a transmembrane region (4). Antigen recognition regions are
usually single-chain variable fragments (scFvs) derived from antibodies. The signal domain includes
the costimulatory domain from proteins such as CD28 and 4-1BB, and the activation domain is
usually from CD3z. CAR-T cells can perform non-MHC-dependent antigen recognition to
effectively bypass the tumor’s main immune escape mechanism, the downregulation of MHC
molecules, thereby specifically killing tumor cells.

The introduction of CAR-T cell immunotherapy has been a milestone in tumor immunotherapy
in recent years, especially in the immunotherapy of hematological tumors (5–7). CAR-T cells
targeting CD19 and BCMA have shown significant antitumor effects in the treatment of relapsed/
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refractory (r/r) B cell tumors and multiple myeloma. Four anti-
CD19 CAR-T cell products (tisagenlecleucel, axicabtagene
ciloleucel, brexucabtagene autoleucel and breyanzi) have been
approved by the FDA as drugs since 2017 (5). One anti-BCMA
CAR T-cell product (idecabtagene vicleucel, bb2121, ide-cel) is
likely to be approved by FDA (6, 7).

Virus-mediated gene transfer is widely used in the
preparation of CAR-T cells because viral vectors can effectively
transfer genes to a variety of cell types and can stably integrate
into their genomes, leading to long-term gene expression, which
persists in progeny cells (8). However, the infection conditions
for preparing CAR-T cells from viruses vary greatly (9–20).
Tisagenlecleucel uses a 37-degree infection (16), breyanzi and
axicabtagene ciloleucel use a 32-degree infection (15, 21), and
some studies have used room temperature or a 4-degree infection
to produce CAR-T cells with viral vectors (12, 13, 17, 20). As seen
above, temperature is a very important infection condition.
Studies with retroviruses have shown that because the virus
has a longer half-life at 32 degrees, 32 degrees is more efficient
than 37 degrees for infecting cells (14, 18). Other studies have
shown that the culture temperature has an impact on the
productivity of mammalian cells and the stability of the virus
(22–24). However, the optimal infection temperature in
lentiviruses, which are widely used for gene delivery in the
preparation of CAR-T cells, has not yet been studied. Here, we
used different temperatures to observe the influence of the
temperature used during lentiviral infection of T cells on the
preparation of CAR-T cells; these experiments will help to
determine the optimal infection temperature to improve the
quality of CAR-T cell products.
MATERIALS AND METHOD

Cell Lines and Primary Cells
HEK-293T (ATCC) cells were grown in Dulbecco’s modified
Eagle medium (DMEM; Gibco) supplemented with 10% fetal
calf serum (FCS; Biological Industries). NALM-6 [peripheral
blood B cell precursor leukemia cells (acute lymphocytic
leukemia (ALL)), CD19+] and MOLM-13 [human acute
myeloid leukemia cells (AML), CD123+] cells were grown in
RPMI 1640 medium supplemented with 10% FCS (Gibco). All cell
lines were cultured at 37 degrees, 5% CO2 and 95% humidity for
up to 1 month. The cells were divided every 2 to 3 days, and the
number of passages did not exceed 20. Peripheral blood samples
were obtained from healthy donors (n = 3) in The Tianjin First
Central Hospital after informed consent was obtained according to
the institutional guidelines. Peripheral blood mononuclear cells
(PBMNCs) were enriched through a Ficoll Hypaque gradient.

Transgene Constructs
The scFv targeting CD19 originated from the FMC63 clone. The
scFv targeting CD123 originated from the 7G3 clone. The CAR
vectors contained the scFv and human 4-1BB and CD3z
signaling domains, which were subcloned into the pCDH-
MND-MCS-T2A-Puro lentiviral plasmid vector. The CAR
Frontiers in Immunology | www.frontiersin.org 2
sequence was preceded by the RQR8 tag separated by a short
T2A peptide for detection (25).

Lentivirus Production
The preparation of the lentivirus was performed according to the
manufacturer’s instructions (GeneCopoeia). Briefly, two days
before transfection, plate HEK-293T lentiviral packaging cells
in a 10-cm dish in 10 ml of DMEM supplemented with 10% heat-
inactivated fetal bovine serum so that the cells are 70–80%
confluent at the moment of transfection. In a sterile
polypropylene tube, dilute 2.5 µg of lentiviral expression
plasmid and 5.0 µl (0.5 µg/µl) of Lenti-Pac HIV mix into 200
µl of Opti-MEM® I (Invitrogen). In a separate tube, dilute 15 µl
of EndoFectin Lenti into 200 µl of Opti-MEM I. Add diluted
EndoFectin Lenti reagent drop-wise to the DNA solution while
gently vortexing the DNA-containing tube. Incubate the mixture
for 10–25 minutes at room temperature to allow the DNA-
EndoFectin complex to form. Add the complex directly to each
dish. Replace the overnight culture medium with fresh DMEM
medium supplemented with 2–5% heat-inactivated fetal bovine
serum. Add 1/500 volume of the TiterBoost reagent to the culture
medium. Collect the pseudovirus-containing culture medium in
sterile capped tubes 48 hours post transfection and centrifuge the
tubes at 500g for 10 minutes to get rid of cell debris. Following
centrifugation, filter the supernatant through 0.45 µm
polyethersulfone low protein-binding filters. Viral supernatants
were concentrated using ultracentrifugation at 50,000 for 2 hr
30 min. Virus-containing pellets were resuspended in complete
X-Vivo15 media and stored at −80°C until use.

Lentivirus Titration
The number of transducing units (TU/mL) was determined by
the limiting dilution method. Briefly, HEK-293T cells were
seeded 12 hr before transduction. Then, 1:10 dilutions of the
viral supernatant were prepared and added on top of the cells in
complete DMEM + 5 mg/mL Polybrene. Cells were trypsinyzed
72 hr later and labeled with the QBEND-10 monoclonal CD34
antibody (Abcam) before being analyzed by flow cytometry.
A dilution corresponding to 2%–20% of positive cells was used
to calculate viral titer.

Production of CAR-T Cells
CD3+ T cells were separated from PBMCs using CD3
immunomagnetic beads (#130-097-043, Miltenyi Biotec,
Germany) on day 1. T cells were amplified using CD3/CD28
stimulation beads (#11131D, Thermo Fisher Scientific) and IL-2
(100 IU/mL; Miltenyi Biotec) in X-VIVO 15 Cell Medium
(Lonza). Cells were then activated and expanded for 48 hours
were transduced 2 hr later with the lentivirus (multiplicity of
infection is 10) by different temperatures incubation in the
presence of polybrene (Sigma) at 8 mg/mL. Then, the cells
continue to expand at 37 degrees at an appropriate
concentration (0.5-1×106 cells/ml). The transduction efficiency
was determined 3 days after transduction. Generally, the T cells
were engineered via 9-12 days of manufacturing to express a
CD19-specific CAR or CD123-specific CAR.
April 2021 | Volume 12 | Article 638907
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Detection of CAR Expression by
Transduced T Cells
For each analyzed T cell culture, one sample of cells was stained
with Alexa-Fluor 647-labeled polyclonal goat anti-mouse IgG (H
+L) antibodies (Affinity) to detect CAR-T cells. In addition, we also
detected the expression of the CAR with the QBEND-10
monoclonal CD34 antibody (Abcam) labeled with an RQR8 tag.
Subsequently, all cells were stained with fluorescein isothiocyanate
(FITC)-labeled anti-CD3 antibodies (Abcam).

Immunophenotyping
Anti-human monoclonal antibodies against CD3 (Biolegend), CD4
(Biolegend), CD8 (Biolegend), CD34 (Abcam), CD45RO (Biolegend),
CD62L (Biolegend), PD1 (Biolegend), LAG3 (Biolegend), and TIM3
(Biolegend) were used for immunophenotypic analysis. All flow
cytometry analyses of stained cells were performed with a Coulter
Altra flow cytometer equipped with CytExpert software
(Beckman Coulter).

Assessment of Cytokines
Toxicities were evaluated relative to a baseline assessment
conducted before CAR-T cell infusion. The concentrations of
serum inflammatory markers, including IL-2, IL-4, IL-6, IL-10,
TNF-a, IFN-g and GM-CSF were evaluated by Luminex assay
according to the manufacturer’s instructions.

Cytotoxicity Determination
CD19+ NALM-6 cells and CD123+ MOLM-13 cell lines were
used to determine the cytotoxic activity of CD19 CAR-T and
CD123 CAR-T cells, respectively. CAR expression was detected
72 hours after transduction by flow cytometry, and CAR-T cell
cytotoxic activity was evaluated the next day. NALM-6 CAR-T
cells were previously labeled with CellTrace CFSE (Invitrogen)
according to the manufacturer’s instructions. To compensate for
the change in transduction efficiency, the effector cell population
was normalized to the absolute number of T cells by adding
untransduced T cells. NALM-6 cells without effector cells were
used as a control. After 24 hours of incubation, the cell mixture
was stained to visualize dead cells using the fixable viability dye
eFluor 780 (Thermo Fisher Scientific) according to the
manufacturer’s instructions and analyzed by flow cytometry.
The percentage of dead target cells was determined using the
CFSE-positive and viability dye-positive cell population (19).

In Vivo Leukemia Xenograft Study
Male NSG mice (Sipeifu) aged 5-6 weeks were injected
intravenously with 2×106 luciferase-expressing NALM-6 cells
cultured in our laboratory. Three days later, 5×106 CD19 CAR-T
cells or uninfected T cells were injected into the mice through the
tail vein. To monitor tumor growth, each mouse was injected
intraperitoneally with 3 mg of D-luciferin (Sigma, US) at the
designated time point, and the mice were imaged using an IVIS
Imager 10 minutes later.

Statistical Analysis
The results were analyzed with the GraphPad Prism program
(GraphPad Software). Data that obeyed a normal distribution are
Frontiers in Immunology | www.frontiersin.org 3
presented as the mean ± standard deviation (SD), and multiple
group comparisons were performed by using one-way analysis of
variance (ANOVA), whereas data with a nonnormal distribution
are shown as the median and quartiles and were compared by the
Kruskal-Wallis test. The survival curves were analyzed using the
Kaplan-Meier method with the log-rank test. P<0.05 was
considered statistically significant.
RESULT

Successful Preparation of CAR-T Cells
CD19 is expressed on the surface of B cell tumors. The three
CAR-T cell drugs currently on the market all target CD19.
Therefore, research on CD19 CAR-T cells is very important.
Our CAR structure contains the FMC63 single-chain antibody,
the CD8 hinge region and transmembrane region, the 41-BB
costimulatory signal and the CD3z signal domain. The structure
is similar to the structures of Novartis products (Figure 1A). To
obtain more reliable results, we also constructed a CAR vector
targeting the CD123 molecule (Figure 1B). CD123 is mainly
expressed on the surface of myeloid cells and targets AML cells.
We also added the RQR8 tag sequence to detect the expression of
the CAR. The tag can be labeled with the QBEND-10
monoclonal CD34 antibody. Through lentivirus-mediated gene
transfer, the CAR fusion protein was successfully expressed on
the surface of activated T cells, and CD19 CAR-T and CD123
CAR-T cells with high infection rates were obtained (Figures 1C,
D). The produced CD19 CAR-T cells and CD19-positive
NALM-6 cells were coincubated at different ratios. Compared
with uninfected T cells, CD19 CAR-T cells could significantly
lyse NALM-6 cells (Figure 1E). Detecting the cytokines in the
supernatant showed that the levels of IFN-g, IL-6, IL-2, TNFa
and other cytokines in the culture medium after CD19 CAR-T
cells and target cells were coincubated were significantly
increased (Figure 1F). We coincubated CD123 CAR-T cells
with the CD123-positive MOLM-13 AML cell line, detected
cytotoxicity and cytokines, and obtained similar results to
those for the CD19 CAR-T cells (Figures 1G, H). The above
data prove that our CAR-T cells targeting CD19 and CD123 were
successfully produced, and these CAR-T cells could kill specific
target cells and secrete abundant cytokines.

Infection Temperature Can Affect the
Proliferation and Infection Efficiency of
Produced CAR-T Cells
Many studies have found that the temperature during virus
infection affects the activity and proliferation of host cells. To
explore the impact on CAR-T cells, we selected several
commonly used temperatures in previous studies, namely, 4
degrees, 25 degrees, 32 degrees, and 37 degrees, for our
experiments. Two hours after T cells were activated by
lentivirus infection, they were placed in an incubator for
normal culture, and the cells were counted on the 3rd, 6th,
and 9th days of culture. Compared with uninfected T cells, CD19
CAR-T cells and CD123 CAR-T cells infected with virus had
April 2021 | Volume 12 | Article 638907
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obviously lower cell viability and proliferation rates (Figures
2A–D). The proliferation rate of the 37-degree-infection group
was significantly higher than the proliferation rates of the
infection groups employing other temperatures, and the 4-
degree-infection group had the lowest proliferation rate.
Compared with uninfected T cells, CAR-T cells have lower cell
activity. There is no significant difference in cell viability among
Frontiers in Immunology | www.frontiersin.org 4
the other temperature groups. Infection efficiency is a very
important point in the preparation of CAR-T cells. High
infection efficiency can save costs and time for cell culture in
vitro and improve the success rate of treatment. We used flow
cytometry to detect the CD19 CAR-T cell infection efficiency.
Our results showed that the proportion of CAR-positive T cells
in the 4-degree-infection group was higher than those in the
A

B

C D

E

G H

F

FIGURE 1 | Successful production of well-functioning CAR-T cells (A) CD19 CAR vector schematic diagram. HTM is the CD8 hinge and transmembrane region.
(B) CD123 CAR vector schematic diagram. (C) Anti-CD34 antibody and anti-IgG (H+L) antibody labeling of CAR-T cells, and detection of the infection rate of CD19
CAR-T cells by flow cytometry. (D) Anti-CD34 antibody and anti-IgG (H+L) antibody labeling of CAR-T cells, and detection of the infection efficiency of CD123 CAR-T
cells by flow cytometry. (E) Cytotoxicity of CD19 CAR-T cells and CD19-positive NALM-6 cells coincubated at different effector:target (E:T) ratios for 24 hours.
(F) Coincubation of CD19 CAR-T cells and CD19-positive NALM-6 cells at a 1:1 ratio, and detection of the secretion levels of IL-2, IL-4, IL-6, IL-10, IFN-g and TNFa
in the supernatant. (G) Cytotoxicity of CD123 CAR-T cells and CD123-positive MOLM-13 cells coincubated at different E:T ratios for 24 hours. (H) Coincubation of
CD123 CAR-T cells and CD123-positive MOLM-13 cells at a 1:1 ratio, and detection of the secretion levels of IL-2, IL-4, IL-6, IL-10, IFN-g and TNFa in the
supernatant. Three independent experiments were conducted. Mean ± SD. ***p < 0.001.
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other groups, which showed similar proportions (Figure 2E).
The same result was also verified in CD123 CAR-T cells (Figure
2F). In addition, we also detected the secretion of cytokines in the
culture medium on the 6th day of culture. Compared with that of
uninfected T cells, CD19 CAR-T cell culture media has
significantly higher levels of secreted cytokines. There was no
significant difference in cytokine levels among the other
temperature groups (Supplement 1A–F).

Infection Temperature Can Affect CAR-T
Cell Phenotype
Previous reports have shown that the subpopulation distribution
of CAR-T cells can impact the therapeutic effect of CAR-T cells.
CAR-T cell products with a high proportion of naive T cells have
better therapeutic effects after infusion than those with a low
proportion of naïve T cells (26–28). We used flow cytometry to
detect the proportion of naive cells (CD62L+CD45RO-) in the
CAR-T cells. Compared with uninfected T cells, T cells infected
with virus had an obviously lower proportion of naive T cells.
The 32-degree- and 37-degree-infection groups had higher
proportions of naive T cells, in terms of both CD8-positive T
Frontiers in Immunology | www.frontiersin.org 5
cells or CD4-positive cells, than the other infection groups
(Figures 3A–C). Immune checkpoint expression is an
important indicator for evaluating the quality of CAR-T cell
products. CAR-T cells with lower expression of immune
checkpoints have better therapeutic effects than those with
higher expression of immune checkpoints. We detected the
expression of PD1, TIM3 and LAG3 on the surface of CAR-T
cells (29–32). Our results showed that compared with uninfected
T cells, T cells infected with virus had a significantly higher
percentage of immune checkpoint expression. There was no
significant difference in the expression of immune checkpoints
between different temperature groups, but a lower expression
trend was observed in the 23-degree group and the 32-degree
group (Figures 3D–F). These results were also reproduced in
CD123 CAR-T cells (Supplement 2A–F).

32-Degree Infection Generates CAR-T
Cells With the Best Killing Activity and
Cytokine Secretion
The ultimate function of CAR-T cells lies in their oncolytic
ability. Therefore, we coincubated CAR-T cells from different
A B

C D

E F

FIGURE 2 | Infection temperature can affect the proliferation and infection efficiency of CAR-T cells (A, B) The proportion of living CD19 and CD123 CAR-T cells
produced at different infection temperatures on the first day, the third day, the sixth day, and the ninth day after infection. (C, D) The number of living CD19 and
CD123 CAR-T cells produced at different infection temperatures on the first day, the third day, the sixth day, and the ninth day after infection. (E, F) The infection
efficiency of CD19 and CD123 CAR-T cells produced at different infection temperatures. Three independent experiments were conducted. Mean ± SD. *p < 0.05,
**p < 0.01, ***p < 0.001.
April 2021 | Volume 12 | Article 638907

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jin et al. Temperature Affects CAR-T Cells
temperature groups and target tumor cells at a ratio of 1:1 and
then used flow cytometry to detect cytotoxicity. Compared
with uninfected T cells, all CAR-T cells killed tumor cells
significantly. The results showed that the CAR-T cells infected
at 32 degrees had the strongest killing activity of the CAR-T
cell groups infected at the 4 different temperatures (Figure
4A). The same result was also verified in CD123 CAR-T cells
(Figure 4E). Cytokine storm is one of the problems faced by
CAR-T cell therapy. To detect the ability of the CAR-T cells to
induce cytokine release syndrome (CRS)-related toxicity, we
used flow cytometry to detect the expression levels of related
cytokines. Our results showed that CD19 CAR-T cells had
significantly higher levels of cytokine secretion than
uninfected T cells. Compared with the CAR-T cells
generated at other temperatures, the CAR-T cells infected at
32 degrees secreted more cytokines, especially IFN-g (Figures
4B–D and Supplement 3A–D). The same result was also
Frontiers in Immunology | www.frontiersin.org 6
verified in CD123 CAR-T cells (Figures 4F–H and
Supplement 3E–H).

The Effect of Infection Temperature on
CAR-T Cells Is Not Clearly Reflected in the
Mouse Tumor Model
To further verify the results of our in vitro experiments, we injected
mice with luciferase-expressing NALM-6 cells through the tail vein.
On the third day after the tumor cells were injected, we injected the
produced CAR-T cells into the mice through the tail vein. In vivo
imaging technology was used to detect tumor burden in mice at
specific time points. Our results show that compared with the
uninfected T cell group, the group ofmice injected with CAR-T cells
had a significantly lower tumor burden and longer survival time
(Figures 5A–C). The lack of obvious differences between mice
injected with CAR-T cells from each temperature groupmay be due
to the considerable heterogeneity between mice.
A B

C D

E F

FIGURE 3 | Infection temperature can affect the proportions of CD19 CAR-T cell subsets and the expression of immune checkpoints (A–C) The proportion of naive
T cells among CD3-positive, CD8-positive and CD4-positive CD19 CAR-T cells generated at different infection temperatures. (D–F) The expression of PD1, TIM3,
and LAG3 on the surface of CD19 CAR-T cells generated at different infection temperatures. Three independent experiments were conducted. Mean ± SD.
*p < 0.05, **p < 0.01.
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DISCUSSION

Recently, CAR-T cell therapy has become an important method
for the treatment of hematological malignancies. There are a
Frontiers in Immunology | www.frontiersin.org 7
variety of methods available for gene delivery in CAR-T cell
preparation, including lentivirus, retrovirus, mRNA, transposon,
and sleeping beauty methods. Lentiviruses have a wide host
range, infect both dividing and nondividing cells, and can
A B

C D

E

G
H

F

FIGURE 4 | 32-Degree infection generates CAR-T cells with optimal cytotoxicity and cytokine secretion (A–D) Determination of the cytotoxicity of CD19 CAR-T cells
generated at different infection temperatures. CD19 CAR-T cells were coincubated with CD19-positive NALM-6 cells for 24 hours, and the concentrations of IFN-g,
IL-6 and GM-CSF in the culture supernatant were detected. (E–H) Determination of the cytotoxicity of CD123 CAR-T cells generated at different infection
temperatures. CD19 CAR-T cells were coincubated with CD123-positive MOLM-13 cells for 24 hours, and the concentrations of IFN-g, IL-6 and GM-CSF in the
culture supernatant were detected. Three independent experiments were conducted. Mean ± SD. *p < 0.05, **p< 0.01, ***p < 0.001.
April 2021 | Volume 12 | Article 638907

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jin et al. Temperature Affects CAR-T Cells
persistently express the delivered genes. Therefore, lentiviruses
are widely used as gene transfer vectors in the production of
CAR-T cells. The conditions under which the lentivirus infect T
cells in the production of CAR-T cells are a key factor. Here, we
studied the effects of different infection temperatures on the
preparation of CAR-T cells. Our results recommend using 32-
degree infection because the CAR-T cells produced by 32-degree
infection seem to have a balance between function
and phenotype.

To confirm our results, we constructed two CAR structures
that target different antigens. First, we successfully produced
CAR-T cells by infecting activated T cells with lentivirus. Cell
function verification was then carried out, confirming that both
types of CAR-T cells could lyse tumor cells and secrete sufficient
cytokines. It is worth noting that our CD19 CAR gene sequence
was similar to the sequence used in tisagenlecleucel (16), which
was approved by the FDA in 2017, suggesting that our CD19
CAR-T cell may be suitable for practical applications.

Cell viability and proliferation capacity are important quality
parameters for CAR-T cell products. Our test results show that
cells infected at 37 degrees had the highest proliferation capacity,
which may be because the 37-degree environment is more
conducive to cell growth. However, CAR-T cells infected at 4
degrees had the highest infection efficiency, which may be related
to the fact that a low temperature is beneficial to the survival of
the virus.

The proportions of cell subsets within CAR-T cell
populations and checkpoint expression levels have now
become important indicators for measuring the function of
CAR-T cells. Previous studies have confirmed that a large
Frontiers in Immunology | www.frontiersin.org 8
proportion of naive T cells and low expression of immune
checkpoints are related to improved prognosis of CAR-T cell
therapy (26–32). We used flow cytometry to detect the
distribution of cell subsets within CAR-T cells and checkpoint
expression levels. In the 32-degree- and 37-degree-infection
groups, the proportions of naive cells were significantly higher
than those in the 4-degree- and 23-degree-infection groups. The
checkpoint expression level in the 25-degree- and 32-degree-
infection groups was relatively low, but there was no statistical
difference. The reason why the 4-degree-infection group had the
lowest proportion of naive cells remains to be further explored.
Next, we further verified the functional differences of CAR-T
cells generated at different infection temperatures through
cytotoxicity and cytokine secretion analyses. Although CAR-T
cells generated at 4 degrees had a higher infection rate than CAR-
T cells generated at different temperatures, they did not show the
strongest cytotoxicity or secretion of cytokines when they were
incubated with target cells in vitro. This may be related to the
higher expression of immune checkpoints and the lower
proportion of naive cells in the CAR-T generated at degrees. In
addition, the CAR-T cells generated at 32 degrees had the
strongest cytotoxicity and greater cytokine secretion than those
generated at 4 degrees. Later, we conducted an in vivo model
study, and the survival time and in vivo tumor burden of mice
injected with CAR-T cells from different infection temperature
groups were not significantly different. Reducing the
heterogeneity in tumor burden in the mouse model and
expanding the mouse sample size may help to detect differences.

Novartis and Bristol Myers use lentiviruses to infect at 37
degrees and 32 degrees respectively to produce CAR-T cells (16,
A B

C

FIGURE 5 | Effect of infection temperature on CAR-T cells in a mouse tumor model (A) Mice were injected with luciferase-containing NALM-6 cells through the tail
vein. On the third day, the prepared CAR-T cells were injected into the mice through the tail vein. The tumor load in the mice was detected by in vivo imaging
technology on the 7th, 10th, 14th, 21st and 28th days. (n=5, each group gives a representative picture of 3 mice). (B) Quantitative graphs of tumor burden in each
group of mice at different time points are shown. (C) Survival of mice injected with uninfected T cells or CD19 CAR-T cells generated at different infection
temperatures. Mean ± SD. **p < 0.01.
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21), and Kite Pharma uses a 32-degree infection with gamma-
retrovirus to infect T cells (15). This article only studied the
infection temperature used for lentiviruses. Whether the optimal
temperature for T cell infection is similar between g-retroviruses
and lentiviruses, which belong to the Retroviridae family, needs
further research. Development of semi-automated devices that
can reduce the hands-on time and standardize the production of
clinical-grade CAR T-cells, such as CliniMACS Prodigy from
Miltenyi, is key to facilitate the development of CAR T-cell
therapies (33, 34). Our research is done in well plates or culture
flasks. Whether this view is consistent in semi-automatic
equipment remains to be studied. In summary, our results
report for the first time that temperature can affect the
function and phenotype of CAR-T cells produced by lentivirus
infection. We recommend using lentivirus to infect T cells at 32
degrees to produce CAR T cells. This research may provide an
important reference for the production of CAR-T cell products.
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