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Abstract: Aiming at the fact that traditional convolutional neural networks cannot effectively extract
signal features in complex application scenarios, a sleep apnea (SA) detection method based on
multi-scale residual networks is proposed. First, we analyze the physiological mechanism of SA,
which uses the RR interval signals and R peak signals derived from the ECG signals as input. Then,
a multi-scale residual network is used to extract the characteristics of the original signals in order
to obtain sensitive characteristics from various angles. Because the residual structure is used in
the model, the problem of model degradation can be avoided. Finally, a fully connected layer is
introduced for SA detection. In order to overcome the impact of class imbalance, a focal loss function
is introduced to replace the traditional cross-entropy loss function, which makes the model pay
more attention to learning difficult samples in the training phase. Experimental results from the
Apnea-ECG dataset show that the accuracy, sensitivity and specificity of the proposed multi-scale
residual network are 86.0%, 84.1% and 87.1%, respectively. These results indicate that the proposed
method not only achieves greater recognition accuracy than other methods, but it also effectively
resolves the problem of low sensitivity caused by class imbalance.

Keywords: multi-scale; residual network; sleep apnea; ECG signals; focal loss

1. Introduction

Sleep is necessary for everyone, and the quality of sleep directly affects people’s
work and life. Humans spend lots of time sleeping, and sleep research has received a
lot of attention because of the importance of quality sleep [1]. The American Academy
of Sleep Medicine (AASM) divides sleep into five stages: wakefulness (W), N1, N2, N3
and REM. Among them, N1, N2 and N3 form the non-rapid eye movement (NREM) part
of the sleep cycle, and the remaining stage is REM [1]. REM and NREM represent some
important functions of the brain, including cell recovery, memory consolidation and brain
metabolite clearance [2]. Sleep apnea (SA) is a common respiratory sleep disorder. Due to
SA, the patient will experience symptoms such as decreased blood oxygen saturation
and repeated awakenings during sleep, resulting in decreased sleep quality and even
cardiovascular, metabolic abnormalities, neurocognitive disorders and other diseases [3–6].
According to the pathogenesis, SA can be divided into obstructive sleep apnea (OSA),
central nervous sleep apnea (CSA) and mixed sleep apnea, of which OSA is the most
common SA type.

In clinical practice, SA is usually detected by polysomnography (PSG), which is also
the gold standard for SA diagnosis [7–9]. However, this method requires the patient
to stay in a professional sleep laboratory for 1 to 2 nights. Sensors are used to collect
electrocardiograph (ECG), respiratory signals and blood oxygen saturation (SpO2) and
other physiological signals [10,11], and then SA is manually labeled. The detection process
is complex and costly, making it impossible for many patients to be diagnosed and treated in
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a timely manner. Therefore, it has become a consensus of researchers to explore convenient
and inexpensive methods of detecting SA.

After an extensive analysis of many physiological signals related to sleep apnea,
researchers find that when a breath apnea event occurs, the RR interval in the ECG signal
changes periodically. For this reason, they proposed using single-channel ECG signals
combined with machine learning to quickly detect sleep apnea. There are currently two
types of SA detection methods based on single-channel ECG signals: models based on
traditional machine learning and models based on deep learning. There are many typical
patterns based on traditional machine learning. Pinho et al. [12] uses heart rate variability
(HRV) features and ECG-derived respiration (EDR) features, combined with artificial
neural networks (ANN) and support vector machines (SVM), to achieve SA detection.
Viswabhargav et al. [13] uses EDR and sparse residual entropy (SRE) features, combined
with fuzzy K-means clustering and SVM to detect SA. Feng et al. [14] uses unsupervised
learning to extract feature sets and uses time-dependent cost-sensitive (TDCS) to achieve
SA detection. Although these methods have achieved some results, their performance is
largely influenced by the characteristics of the manual design. Sharma et al. [15] proposes a
method based on biorthogonal antisymmetric wavelet filter bank (BAWFB).

In recent years, deep learning models have been receiving growing attention. Li et al. [16]
proposed an SA detection method based on sparse auto-encoder and hidden Markov model
(HMM). This method first uses an unsupervised sparse autoencoder to learn features,
and then SVM is used to classify ECG signals. Urtnasan et al. [17] uses a convolutional
neural network (CNN) composed of six optimized convolutional layers to implement the
SA detection model. Compared with the model based on traditional machine learning,
the model based on deep learning avoids the dependence on human-crafted features,
but there are still some shortcomings.

Existing models based on CNN usually use single convolution kernels for feature
extraction. However, in complex application scenarios, it is difficult for traditional convolu-
tional to efficiently provide salient features. Meanwhile, there is a class imbalance in the
SA database, which leads to the low sensitivity of the model. In order to resolve the above
problems, the paper proposes a method of SA detection based on a multi-scale residual
network. First, we analyze the physiological mechanism of SA and extract the derived RR
interval signals and R peak signals of the ECG signals as input. Then, feature extraction is
performed on the derived signals by using a multi-scale residual network to obtain sensitive
features from different perspectives. Finally, a fully connected layer is used to achieve SA
detection. In addition, a class imbalance in the database is put into consideration, and a
focal loss function is adopted to replace the traditional cross-entropy loss function, so that
the model focuses more on the learning of difficult samples in the training phase to reduce
the impact of class imbalance. By testing on the Apnea-ECG database [16–18], the proposed
multi-scale residual network obtained an accuracy of 86.0%, a sensitivity of 84.1% and a
specificity of 87.1%. Compared with the existing work, the method not only obtains a better
classification accuracy but also effectively solves the problem of low sensitivity caused by
class imbalance.

2. Materials and Methods
2.1. Flow Diagram of the Work

The flow diagram of the proposed method is shown in Figure 1. We obtained RR
interval information and R peak information from the original signal through preprocessing,
and then we used the proposed multi-scale residual network for feature extraction and
classification [15,19].
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Figure 1. The process of the proposed method.

2.2. Experimental Data

In this paper, the Apnea-ECG database [17,18] was used to verify the proposed method.
The database has a total of 32 subjects, including 25 males and 7 females, and the age of the
subjects is between 27 and 63 years old. The database consists of two data sets: a training set
and a test set, with a total of 70 ECG signals records. The sampling rate is 100 Hz, and the
sampling duration is between 401 and 578 min. The two data sets have a total of 34,313 min
of signals, of which the training set contains 17,045 min, and the test set contains 17,268 min.
After removing the abnormal ECG signals, segmentation was performed according to the
60 s segment, and finally 33,752 segments were retained, including 16,743 in the training set
and 17,009 in the test set. According to the apnea-hypopnea index (AHI) value, 70 samples
were divided into category A, category B and category C. When the sample’s AHI value
was greater than 10, the sample was defined as type A. When the AHI value was greater
than 5, the sample was defined as type B. When the AHI value was less than 5, it was
defined as type C.

The UCD dataset is the second dataset used in this paper. It is collected by the Univer-
sity College Dublin. We used the UCD dataset to verify the generalization performance of
the proposed method. The UCD dataset contains the overnight PSG of 25 patients, with
subjects ranging in age from 28 to 68 years old [20].

2.3. Signal Denoising

The clinically collected ECG signals are very weak electrical signals, which are easily
interfered with by the collection equipment and external noise. In order to ensure the
accuracy of the SA detection method, it is necessary to filter out the relevant noise before
further processing [16]. Common noises in ECG signals include the following:

• Baseline wandering—It is mainly caused by the low-frequency interference signals
caused by poor contact of the measuring electrode or the patient’s breathing [21].
The frequency is between 0.05 Hz and 2 Hz, indicating that the ECG signals deviate
from the normal baseline position.

• Power line interference—It is mainly 50 Hz/60 Hz noise generated by the power
system, which will cause the entire waveform to be ambiguous and have a greater
impact on the waveform.
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• Electromyography noise—It is mainly caused by muscle fibrillation and contraction.
The amplitude is small and the frequency is high [22]. The frequency is between 5 Hz
and 2000 Hz, presenting an irregular and rapidly changing waveform.

Commonly used filtering methods include wave transformation, adaptive filtering,
IIR filter, FIR filter, artificial neural network, etc. These methods have achieved good results
in ECG signal analysis [18]. In this study, considering performance and speed, an FIR band
pass filter of 3 Hz~45 Hz was selected to filter the ECG signals.

2.4. R Peak Location and Signal Extraction

Directly using ECG signals to detect SA could lead to model overfitting because it
contains a lot of information which is unrelated to SA. This paper analyzes the physiological
mechanism of SA and uses the derived signals of the ECG signals to extract features.
However, before extracting the derived signals, the R peak position of the ECG signals
should be determined first. Among the existing R peak positioning algorithms, the Pan–
Tompkins algorithm proposed by Pan J and Tompkins W [23] has a high recognition rate
and a good real-time performance, and it is widely used in clinical practice. Therefore,
this paper uses the Pan–Tompkins algorithm (improved version of Hamilton et al.) [24]
to determine the position of the R peak. Figure 2a shows the R peak identified by the
Pan–Tompkins algorithm.
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The rhythmic heartbeat reflects the balance between the sympathetic nervous system
and the parasympathic nervous system [25,26]. When SA occurs, because of hypoxia,
the concentration of carbon dioxide increases, and the sympathetic nerve will be activated,
resulting in the breakdown of the balance between the sympathetic nervous system and the
parasympathetic nervous system. Studies have shown that the RR interval of SA patients
is longer than normal [9,27,28]. Therefore, compared with the direct use of ECG signals,
the use of derived RR interval signals can more intuitively diagnose SA. The appearance
time of the R peak is taken as the abscissa and the RR interval as the ordinate to draw the
curve of RR interval and time, which is the RR interval signal.

In addition to the RR interval, the decrease in respiratory amplitude, the state of hy-
poxia and hypercapnia during SA will further strengthen the body’s respiratory movement,
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thus interrupting the regular fluctuations of the R peak [29]. Therefore, by analyzing the R
peak of the ECG signals, SA can also be effectively diagnosed. Taking the appearance time
of the R peak as the abscissa and the amplitude of the R peak as the ordinate, the curve
of the R peak with time is drawn, which is the R wave signal. The obtained original RR
interval signals and R peak signals are RR interval sequences with unequal time intervals,
which need to be converted into equal time interval signals before further use. Referring to
the existing research, this paper uses cubic spline interpolation to interpolate it, and the
extracted RR interval signals and R wave signals are shown in Figure 2b,c.

2.5. Residual Network

In theory, increasing the depth of the CNN will further enhance the expressive ability
of the model. However, in actual research, researchers find that as the network deepens,
network degradation may occur during the training process. He et al. [30] proposed the
concept of residual network (ResNet). ResNet is composed of a stack of residual blocks.
The feature extraction ability of the model is improved by adding “shortcut” connections
to the residual blocks, thus solving the problem of network degradation caused by the
deepening of the network. A typical residual block structure is shown in Figure 3.
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2.6. Construction of Multi-Scale Residual Network Model

Traditional residual networks usually use a single convolution kernel for feature ex-
traction. However, in complex application scenarios, it will cause the model to omit local
important features when adaptively selecting features, resulting in reduced accuracy of the
model. Aiming at solving the shortcomings of traditional residual networks, this paper
proposes a multi-scale residual network model. The multi-scale is mainly reflected in
the network, which adopts convolution kernels of multiple scales to perform convolution
operations simultaneously to extract sensitive features from different perspectives and im-
prove the model prediction accuracy. Figure 4 shows the specific structure of the proposed
multi-scale residual network.

The network we proposed is based on an 18-layer ResNet network model, which
enhances the feature presentation ability of the network by adding multiple scales. Table 1
lists the detailed structural parameters of the network. The residual blocks corresponding
to conv2_ms, conv3_ms, conv4_ms and conv5_ms are 2, 2, 2 and 2. Each residual block
contains 2 layers, and each layer is composed of 4 convolution kernels of different scales.
There are a total of 16 layers of residual units, which are 18 layers including conv1 and
fully connected layers. It is worth mentioning that both the RR interval signals and the
R peak signals are one-dimensional signals, so the multi-scale ResNet18 used in this paper
is one-dimensional convolution. At the same time, in order to reduce the risk of network
overfitting, a random dropout of 0.5 is set between the fully connected layer and the
residual network.
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Table 1. Multi-scale residual network structure parameters.

Layer Output Size Network Architecture

conv1 100 × 1 Convolutional layer: 7 × 1, 64, Stride: 3

conv2_ms 50 × 1

Pooling layer: 3 × 1, Stride: 2


3 × 1, 16
5 × 1, 16
7 × 1, 16
9 × 1, 16


C


3 × 1, 16
5 × 1, 16
7 × 1, 16
9 × 1, 16


C


T

× 2

conv3_ms 25 × 1




3 × 1, 32
5 × 1, 32
7 × 1, 32
9 × 1, 32


C


3 × 1, 32
5 × 1, 32
7 × 1, 32
9 × 1, 32


C


T

× 2

conv4_ms 13 × 1




3 × 1, 64
5 × 1, 64
7 × 1, 64
9 × 1, 64


C


3 × 1, 64
5 × 1, 64
7 × 1, 64
9 × 1, 64


C


T

× 2

conv5_ms 7 × 1




3 × 1, 128
5 × 1, 128
7 × 1, 128
9 × 1, 128


C


3 × 1, 128
5 × 1, 128
7 × 1, 128
9 × 1, 128


C


T

× 2

1 × 1 Dropout: 0.5,

Computing power 0.144 × 109

2.7. Data Imbalance Processing

In SA detection, there is a significant difference in the number of abnormal ECG signal
fragments and normal ECG signal fragments, which will lead to the tendency to learn
simple counterexample samples (normal ECG signals fragments) during model training.
In order to solve the above problems, a class weight is usually set in the cross-entropy loss
function to balance the positive and negative examples. The formula is as follows:

CE(pt) = −αt log(pt) (1)

where αt represents the weight of the category, which is between 0 and 1. Although this
method improves the tendency of the model in the training process to a certain extent,
it does not solve the problem of the difficulty of classification in different samples caused
by sample imbalance.

In order to solve this problem, Lin et al. [31] proposed a focal loss function based on
the cross-entropy loss function. The formula is as follows:

FL(pt) = −αt(1 − pt)
γ log(pt) (2)

Compared with the cross-entropy loss function, the focal loss function introduces a
modulation factor (1 − pt)

γ, which reduces the weight of easy-to-separate samples, makes
the model pay more attention on training difficult-to-separate samples, and improves the
accuracy of classification. When γ = 0, the loss function is the ordinary cross-entropy loss
function with category weight, which only solves the tendency problem of the model. When
γ > 0, the modulation factor plays a role, and the network model focuses on misclassified
samples. The larger the γ, the more attention is paid to the misclassified samples.

3. Experiment and Result Analysis
3.1. Sleep Apnea Detection Experiment

In this paper, five indicators which are accuracy, sensitivity, specificity, area under the
curve (AUC) and F1-scroe were used to evaluate our proposed method.
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This paper verifies the proposed method based on the Apnea-ECG database, where
the training set is used to train the model, and the test set is used to evaluate the model.
Table 2 lists the performance of this method on the test set. It can be seen that the method
proposed in this paper correctly detected 9158 segments from 10,511 normal ECG signal
segments and 5462 segments from 6498 sleep apnea ECG signal segments. The overall
accuracy rate reached 86.0%, indicating a high accuracy rate of sleep apnea detection.

Table 2. The performance of the proposed method on the test set.

Forecast Result
Accuracy/% Sensitivity/% Specificity/%

N AH Total

Realitylabel
N 9158 1353 10,511 86.0 84.1 87.1

AH 1036 5462 6498
Total 10,194 6815 17,009

Aiming at the fact that the traditional CNN cannot effectively extract signal features in
complex application scenarios, this paper proposes a sleep apnea detection method based
on multi-scale residual networks.

In order to verify the advantages of this method, this section analyzes the performance
before and after adopting the multi-scale convolution topology, as shown in Table 3. The ac-
curacy of the traditional ResNet was 84.6%, the sensitivity was 82.2%, the specificity was
86.1%, the AUC was 0.918 and the F1-score was 80.3. After adopting the multi-scale convo-
lution topology structure, its accuracy, sensitivity, specificity, AUC and F1-score increased
to 86.0%., 84.1%, 87.1%, 0.931 and 82.1. The results show that in the SA detection research,
the use of a multi-scale convolution topology structure can more effectively extract the
features in the original signals.

Table 3. Performance comparison before and after using multi-scale convolution topology.

Method Accuracy/% Sensitivity/% Specificity/% AUC% F1-Score/%

ResNet 84.6 82.2 86.1 0.918 80.3
ResNet + Multiscale 86.0 84.1 87.1 0.931 82.1

In clinical practice, abnormal data or cases are often far less than normal data or cases,
resulting in a certain imbalance of data. This also has a similar problem in SA detection
research where the ECG signal fragments with sleep apnea are usually far fewer than
the normal ECG signal fragments. If the data are not processed, the performance of the
method will be biased towards the type with more data (normal data or cases), and the
disease cannot be effectively diagnosed. Class weight (class weight) is a common method
to deal with data imbalance, but this method does not solve the problem of different sample
classification difficulty caused by sample imbalance.

This paper introduces a focus loss function to make the model focus on the learning of
difficult samples in the training phase, thus reducing the impact of data imbalance. In order
to verify the effectiveness of this method, we have compared it with the traditional method.
It can be seen from Figure 5 that when no data imbalance technique was used, only 4945
ECG signal fragments were detected. Compared with the other two methods, the number of
correctly detected sleep apnea ECG signal fragments was significantly reduced. Compared
with the model using category weights, it can be found that the method using the focus
loss function further improved the detection of sleep apnea ECG signal segments while
maintaining the correct detection of normal ECG signal segments. This is because the focal
loss function adjusts the loss of easy-to-classify samples, which forces the model to focus
on the learning of difficult samples, reducing the impact of data imbalance.
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Figure 5. Performance comparison of focus loss function, class weight and without using any data
imbalance technology. (a) The proposed method; (b) without using any data imbalance technology
method; (c) class weight method.

3.2. Per-Recording Classification

According to the test results, we can further classify the tester and determine whether
the tester has SA. According to the recommendations of the American Academy of Sleep
Medicine (AASM), when the AHI value is greater than 5, the patient is considered to have
SA. The definition of AHI is as follows:

AHI =
60
T

∗ num of SA segments (3)

T means the number of signals per minute, and L/60 is the number of hours for a
recording. As shown in Table 4, the accuracy of the traditional ResNet was 91.2, the sensi-
tivity was 100, and the specificity was 75. Compared with the traditional ResNet, the per-
formance of the proposed multi-scale residual network was better, which had a 16% higher
specificity. This paper also compares the AHI value predicted by the network with the
actual AHI value in the database, and the results are shown in Table 4.

Table 4. Performance of ResNet + Multiscale and ResNet in per-recording classification.

Method Accuracy/% Sensitivity/% Specificity/% AUC Corr/%

ResNet 91.2 100 75 0.985 0.945
ResNet + Multiscale 97.1 100 91.7 1 0.956

3.3. Test the Model on the UCD Database

In order to verify the generalization performance, the proposed model was evaluated
on the UCD dataset. Since the UCD dataset has less data available for model learning,
the performance of the proposed method on the UCD dataset was worse than that of
the Apnea-ECG dataset. The experimental results are shown in Table 5, under the same
preprocessing of the data set, and the performance of the proposed multi-scale residual
network was better than that of the traditional ResNet. In general, the proposed method is
useful for SA detection.

Table 5. The performance of our proposed model on the UCD dataset.

Method Accuracy/% Sensitivity/% Specificity/%

ResNet 67.1 35.5 72.2
ResNet + Multiscale 72.4 36.5 83.6

3.4. Comparison of Similar Research Results

In order to further verify the effectiveness of the method in this paper, we compared
it with the same type of research work in recent years [10,12–14,16,32–35]. Table 6 lists
the comparison results of this method and related work in terms of accuracy, sensitivity
and specificity. It should be pointed out that in order to ensure the reliability of the
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results, the comparative work is evaluated based on the Apnea-ECG database. Due to
the different pretreatment processes of different works, the claimed performance may
be slightly different from the actual performance. It can be seen from Table 6 that the
accuracy of existing machine learning-based methods is 78.1–85.1%, and the accuracy of
detection methods based on deep learning is 2% higher. In addition, the method in this
paper can obtain higher sensitivity while obtaining better specificity, while existing work
usually sacrifices sensitivity or specificity to improve another index. In clinical practice,
too low sensitivity or too low specificity is unacceptable, which will lead to a high rate
of misdiagnosis. The method of multi-scale residual network combined with focus loss
function proposed in this paper not only effectively improved the detection accuracy of
sleep apnea, but it also effectively improved the problem of low sensitivity caused by
data imbalance.

Table 6. The performance comparison between the proposed method and similar research.

Work Method Accuracy/% Sensitivity/% Specificity/%

Sharma and Sharma LS-SVM 83.4 79.5 88.4
Pinho et al. ANN/SVM 82.1 88.4 72.3

Viswabhargav et al. SVM 78.1 78.0 78.1
Surrel et al. LS-SVM 82.2 73.3 87.6

Li et al. DNN + HMM 84.7 88.9 82.1
Feng et al. TDCS 85.1 86.2 84.4

Martin-Gonzalez et al. LDA + QDA + LR 84.8 81.5 86.8
Chang et al. 1D CNN 87.9 81.1 92.0

Singh et al. CNN + Decision
Fusion 86.2 90.0 83.8

Our method ResNet + Multiscale 86.0 84.1 87.1

4. Conclusions

This paper proposes a sleep apnea detection method based on a multi-scale residual
network. In this method, we use multi-scale convolution kernels to extract features at
different levels, avoiding the limitations of the traditional single convolution topology.
Considering that ECG signals contain a lot of information unrelated to sleep apnea, through
the analysis of the physiological mechanism of sleep apnea, the derived RR interval signals
and R peak signals in the ECG signals are extracted as the model input. In addition,
in the study of sleep apnea detection, different types of ECG signal fragments have data
imbalances. This study introduces a focus loss function to make the model focus more on
the learning of difficult samples during the training phase to reduce the impact of data
imbalance on performance. The experimental results on the public database Apnea-ECG
show that the proposed method achieved an accuracy rate of 86.0%, a sensitivity of 84.1%
and a specificity of 87.1%. Compared with existing work, the proposed method not only
effectively improved the detection accuracy of sleep apnea, but it also effectively solved
the problem of low sensitivity caused by data imbalance. Due to the limitations of the
dataset used, the method proposed in this paper cannot distinguish between hypopnea
and apnea. In the future, we will try to use wavelets to preprocess the proposed method,
and we will verify it on other data sets many times to prove the generalization performance
of the method.
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