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Learning in a new environment is influenced by prior learning and experience. Correctly

applying a rule that maps a context to stimuli, actions, and outcomes enables faster

learning and better outcomes compared to relying on strategies for learning that are

ignorant of task structure. However, it is often difficult to know when and how to apply

learned rules in new contexts. In our study we explored how subjects employ different

strategies for learning the relationship between stimulus features and positive outcomes

in a probabilistic task context. We test the hypothesis that task naive subjects will

show enhanced learning of feature specific reward associations by switching to the

use of an abstract rule that associates stimuli by feature type and restricts selections

to that dimension. To test this hypothesis we designed a decision making task where

subjects receive probabilistic feedback following choices between pairs of stimuli. In

the task, trials are grouped in two contexts by blocks, where in one type of block

there is no unique relationship between a specific feature dimension (stimulus shape

or color) and positive outcomes, and following an un-cued transition, alternating blocks

have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects

(n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model.

Supporting the prediction of the model mechanism these subjects showed significantly

enhanced performance in feature-reward blocks, and rapidly switched their choice

strategy to using abstract feature rules when reward contingencies changed. Choice

behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement

learning models representing strategies that do not benefit from applying previously

learned rules. In summary, these results show that untrained subjects are capable of

flexibly shifting between behavioral rules by leveraging simple model-free reinforcement

learning and context-specific selections to drive responses.
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INTRODUCTION

Successful behavior in new environments benefits from
leveraging learning from previous experience in the form of
abstract rules—the mapping of contexts, stimuli, actions and
outcomes—even though it is often difficult to know which rule
is relevant to the current context (Miller, 2000; Gershman et al.,
2010a; Buschman et al., 2012; Chumbley et al., 2012; Collins
and Frank, 2013; Collins et al., 2014). One of the hallmarks of
human behavior is that in new environments with unknown
relationships between stimuli and outcomes, subjects generalize
from previous experiences (Seger and Peterson, 2013; Collins
et al., 2014), even when expectations about the value of stimuli
for predicting reward may not be beneficial (Anderson and
Yantis, 2013; Shteingart and Loewenstein, 2014). Fortunately,
there is significant continuity across our every-day decision
making contexts that enables positive transfer of previously
learned rules, and in fact, humans work very hard to pattern our
living and working environments in such a way as to provide
continuity with contextual cues indicating the relevant rule to
apply (Gershman et al., 2010b; Collins et al., 2014) . For example,
objects colored bright red often indicate emergency response
equipment, and materials and objects with specific shapes,
like octogons, indicate specific information about appropriate
responses, like stopping your vehicle. However, people do not
always apply rules when it is beneficial to do so. This could be
because it is unclear which rule to apply or that an appropriate
rule for this context has not been learned.

In this study we set out to test if naive and uncued
subjects will spontaneously apply a flexible rule for learning
stimulus-feature reward associations and how this behavior can
be captured in formal reinforcement learning frameworks. In
particular, we explored how subjects leverage an abstract rule
that maps stimulus color and shape, independently of each other,
to choice outcomes in order to improve the local learning of
associations between stimuli and feedback. We hypothesized that
untrained subjects exploit previous learning by spontaneously
assuming that the feature dimensions of shape and color would
be relevant for solving the task and that this would translate
into improved performance through a contextually structured
selection process.

It is not clear how to formalize the flexible application
of behavioral rules in the reinforcement learning (RL)
model framework. One solution is to adapt hierarchical RL
methods (Collins and Frank, 2013). There is considerable
similarity between applying pre-learned rules and hierarchical
learning strategies. Structuring stimulus selection hierarchically
incorporates expectations about the relevance of stimuli in terms
of initiation conditions, the conditions under which an alternate
selection sequence is triggered (Botvinick et al., 2009; Badre and
Frank, 2012; Botvinick, 2012). Previous work on hierarchical RL
has focused on the benefits of temporally abstract actions, where
instead of selecting from among available primitive actions; the
model can select a behavioral subroutine that employs a sequence
of actions. Extending this approach, we developed a model that
hierarchically structures the stimulus selection process among
competing values for stimulus features. In the default scenario,

basic model-free RL learns the expected value of features of
visual stimuli and stochastically selects among the values of
available stimulus features to receive outcomes (Donoso et al.,
2014). Following the hypothesis that subjects have learned from
pre-task experience that the feature categories of shape and
color are often relevant for local learning, the model compares
the total expected value for stimulus features of each type, and
when the difference between these total group values crosses
a threshold an alternate selection process begins and stimulus
selection acts only on the learned value of the relevant subset
of features, i.e., the feature type (shape or color) that is greatest
(see Materials and Methods). The threshold is an independent
model parameter fit to each subject that reflects the confidence
of the model in determining a feature-value context. We believe
that this adaptation of hierarchical RL represents a simple and
intuitive framework for capturing the natural learning processes
of untrained subjects in an operant learning environment, and
provides testable implications for future research into the neural
underpinnings of these processes.

MATERIALS AND METHODS

Task Design
All experimental procedures were approved by York University’s
Ethics Review Board. Thirty seven participants from the York
University community participated in the experiment (age
range 19-35, 26/11 male/female), and all gave their informed
consent. Participants were offered an incentive for participating
in the form of a gift card valued at $10 CAD. Participants
performed the experiment on a touch sensitive Sony Vaio
laptop running Windows 8, and Matlab (The Mathworks
Inc.) with the Psychophysics toolbox (www.mathworks.com;
www.psychtoolbox.org) and custom written Matlab scripts
controlling the experiment. The laptop had a 15′′ capacitive
touch sensitive monitor with a resolution of 1920 × 1080
pixels and a refresh rate of 60 Hz. Stimuli were placed at
4.6 degrees from the central fixation point. The laptop was
positioned comfortably, ∼50–70 cm, in front of subjects to ease
their holding and touching responses. The median temporal
delay of the touchscreen responses were in the order of 997 ms
(± 26 ms SEM). At the start of the experiment, participants
were instructed to use the index finger of their dominant
hand to touch one of the two presented stimuli, then use
the same finger to hold the spacebar to receive feedback,
and to make choices that maximized the number of positive
feedbacks.

A trial began with the presentation of a small cross in
the center of the screen (Figure 1A). After 300–600 ms two
stimuli appeared in two of three possible positions. The location
of stimuli was randomly chosen from canonical locations
equidistant from each other and the central cross. After another
1500 ms the central cross was removed and subjects were free
to select a stimulus. If subjects selected a target before the
removal of the fixation cross, the stimuli were removed and
a message was displayed reminding the subject to wait for
the removal of the cross. This message was displayed for a
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FIGURE 1 | Stimulus value learning task. (A) Subjects learned by trial and error that stimuli and stimulus features are linked to the likelihood of receiving positive

outcomes. (B) Stimulus reward associations were structured either such that fixed pairs of colors and shapes (in sets of three) had a probabilistic relationship with

reward (object blocks) or such that stimulus features were not fixed to each other and only one feature type (either shape or color) was linked to reward. (C) For the

first eight blocks, feature blocks followed object blocks using the same set of shapes and colors as the preceding object block, but with new feature-reward

associations. The last pair of blocks flipped this pattern where a feature reward block (either type 1 or 2, randomly selected) precedes an object block.

waiting period of 500 ms before a new trial began. Following
the selection of a stimulus, the stimuli were removed and a
message appeared on the screen informing subjects to hold
the spacebar in order to receive feedback. Feedback was not
given until the spacebar was depressed for 1000 ms, and was
either a gold star in the middle of the screen or a message

saying “sorry” when the schedule associated with that stimulus
determined it was either a rewarded or an unrewarded trial
(see below). Gold stars awarded to the subject accumulated
at the bottom of the screen, indicating to the subjects their
performance thus far. After the last trial of the session was
completed, a screen was displayed which thanked the subject
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for participation and provided a final count of gold stars
received.

Subjects made choices on stimuli that were combinations of
shapes and colors. Each object block began with a new set of
three shapes and three colors drawn from a set of six, and all
stimuli for that block were made from combinations of these
three shapes and colors (Figure 1B). In object blocks, shape-color
pairs remain fixed throughout the block so that there is only
the unique stimuli appearing in the block. Feature blocks that
followed object blocks used the same set of shapes and colors
that appeared in the previous block, but now stimuli could be
composed of any combination of color and shape, so that there
were nine possible unique stimuli appearing in the block.

The task included a hidden probabilistic reward schedule that
assigned a probability of positive outcome on each trial to the two
available stimuli (Figure 1B - right panels). In object blocks each
stimulus, a unique color-shape pair, is assigned a probability of
positive outcome, with one being 0%, one 50% and one 100%.
In feature blocks, outcome probabilities are associated with a
specific feature dimension, either shape or color. In a color-
feature block, one color is predictive of positive outcomes 0%, one
50%, and one 100%. Shape-feature blocks work the same as color
feature blocks except that probabilities are linked to stimulus
shape instead of color. In feature blocks, the non-relevant feature
is only spuriously related to outcomes because of the randomized
relationship between colors and shapes in these blocks. Receiving
a positive outcome for a choice on color A and shape B in a
shape-feature block will not tell you anything about the likelihood
of receiving a positive outcome on the next trial where color A
appears. In both feature and object blocks, stimulus location was
selected randomly and was never predictive of outcomes.

Subjects performed a stereotypical sequence of blocks
(Figure 1C). An experimental session began with an object block,
followed by a feature block, where the relevant feature was
selected at random, then another object block and feature block,
where this feature is the alternate one from the first feature block.
This sequence continued until the ninth block which reversed
the object-feature order, and the relevant feature was randomly
selected, with the final block being an object block.

Blocks ranged in length from 15 to 25 trials with the number
of trials in a block determined by a performance criterion. If the
subject had made 11 out of the first 15 choices correctly then the
block ended at trial 15. Trials continued until either 80% of the
last 10 trials were correct or the subject reached 25 trials. Average
block length across subjects was 17.8 (SE ± 2.1). In total subjects
performed 7106 trials, of which 3964 trials that were from blocks
showing learning were included in analysis.

Behavioral Data Analysis
Data Analysis was done with custom written Matlab scripts (The
Mathworks Inc.,). Learning in a block was determined following
the method of Wilson and Niv (2011), whereby if the slope of
the average performance line from the beginning to the end of
the block was positive and was above chance performance (50%
correct) at the end, the block was considered to show learning.

Correct choices were determined by the selection of the
stimulus with the higher probability of a positive outcome,

independently of whether a positive outcome was received. On
trials where the 100% likely stimulus appeared, it was always the
correct stimulus to select, even if selecting the 50% likely stimulus
produced a positive outcome. Likewise on trials where the 0%
likely stimulus appeared, it was always the incorrect stimulus to
select, even if selecting the 50% likely stimulus did not produce a
positive outcome.

Reaction times were quantified from the time when the
fixation cross was removed until the time when the screen was
touched. If the subject touched the screen before the fixation cross
was removed the trial was declared an “early response” and was
not included in further analysis.

The generalized linear model regression was performed by
using (1) the block type or (2) the block number (from 1
to 10), against the mean proportion of correct choices in the
whole block of trials, including those blocks that did not show
learning overall, in order to determine if block types or repeated
exposure to the task over time was predictive of performance.
This regression produced a coefficient with a corresponding p-
value indicating whether the beta-coefficient has a significant
predictive relationship with the average performance.

RL Model Algorithms
In the basic Q-Learning Rescorla Wagner RL model (QL Basic),
the value of any predictor of reward (stimulus feature, Qi)
is updated on the next time step (trial) from its previous
value through the scaled reward-prediction error: The difference
between the binary reward outcome (R, either 0 or 1) and the
predictor itself (Skvortsova et al., 2014). The scaling factor (α)
represents the learning rate:

Qi(t+ 1) = Qi(t)+ α[R (t)−Qi(t)] (1—QL Basic)

Other than the QL Basic model, all other models implemented
a generalization of outcome information across all Q values.
Thus, all stimulus features associated with the selected stimulus
updated their value according to Equation (1). Stimulus features
associated with the other, non-selected stimulus were updated
according to:

Qi(t+ 1) = Qi(t)+ α[1− R (t)−Qi(t)] (2—QL Gen)

The second model, QL Gen, extended QL Basic with
generalization of outcome information across all Qs for
features appearing on that trial and no other changes. In the
third model, QL Decay, feature values were updated when they
were associated with the selected stimulus features in the same
way as QL Basic and QL Gen, but all non-selected features had
their associated values decay as a function of time governed by
the rate of decay (τ ) according to:

Qi(t+ 1) = Qi(t)+ α[1− R (t)−Qi(t)]
∗τ (3—QL Decay)

The fourth model, QL GainLoss, employed the same framework
as QL Gen, but applied a different learning rate to positive and
negative outcomes−αG vs. αL.

Qi(t+ 1) = Qi(t)+ αG[R (t)−Qi(t)] ((4—QL GainLoss)
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Qi(t+ 1) = Qi(t)+ αL [1− R (t)−Qi(t)] (5—QL GainLoss)

We also created a model of the combination of all parameters
previously considered, including αG vs. αL,τ for rate of decay,
and generalization of outcome information across all Q values.
This model is referred to as QL Combined and functions
according to:

Qi(t+ 1) = Qi(t)+ αG[R (t)−Qi(t)]
∗τ (6—QL Combined)

Qi(t+ 1) = Qi(t)+ αL[1− R(t)−Qi(t)]
∗τ (7—QL Combined)

Stimulus feature values for all non-HRL models were non-
linearly transformed into choice probabilities according to the
Boltzmann equation:

Pi(t) = eβQi(t)/
∑

eβQj(t) (8)

Where β represents the inverse temperature and establishes the
strength of the non-linearity.

The Flexible Rule Selection model (FR_Sel) employs a selection
function that is an adaptation of the standard Boltzman
formulation. Rather than all available Qs competing for final
selection via participating as possible choice probabilities, FR_Sel
compares Q values across features by feature type, calculating the
difference between the sum of total values for each type. When
the difference between the total value for one feature type relative
to the other types moves past a threshold (λ), only that set of
values is used to compute choice probabilities according to the
equations below:

Pi(t) = eβQi(t)/
∑

e
βQsel(t) (9—FR Sel)

Where Qsel is the set of Qs such that:

Qsel >
∑

Qothers + λ (10—FR Sel. FR_Update)

The Flexible Rule Update model (FR_Update) uses the standard
Boltzman selection function but employs an update function that
restricts the updating of Q values. FR_Update compares Q values
by feature type in the same was as FR_Sel (Equation 10) but when
the difference between the total value for features by type exceeds
λ only the most valued feature values are updated, which takes
place according to the most successful non-hierarchical model,
QL_Combined.

Model Optimization
Models were optimized by performing a grid search across
the total parameter space for each free parameter, attempting
to minimize the ordinary least square distance between the
probability associated with selecting the correct stimulus and the
observed likelihood of selecting the correct stimulus (Bergstra
and Bengio, 2012; Donoso et al., 2014; Balcarras et al., 2016)
Parameter values were constrained between 0 and 1, which is
typical based on the assumption that a value of 0 indicates that
term has no predictive power, and 1 indicates the term always

predicts the outcome. We did not consider a negative value for
lambda. On each trial the model was given the choice made by a
subject and transformed that into values according the learning
rate(s) of that model iteration. Values were converted into choice
probabilities according the Boltzman equation and the value of
β (Glimcher, 2011). The mean probability associated with the
correct choice was calculated for each trial from the block start
across all blocks. Values for free parameters were selected that
minimized the distance between this mean probability and the
mean likelihood of the subject making a correct choice.

To ensure that we fit the models to the most systematic
behavior, we bootstrapped 80% of the data from each subject 100
times for each set of parameter values, and calculated the mean
ordinary least squares (OLS) score across these 100 iterations.
Bootstrapping is a known method of estimating the variance
of model performance (Zucchini, 2000). Because the average
performance of the subjects differed across blocks separated by
type, we calculated the OLS not only pooled across all blocks,
but also for feature blocks and object blocks, which produced
a final result for each optimized model in three dimensional
OLS space. Models were compared by calculating the Euclidean
distance between the combined OLS score and the ideal score of
zero. To confirm that optimized model results reflect systematic
trends in the data and to correct for model complexity we
performed a cross-validation of the model predicted data for
each parameter set. Data was split in half by random selection
and repeated ten times for each parameter set to ensure that
results were consistent independent of data sampling. Using the
Wilcoxon-Mann-Whitney test, we found that for each parameter
set and each model across all subjects, there was no significant
difference in score between data groups (p > 0.05) compared to
the bootstrapped results.

Computing an OLS value between observed and predicted
data is not typical for this method of model-driven hypothesis
testing, as compared to the method of finding the maximum
LLE, however, the two are not incompatible. We also computed
the LLE for each model and each subject and compared the
maximum LLE for the best fitting parameter set to the OLS. We
found that similarly to what others have found (Donoso et al.,
2014) using LLE did not find a more preferable model than the
Flexible Rule Selection model (Figure 5).

We did not use statistical methods for model comparison,
such as the Akaike or Bayesian Information Criterion, because
(1) other studies have shown that using OLS is equally capable
of identifying the best model (Donoso et al., 2014), and (2) we
fit the models to subject performance split by block type, which
essentially creates two datasets, and information criterion scores
are not comparable across datasets (Zucchini, 2000).

RESULTS

Behavior
We show that average choice behavior across subjects is best
explained by a reinforcement learning model that identifies
the current task context and then applies a selection rule that
associates stimuli by feature type and restricts stimulus selection
to the relevant (i.e., context specific) stimulus feature. In each trial
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subjects were required to make choices between two stimuli on a
touchscreen and use visual feedback to learn the value of stimulus
features for predicting positive outcomes (Figure 1A).

Subjects (n = 37, all right handed, 26 male/11 female)
were able to successfully use feedback to learn the correct
stimulus outcome association in a majority of blocks. Using a
simple criterion for learning in a block with constant feature-
reward associations (See Materials and Methods, Wilson and
Niv, 2011), we found that the majority of subjects (n = 32/37)
showed learning in on average 158/265 (59.6%) blocks of trials
(Figure 2A). Five subjects performed at chance or showed no
increase in performance and were excluded from further analysis.
Of the 158 blocks in which subjects learned the reward associated
rule, 52.5% (83/158) were object blocks. In feature blocks, where
only shapes or colors are linked to reward probabilities, subjects
showed learning in 47.5% (75/158) of blocks (Figure 2A).

Across subjects and all blocks that showed learning, the
proportion of correct choices reached a peak of 82.9% (SE ±

0.03) on trial 15 (Figure 2B). When average performance was
split by block type we found that subjects were significantly
better in object blocks at trials early in the block compared to
feature blocks (Figure 2B). On trials nine and eleven, average
performance in object blocks significantly exceeded that in
feature blocks by 17.5, and 14.22%, respectively (p < 0.05
Mann-Whitney-Wilcoxon). However, at the end of the block,
subjects performed equally well in object and feature blocks
with identical proportions of 82.89% (SE ± 0.044) −82.86%
(SE ± 0.045) correct choices, respectively at trials 12–15 in a
block.

To test the hypothesis that performance in a block of trials
is related to a learning mechanism that is sensitive to block
type, we performed a generalized linear model regression of the
proportion of correct responses in a block against the block
type sequence, i.e., Object block 1, Feature Block 1, Object 2,
etc. We found that this produced a small but significant (p =

FIGURE 2 | Learning by block type and across blocks. (A) Average

performance (shading indicates SEM) across all learning blocks shows a

consistent increase in the proportion of correct responses for both block

types. The 50% line shows chance level performance. (B) Splitting average

performance by block type shows that performance in object blocks rises

faster and peaks sooner than in feature blocks, but that by trial 13

performance in feature blocks equals that of object blocks. Object blocks

show significantly better performance compared to feature blocks.

(Mann-Whitney-Wilcoxon, p < 0.05).

0.04, β = −0.15) regression coefficient, allowing us to reject
the null hypothesis, which indicates that performance is linked
to the block type sequence across all subjects. Performing the
same GLM by subjects individually found two subjects with a
significant coefficient (p = 0.0212, β = 0.7843, p = 0.0243, β =

−0.7738). This suggests that learning in different blocks could
be related to a mechanism that responds to the block type. In
order to identify this mechanism we developed a range of models
discussed below. For comparison, we also regressed the raw block
order in a session (Block 1, 2, 3, etc.) against the proportion of
correct responses in a block, and we found that this did not result
in a significant coefficient (p = 0.585 β = −0.002), indicating
the performance in a block is not simply a function of time or
increased exposure to the task.

Models
We considered a range of different learning strategies that
could be deployed to solve the task through reinforcement
learning mechanisms. Each of these strategies was quantified
by a separate Q-Learning model (Rescorla, 1976; Cavanagh
et al., 2010; Skvortsova et al., 2014) with different functionality
representing different assumptions about: (1) the salience of
positive vs. negative feedback (QL GainLoss; Materials and
Methods, Equations 4 and 5; Gehring and Willoughby, 2002),
(2) the impact of time and working memory capacity on learned
values (QL Decay; Materials and Methods, Equation 3; Seymour
et al., 2012; Skvortsova et al., 2014), (3) the generalization of
outcome information across stimulus values (QL Gen; Materials
and Methods, Equation 2), and (4) the relevance of subsets
of feature values for action selection (Flexible Rule Selection–
FR_Sel; Materials and Methods, Equations 7 and 8) (Balcarras
et al., 2016). The FR_Sel model was developed in order to capture
the hypothesis that subjects would use Q-values for stimulus
features to identify a rule for learning, in this case a rule that
associates outcomes across trials by feature type and uses the
difference in value between types to restrict selection to the most
valuable type (Figure 3).

In addition we tested three further models that were
combinations of models 1–3.

All models were fit to subject data that showed learning by grid

search across the entire parameter space (Table 1, see Materials

and Methods; Cavanagh et al., 2010; Donoso et al., 2014;
Skvortsova et al., 2014). Four of the seven models considered
had at least one subject that was best fit by the model, but the

significant majority of subjects (68.75%, 22/32) was fit best by

the Flexible Rule Selection (FR_Sel) model (pairwise comparison
of bootstrapped OLS scores between all model pairs, Mann-
Whitney-Wilcoxon ranksum p < 0.05; Figure 4A).

The mean score for the FR_Sel model was significantly
better than all other models averaged across all subjects (Mann-
Whitney-Wilcoxon ranksum p < 0.05) and was significantly
better than all other models for those subjects that were best fit by
themodel when tested independently (Mann-Whitney-Wilcoxon
ranksum p < 0.05; Figures 4B,C). We then quantified how the
FR_Sel model scored for subjects whose choices were best fit by
one of the other models in order to infer whether these subjects
may have used entirely distinct learning strategies, or whether
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FIGURE 3 | Stimulus-feature reward association problem and proposed strategy for learning. (A) Subjects making choices between pairs of stimuli face the

problem of learning how to associate stimulus features with outcomes across trials. In the displays, the red ‘x’ denotes the chosen stimulus of subjects. The yellow

stars on top of each panel indicated the feedback for correctly chosen stimuli. The right panel vertically summarizes the choice out- comes for trials shown on the left

to illustrate the subjects putative internal state for determining selections on future trials. (B) Model-Schema for Flexible Rule Selection model. The outlined model is

proposed as a strategy for solving the learning problem faced in the task. Using learned Q-values for stimulus features, the model compares the sum of values across

groups of values separated by feature type. When the difference in the sum of values between feature types grows beyond a threshold the model then restricts

selections to the set of Q-values corresponding to the most valuable feature type.

TABLE 1 | Model Names and best fitting parameter values along with measures of fit for individual subjects.

Model name Number of

parameters

Mean (sem)

alpha (alphaG)

Mean (sem)

alphaL

Mean (sem)

beta

Mean (sem)

threshold

Mean (sem)

decay (tau)

Mean (sem)

OLS distance

across all

subjects

Number of

subjects best fit

by model

Mean (sem)

OLS distance

across best fit

subjects

OPTIMIZED MODEL PARAMETERS AND SCORES

QL Basic 2 0.552 (0.056) n/a 0.051 (5e-4) n/a n/a 5.5 (0.34) 0 n/a

QL Generalized 2 0.480 (0.052) n/a 0.053 (5e-4) n/a n/a 6.08 (0.394) 0 n/a

QL Decay 3 0.532 (0.054) n/a 0.061 (5e-4) n/a 1.04 (0.01) 1.81 (0.175) 3 1.55(0.26)

QL GainLoss 3 0.457 (0.044) 0.361 (0.045) 0.047 (5e-4) n/a n/a 1.62 (0.161) 3 1.16 (0.258)

QL Combined 4 0.373 (0.036) 0.384 (0.055) 0.053 (5e-4) n/a 1.09 (0.0150 1.69 (0.154) 4 0.545(0.096)

FR Sel 4 0.373 (0.046) 0.373 (0.052) 0.058 (0.01) 0.244 (0.036) n/a 1.16 (0.127) 22 1.14 (0.164)

FR Update 4 0.239 (0.023) 0.457 (0.057) 0.037 (0.01) 0.01 (8e-19) n/a 6.1 (0.398) 0 n/a

Highlighted row shows scores and parameter values for the Flexible Rule-Selection (FR_Sel) model, which fit 22/32 subjects significantly better than any other subject (Mann-Whitney-

Wilcoxon, p < 0.05).

the FR_Sel choice mechanism was still a versatile explanation
for these subjects. As shown in Figures 4D–F we found that the
FR_Sel model consistently provided the second best explanation
for learning choice probabilities in those subjects best fit by the
QL Decay model (n= 4 subjects, 11%), the QL Combined model
(n = 4 subjects, 11%), and the QL GainLoss model (n = 2
subjects, 5%; Figures 4D–F).

A comparison of model selection results using OLS vs. the
more typical LLE method confirms that the FR_Sel model
is identified as the best model (Figure 5; See Materials and
Methods).

We tested how the choice probabilities produced by the
FR_Sel model predicted the observed likelihood of subjects’
correct choices. For this analysis we selected those subjects best
fit by the model and computed the Pearson correlation of the
average choice probabilities for the model and subjects for all
trials, and for trials from feature type and object blocks separately
(Figure 6) (see also Balcarras et al., 2016). The FR_Sel model
has a significant correlation with the observed data in all block
groups (r = 0.6655, p = 0.001; r = 0.56, p = 0.012; r = 0.50, p
= 0.01; Pearson correlation) showing that its computed choice
probabilities are predictive of average subject behavior.
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FIGURE 4 | Model performance across subjects. (A) All models were fit to

each subject individually, with 69% (n = 22/32) best fit by the flexible rule

selection model (FR_Sel). (B) The average ordinary least square score (y-axis)

across all subjects for the FR_Sel model was significantly better than all other

models for the subjects it fit best. (The star denotes p < 0.05,

Mann-Whitney-Wilcoxon test, for each pairwise comparison with FR_Sel). (C)

For subjects best fit by the FR_Sel model, fits with the alternative models were

significantly worse. (D) For the 11% (n = 4) subjects best fit by the QL Decay

model, the FR_Sel model provided the second best fit. (E) The 11% (n = 4)

subjects best fit by the QL Combined model showed particular low ordinary

least square scores across models. (F) For the 5% (n = 2) subjects best fit by

the QL GainLoss model, the FR_Sel model provided the second best fit.

The key functional difference between the FR_Sel model
and all other models is its ability to flexibly change selection
strategies by restricting selection among Q-values to a specific
feature domain when the history of choices provided sufficient
information about feature type specific gains and losses (see
Materials and Methods, Figure 3). Accordingly, subjects using
the FR_Sel mechanism (as inferred from being best fit by the
FR_Sel model), should show improved performance particularly
when transitioning into feature blocks over subjects utilizing
other selection strategies (as inferred from being best fit by one
of the other models). In support of this suggestion, we found that
the FR_Sel model produced the best fit to subject data in feature

blocks across all those subjects best fit by FR_Sel according to
their overall OLS score (Figure 7A).

Calculating the mean percent correct choices in feature blocks
shows that FR_Sel subjects outperformed all other subjects (p <

0.05, Mann-Whitney-Wilcoxon; Figure 7B). They also showed
significantly slower reaction times (p < 0.05, Mann-Whitney-
Wilcoxon; Figures 7C,D). Across subjects the median reaction
times of subjects did not correlate with the mean % correct
choices of subjects (r = 0.044, p = 0.366). Examining the
dynamics of subject performance in feature blocks also showed
a significant difference across subject groups. FR_Sel subjects
show more rapid learning early in the block, with significantly
better performance until trial five (for trial numbers two to five,
p < 0.05, Mann-Whitney-Wilcoxon; Figure 7E). Faster learning
early in the block is another implication of the functionality of
the FR_Sel model. Rule deployment specifies context specific
selection processes, and this context specific selection, i.e.,
selection that is restricted to a specific feature domain, is triggered
when the difference in values between feature types crossed a
threshold. For all subjects best fit by the FR_Sel model this
threshold value was quite low (0.21), indicating that very few
trials were required to separate values between feature types.
With the model generalizing outcome information across chosen
and unchosen features, summed values across feature types
rapidly diverge. We identified the trials in feature blocks when
the FR_Sel model triggered feature specific selection, and plotted
the distribution of these trials across blocks (Figure 7F). The
model identifies the relevant feature type in the current context
rapidly with an average (median) of 2 (SE ± 0.4) trials and with
the majority of blocks being identified within the first five trials,
which is consistent with the rapid learning early in the block
observed in the subject performance.

DISCUSSION

In this study we tested subjects on their ability to flexibly apply
a previously learned abstract rule, respond to uncued context
changes, and learn stimulus-feature outcome associations. We
developed a set of predictive behavioral models using the
reinforcement learning framework, which allowed us to fit the
choices of each subject to a unique model, separating subjects
that utilize advantageous rule-driven behavior from those that do
not. We found that two-thirds of subjects (n = 22/32), who were
untrained on the task and naive to its design, utilized a strategy
for learning that reflected the application of a pre-learned abstract
rule relating the association of stimulus feature dimensions
to positive outcomes. Importantly, the subjects best fit by the
hierarchical rule model were also the subjects that performed the
best in more difficult feature blocks, and displayed a significantly
slower reaction time on choices in those blocks. Previous studies
exploring rule learning and rule driven behavior have focused
on either how simple rules are learned via reinforcement, or
on how rules can be learned and generalized for application in
new contexts. Our study extends this work by quantifying how
successful subjects who are naive to the task spontaneously utilize
pre-learned task rules to learn in a novel task context.
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FIGURE 5 | LLE and OLS methods of model selection both identify FR_Sel as best model. A comparison of the maximum value for the log-likelihood of model

predictions with the ordinary least square value for the difference between observed and predicted choice likelihoods shows that FR_Sel is identified as the best model

using both methods. (The star denotes p < 0.05, Mann-Whitney-Wilcoxon test, for each pairwise comparison with FR_Sel). (A) OLS and LLE scores show FR_Sel as

significantly better at predicting choices averaged across all subjects. (B) OLS and LLE find FR_Sel significantly better at predicting choices for those subjects best fit

by FR_Sel.

FIGURE 6 | Model performance for FR_Sel across best fit subjects. The Pearson correlation was calculated between the mean observed choice likelihood and

the predicted probability of making a correct choice based on the FR_Sel model. The significantly correlated (p < 0.05 Mann-Whitney-Wilcoxon) predictions produced

by the FR_Sel model is shown to illustrate the predictive power of the model for subject behavior.

Rule learning and switching has been studied extensively,
typically with a framework such as the Wisconsin Card Sorting
Task (WCST) and its analoges (Grant and Berg, 1948; Milner,
1963; Wallis et al., 2001; Buckley et al., 2009; Badre et al., 2010;

Mian et al., 2014). In the WCST, four key cards provide the
subject with different cues about potential sorting principles
across three perceptual dimensions—color, shape and number.
Subjects attempt to correctly sort the 128 response cards one
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FIGURE 7 | FR_Sel subjects outperform other subjects, react slower

and learn faster. The star denotes p < 0.05, Mann-Whitney-Wilcoxon test for

each pairwise comparison. (A) For subjects best fit by the FR_Sel model

(“FR_Sel subjects”), FR_Sel model predictions in feature blocks was

significantly better than all other models. (B) FR_Sel subjects (n = 22) make on

average more correct choices than subjects (n = 10) with choice performance

that was best fit by other models. (C,D) FR_Sel subjects have significantly

slower reaction times in feature blocks compared to all other subjects. (E)

FR_Sel subjects show faster learning in feature blocks, having a significantly

higher success rate on early trials in a block compared to other subjects (p <

0.05 Mann-Whitney-Wilcoxon). Black line shows smoothed mean of

proportion of correct choices, colored traces show unsmoothed mean ± SEM.

(F) Early responsiveness to the context of feature blocks is predicted by

context identification mechanism of the FR_Sel model. The distribution of trials

in feature blocks where the model identified the feature specific context is

heavily weighted to the first five trials.

at a time, according to the unknown rule, via feedback in the
form of binary outcome information (correct vs. incorrect). In
our study, we were interested in the flexible application of a more
abstract rule, where the rule is informative of a general principle
but does not specify the final mapping of a stimulus feature to
outcomes, as in the WCST (Bengtsson et al., 2009; Collins and
Frank, 2013). Similar to the WCST, the optimal rule to apply
in feature blocks is to associate outcomes across trials with a

specific feature dimension of the stimulus, however, in our task
subjects applying this rule must still learn the specific likelihoods
of reward associated with the set of stimulus features presented
in that block. For example, after identifying the current context
(block) as a color-relevant block, the subject must then learn the
rank ordering, or the relative likelihoods of reward, associated
with the three colors that appear in that context. Whereas in the
WCST, once the stimulus feature sorting rule is learned subjects
only need to maintain this rule until it is switched (Stuss et al.,
2000; Buckley et al., 2009; Nyhus and Barceló, 2009).

Recently there has been some exploration of how rules are
learned and generalized to new contexts. Collins et al. (Collins
and Frank, 2013) have shown that subjects are capable of learning
rules for task set organization and generalize these rules into new
contexts, even when applying a particular rule is not beneficial.
Our results are consistent with these findings, with the difference
being that those subjects in our study who spontaneously
displayed beneficial rule-guided behavior learned the abstract
rule prior to the task. Collins et al. use a hierarchical approach
to quantify the computational processes associated with abstract
rule learning and generalization, similarly to their methods and
that of others in the field (Badre and Frank, 2012; Botvinick, 2012;
Donoso et al., 2014), we developed a flexible rule selection system
that relies on simple model free learning of expected outcomes
for stimuli and stimulus features. A model-based approach did
not seem appropriate here as rewards were assigned to stimuli
stochastically, and transitions between block types were jittered
and uncued, all of which prevented subjects from anticipating the
likelihood of transitions between states (trials and block types),
which is a key functionality of model-based systems.

Many studies of human decision making analyze patterns of
choice behavior that collapses subjects into a single unit. This
is often done in order to perform analyses of neural activity
that averages results across subjects (Cavanagh et al., 2010;
Helfinstein et al., 2014; Rudorf and Hare, 2014). While this
approach has the benefit of increasing the statistical power of
certain techniques it is insensitive to inter-subject variability.
Analyzing and fitting models to the systematic behavior of each
subject, as we have done here, permits the identification of those
patterns of choices that are related to the unique strategy of
each subject. It is no surprise to experimentalists that human
subjects bring a range of pre-task experiences and expectations to
bear on the experimental problem (Shteingart and Loewenstein,
2014), but this is notoriously difficult to account for, and is
often just ignored. By using a range of models, each with an
associated set of conceptual assumptions, we are able to separate
subjects by their flexible application of adaptive rules. While
we found that subjects best fit by our flexible rule-selection
model were also separable from other subjects according to
overall block performance and reactions times, we do not have
a hypothesis about why reaction times for these subjects are
significantly slower than for other subjects in feature blocks.
Further work in this area is needed to clarify the relationship
between advantageous use of a flexible rule and reaction times.

Neural activity associated with rule-driven behavior has been
found in the prefrontal cortex of humans and non-human
primates (Miller, 2000; Bengtsson et al., 2009; Buschman et al.,
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2012; Womelsdorf and Everling, 2015). Based on the similarity
of our results to that of previous studies (Gershman and Niv,
2010; Collins et al., 2014), we would expect to see activity profiles
in FR_Sel subjects similar to that found in Collins et al. (2014)
and Cavanagh et al. (2010). Because our computational approach
produces trial by trial, and subject by subject, estimates of
expected values for stimulus features, as well as estimates of trial
onsets for rule deployment, simultaneous recording of neural
activity in human subjects performing our task would enable
sensitive and specific insights into the networks underlying rule
deployment and feature value learning. Single trial regression
analysis are an underused but powerful tool for investigating
the neural mechanisms underlying computational processes
implicated in human learning because they compensate for inter-
subject variability. Further work on the problem of learning and
the ongoing influence of prior learning would likely link lateral
PFC areas known to be involved with rule learning and switching
to ventromedial PFC areas known to be involved with estimates
of stimulus and action values (Wallis et al., 2001; Bengtsson et al.,
2009; Buckley et al., 2009; Badre et al., 2010; Gershman et al.,

2010a; Wunderlich et al., 2010; Kaping et al.,, 2011; Mian et al.,
2014; Rudorf and Hare, 2014).
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