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Abstract
The rise of computational modeling in the past decade has led to a substantial increase in the number of papers that report
parameter estimates of computational cognitive models. A common application of computational cognitive models is to quantify
individual differences in behavior by estimating how these are expressed in differences in parameters. For these inferences to
hold, models need to be identified, meaning that one set of parameters is most likely, given the behavior under consideration. For
many models, model identification can be achieved up to a scaling constraint, which means that under the assumption that one
parameter has a specific value, all remaining parameters are identified. In the current note, we argue that this scaling constraint
implies a strong assumption about the cognitive process that the model is intended to explain, and warn against an overinter-
pretation of the associative relations found in this way.Wewill illustrate these points using signal detection theory, reinforcement
learning models, and the linear ballistic accumulator model, and provide suggestions for a clearer interpretation of modeling
results.
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The rise of computational modeling in the past decade has led
to a substantial increase in the number of papers that report
parameter estimates of computational cognitive models
(Lebreton, Bavard, Daunizeau, & Palminteri, 2019;
Palminteri, Wyart, & Koechlin, 2017; Tran, van Maanen,
Matzke, & Heathcote, submitted). The general goal of such
models is to capture theories of cognitive functioning in math-
ematical or computational form. For example, signal detection
theory (SDT; Green & Swets, 1966) has sought to understand
the detection of signals in a noisy environment as a probabilistic
process, in which the disambiguation of stimuli and no stimuli
depends on the strength of the (internal representation of the)
signal and a detection criterion. Reinforcement learning (Sutton

& Barto, 2018) models are aimed at understanding the learning
processes involved when people learn from the outcome of
repeated choices. A third prominent class of computational
cognitive models—sequential sampling models or evidence ac-
cumulation models—theorizes that choice behavior is the result
of a gradual accumulation of evidence for the choice alterna-
tives, until a certain criterion or threshold value is reached. This
idea is quantified in mathematical models such as the diffusion
decision model (Ratcliff, 1978; Ratcliff & McKoon, 2008) or
the linear ballistic accumulator model (LBA; S. D. Brown &
Heathcote, 2008). All these models have in common is that in
order to understand behavior, parameters are estimated that are
hypothesized to quantify aspects of cognitive processing
(Turner, Forstmann, Love, Palmeri, & van Maanen, 2017;
Wilson & Collins, 2019).

A common application of computational cognitive models
is to quantify individual differences in behavior by estimating
how these are expressed in differences in parameters
(Lebreton et al., 2019). These are then linked to pertinent
neurophysiological, psychological, or physical factors to un-
derstand how those factors give rise to different behavioral
patterns (Mulder, van Maanen, & Forstmann, 2014;
O’Reilly & Mars, 2011; Turner et al., 2017). For example,
in one of the earlier examples of this approach, Forstmann

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13423-020-01783-y) contains supplementary
material, which is available to authorized users.

* Leendert van Maanen
l.vanmaanen@uu.nl

1 Department of Experimental Psychology, Utrecht University,
Utrecht, Netherlands

2 University of Amsterdam, Amsterdam, Netherlands

https://doi.org/10.3758/s13423-020-01783-y

Published online: 6 August 2020

Psychonomic Bulletin & Review (2021) 28:374–383

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-020-01783-y&domain=pdf
https://doi.org/10.3758/s13423-020-01783-y
mailto:l.vanmaanen@uu.nl


et al. (2008) showed that individual differences in one param-
eter of the LBA model correlated with individual differences
in percentage signal change of the blood-oxygen-level-
dependent (BOLD) response in brain areas associated with
delaying an action (particularly the striatum). In this way,
these researchers showed that the LBAmodel captured a prop-
erty of behavior that in the brain is associated with striatal
activation.

It is important that the variables in an individual differences
analysis are well understood. For example, Lebreton et al.
(2019) argued that the assumptions in the neurophysiological
measurements (specifically, BOLD) could influence both the
strength and direction of a correlation between BOLD re-
sponses and some behavioral or model-based variable. In par-
ticular, they argued that the interpretation of interindividual
differences in BOLD differs according to the underlying neu-
ral coding principle that is assumed by the researcher.
Different coding principles lead to different choices in the
analysis of the behavioral variable (specifically, z scoring or
not), which in turn influences the scale of the behavioral mea-
surement (e.g., Louie & Glimcher, 2012; Poldrack, 2015).
These theoretical considerations affect the analysis choice of
standardizing (z scoring) the behavioral variable or not, which
in turn influences the scale of the behavioral measurement.

Here, we argue that in addition scaling assumptions in the
cognitive model parameters affect the observed correlations.
Specifically, the cognitive model parameters should be iden-
tified (Moran, 2016). Model identification entails that the ob-
served data are implied most strongly by a unique set of pa-
rameter values. That is to say, if one set of observed data is
equally likely to have been generated by two or more sets of
parameters (and no other, unique, set of parameters is more
likely to have generated the data), a model is unidentifiable
and the true parameters may not be known. For many models,
including SDT, the RL, and LBA models introduced above,
model identification can be achieved by enforcing an equality
constraint, which means that under the assumption that one
parameter has a specific value, all remaining parameters are
identified.

Roughly a decade ago, Donkin, Brown, and Heathcote
(2009) already noted some of the issues arising from this
equality constraint—from now on referred to as scaling
constraint as is typical in the mathematical psychology
domain—in the context of evidence accumulator models. In
particular, Donkin et al. showed that the magnitude of the
scaling constraint acts as a multiplier for the remaining param-
eters. For that reason, a constant scaling factor is necessary to
estimate the remaining parameters. Importantly, Donkin et al.
(2009) warned against a potential overconstraint, when re-
searchers routinely apply the scaling constraint in every
condition. In cases where other (nonscaling) parameters are
assumed constant across conditions—for example because it
is assumed that these parameters do not systematically differ

across conditions—this can lead to an unnecessarily strict
model, compromising the goodness of fit. Rather, when
nonscaling parameters are held constant across conditions,
the scaling constraint should be fixed to a constant in one
condition only, but for every participant.

In an extension of this work, in the current theoretical note,
we show that constraining the scaling parameter across
participants affects the outcome and interpretation of individ-
ual difference analyses based on the parameter estimates.

We argue that the scaling constraint implies a strong as-
sumption about the cognitive process that the model is
intended to explain, and warn against an overinterpretation
of the associative relations found in this way. We will illus-
trate these points first using SDT (Green & Swets, 1966) and
then using an RL model (Sutton & Barto, 2018). Finally, we
will show the consequences of different scaling constraints in
a reanalysis of data from an earlier study. In this study, LBA
model parameters were associated with behavior in a second-
ary task (Miletić& vanMaanen, 2019). The reanalysis reveals
what inferences we might have drawn under different scaling
assumptions.

The considerations that we will discuss in the current the-
oretical note emphasize that it is important to keep track of
what the parameters of a cognitive model represent.
Specifically, many parameters can be expressed relative to
each other. Fitting the model while keeping one parameter
constant for scaling purposes may change the parameter
values, but not the relationship between them. An easy way
to explicitly address this is by including the units of parame-
ters whenever possible. By analogy, the fuel efficiency of a car
is typically not expressed in a volumetric measure (e.g., liters),
nor in a distance that can be travelled (e.g., in kilometers), but
in the ratio of these two (l/km). Expressing the fuel efficiency
using the ratio of units reminds car manufacturers and auto-
motive journalists about the meaning of the quantity. This is
especially useful when sometimes the inverse of this ratio is
preferred (e.g., in the U.S., miles/gallon is often used).
Although this example does not involve fixing a parameter
to a constant (e.g., always assume that only 1 km has been
travelled), it does illustrate that parameters are often
interpreted relative to each other, which is also our perspective
when it comes to parameters of computational cognitive
models.

Signal detection theory

SDT (Green & Swets, 1966; Macmillan & Creelman, 2005)
aims to understand the detection of signals in a noisy environ-
ment as a process in which the disambiguation of stimuli and
no stimuli depends on the strength of the signal (typically
referred to as d') and a detection criterion (c). A typical as-
sumption is that the stimulus is added to the noise distribution,
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resulting in the stimulus + noise distribution (see Fig. 1a).
Based on the observed data from a detection experiment, d'
and c can be estimated. In particular, the proportions of suc-
cessful detections of the stimuli (hit rate [HR]), and incorrect
reports of detection (false-alarm rate [FAR]) lead to
bd0 ¼ Z HRð Þ−Z FARð Þ, andbc ¼ Z HRð Þ þ Z FARð Þð Þ =2, with
Z(.) as the inverse standard normal cumulative distribution
function. Because the standard normal distribution has a stan-
dard deviation of 1 by definition, SDT models are typically
constrained to this value, but this is essentially an arbitrary
choice. This can be illustrated by showing the relationship
between d' and c, and the standard deviation s of the noise
distribution. Figure 1b shows two cumulative probability den-
sity functions of the stimulus + noise distribution, mapping the
observed stimulus strengths (on the x-axis) onto the cumula-
tive probability of a hit (on the y-axis). The CDFs differ with
respect to their assumed standard deviations. Based on the HR
and FAR that are measured, the d' that is computed differs
between the two distributions. The criterion value c shifts in
a similar way as a function of s.

One common application of SDT is to understand in-
dividual differences in the criterion parameter (e.g., de
Lange, Rahnev, Donner, & Lau, 2013; Kaneko & Sakai,
2015; Rahnev, Lau, & de Lange, 2011). It is easy to see
how a different scaling assumption (e.g., d' = 1) would
lead to a different pattern of individual differences. To
illustrate this, we simulated data from 20 participants with
varying criterions (200 trials each). Half of the trials
consisted of noise trials in which we sampled from a nor-
mal distribution N(0, s). If the sample exceeded the crite-
rion c, the trial was scored as a false alarm; otherwise, it

was scored as a correct rejection. The other half of the
trials were target trials in which we sampled from N(d', s).
If the sample exceeded the criterion, it was scored as a hit;
otherwise, it was scored as a miss. For every participant,
the parameters of the simulation were drawn from the
following distributions, with F as a numeric factor rang-
ing from −1 to 1:

c∼U F−0:1; Fþ 0:1ð Þ;
d

0
∼U 0:9; 1:1ð Þ;

s∼U 0:7; 1:3ð Þ:

We used a standard one-dimensional optimizer to obtain
the standard deviation of the target and noise distribution that
would satisfy this constraint. Note that this is potentially an
overconstraint (Donkin et al., 2009), since we assume (follow-
ing standard SDT) that the target and noise distributions have
the same standard deviation.

The top panels of Fig. 2 display the default result
(the standard deviation of the standard normal distribu-
tion is 1 by definition). In this scenario, with this par-
ticular data set, we find a strong interindividual correla-
tion between factor F and criterion c, which is in line
with the data-generating model. However, had we as-
sumed d' was scaled to 1, we might have concluded
that F correlates most strongly with standard deviation
s, and to a lesser extent with criterion c. Finally, under
the potential constraint c = 1, we might have concluded
there is a weak but negative correlation between F and
d', and an even weaker correlation between F and s.

Making the scaling constraint explicit in the parame-
trization of the model helps to interpret the observed

Fig. 1 a Signal detection theory assumes that discriminating between the
presence and absence of a signal depends on the discriminability of the
signal (d') as well as an internal criterion (c). Estimating these parameters
depends on the hit rate (the light grey area under the stimulus curve) and

the false-alarm rate (the dark grey area under the noise curve). b The
mapping from the observed hit rate (HR) and false-alarm rate (FAR) onto
d' for two different standard deviations (s) of the cumulative normal
distributions, showing that d' scales with s
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correlations. In the simulation presented in Fig. 2, the
top row represents a model where the parameters are
scaled to the standard deviation of the stimulus + noise
distribution (the default in SDT). This would mean that
the underlying factor F correlates with the criterion c
per one standard deviation of the stimulus + noise
distribution, or that F correlates with c/s. Similarly,
the middle row in Fig. 2 shows that F correlates with
s/d', or the standard deviation per one “signal unit.” The
bottom row of Fig. 2 shows a negative correlation be-
tween F and d'/c. This might be interpreted as a corre-
lation between F and the signal/criterion ratio.

The simulation of an SDT study shows that even in
very simple experimental designs, conclusions about
behavior-model correlations may be ambiguous. The
ambiguity in conclusions in SDT generalizes to all other
models that are identified up to a scaling constraint. In
the next section, we specify how the implicit scaling of
reward in RL models leads to the same issues.

Reinforcement learning

RL models (Sutton & Barto, 2018) are typically applied to
understand behavior in tasks in which the participant makes
repeated decisions between multiple-choice alternatives, and
each choice alternative gives a probabilistic reward. It is as-
sumed that by trial and error, the participant discovers which
choice alternative leads to the overall largest reward and
should be preferred.

RL models consist of two parts: A learning rule and a
choice rule. The learning rule determines how an internal rep-
resentation of subjective value associated with each choice
option changes based on feedback. Learning rules typically
take the shape of

Vi;tþ1 ¼ Vi;t þ α rt−Vi;t
� �

;

where V is the subjective value associated with choice option i
on trial t, r is the reward (feedback) received for a choice, and

Fig. 2 The correlations between an underlying factor F and the
parameters of a signal detection theory model (SDT; Green & Swets,
1966), under different scaling constraints. Every row represents an at-
tempt to estimate parameters of a scenario where F correlates with crite-
rion c. The top row represents the standard practice that assumes that the

standard deviation s is scaled to 1. The middle row assumes that d' is
scaled to 1. The bottom row assumes that the criterion c is scaled to 1.
Each attempt results in different conclusions about the relationships be-
tween the model parameters and factor F
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α a free parameter called the learning rate, which governs the
volatility of V (Behrens, Woolrich, Walton, & Rushworth,
2007). The difference between the feedback and internal val-
ue, rt − Vi, t, is also known as the reward prediction error.

In addition to the learning rule, RL models are character-
ized by a choice rule. The choice rule determines the mapping
between internal representations of value to choice probabili-
ties. The choice rule is typically soft-max:

Pi ¼ expβVi

∑N
n expβVn

;

where β is a free parameter called the inverse tempera-
ture. Soft-max assumes that the probability of choosing
option i increases monotonically with Vi (assuming Vj ≠ i

are constant) according to a sigmoidal function. The
inverse temperature parameter β controls the steepness
of the slope of the sigmoid, with higher β values lead-
ing to steeper slopes, and consequently more determin-
istic choices. This parameter is often interpreted in
terms of the exploration–exploitation trade-off (e.g.,
Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).

In this model, β is only identified because of an implicit
assumption formalized in the reward prediction error rt − Vi, t.
The externally presented feedback r (e.g., “100 points” in a
hypothetical experiment) is transformed into an internal rep-
resentation of this feedback. The implicit assumption is that
this process takes the shape of an identity function, f(r) = r.
Alternative potential specifications involve a proportional
mapping of external feedback to the internal representation,
and even include nonlinear functions, such as a power law
f(r) = rθ to allow for diminishing marginal returns (with θ <
1). This specification is common in dominant economic
decision-making theories such as utility theory and prospect
theory (see, e.g., Ahn, Busemeyer, Wagenmakers, & Stout,
2008; Scholl, Kolling, Nelissen, Browning, et al., 2017a;
Scholl, Kolling, Nelissen, Stagg, et al., 2017b; Scholl et al.,
2015; Steingroever, Wetzels, & Wagenmakers, 2014, for
examples of reinforcement learning models that adhere to
utility and prospect theory).

Here, we address the simplest implicit assumption,
but it is important to stress that this principle applies
to more complex nonlinear mappings as well. If we
assume the mapping function is linear, it need not be
an identity function. A reward of, say, 100 points need
not be equally valuable for all participants (V. M.
Brown et al., 2018; Huys, Pizzagalli, Bogdan, &
Dayan, 2013). Furthermore, the subjective value of an
externally presented (constant) reward could also dy-
namically change during an experiment due to changing
motivational factors (Berridge, 2012; Zhang, Berridge,
Tindell, Smith, & Aldridge, 2009). We can explicate
the parameter that governs the weighting of externally

presented feedback to an internal representation of this
feedback: f(rt) = γrt. In this case, the learning rule be-
comes

Vi;tþ1 ¼ Vi;t þ α γrt−Vi;t
� � ¼ 1−αð ÞVi;t þ αγrt:

Dividing both sides of the equation by γ gives

Vi;tþ1

γ
¼ 1−αð ÞVi;t

γ
þ αrt;

highlighting that in essence, the γ parameter scales the internal
representations V. Incorporating the scaled V in the soft-max
choice rule illustrates that the RL model is unidentified unless
either β or γ is assumed constant:

Pi ¼
exp

βVi

γ

∑N
n exp

βVn

γ

:

Turning back to the individual differences focus of our
note, the consequence is that any factor that correlates with
β (under the assumption that γ = 1) is also associated with γ
(under the assumption that β = 1). Put differently, the correla-
tion is really with the ratio β/γ, which could be interpreted as a
correlation with the inverse temperature per unit of weighted
reward.

It is interesting to note that the learning rate parameter α
remains identified irrespective of the choice of scaling con-
straint. It follows that if a researcher is interested in individual
differences in both β and γ, scaling αwill not help, as this will
not identify the remaining parameters.

Example application using linear ballistic
accumulator

Most evidence accumulation models, including the well-
known diffusion decision model (Ratcliff, 1978) and the
LBA (S. D. Brown & Heathcote, 2008), share the issues
sketched for SDT and RL. Supplementary Materials 1 and 2
present similar simulated scenarios as for SDT, for LBA, and
DDM, respectively, illustrating that the observed associations
depend on the scaling constraints in these models. Here, we
present a reanalysis of previously published data using the
LBA model to study how different scaling assumptions can
potentially alter conclusions in a real data set. The data come
from a recent paper of ours, that studied the relationship be-
tween decision-making and temporal reproduction (Miletić&
van Maanen, 2019). In Experiment 1, we correlated the esti-
mated LBAmodel parameters of a simple choice task with the
precision in temporal reproduction, estimated using a model
of time estimation (Balcı & Simen, 2016; Simen, Vlasov, &

378 Psychon Bull Rev  (2021) 28:374–383



Papadakis, 2016). For details of the experimental paradigm or
the fitting procedures, we refer to the original publication
(Miletić & van Maanen, 2019).

The LBA model assumes that the noisy accumulation of
evidence for a choice alternative can be approximated by a
linear nonstochastic rise to a threshold value. The choice be-
tween the available alternatives follows from whichever accu-
mulation reaches the threshold value first. Incorrect responses
and response time distributions are explained by assuming
variability across trials in the linear rise-to-threshold as well
as the threshold value. This simple process accounts for many
benchmark phenomena in (perceptual) decision making (S. D.
Brown & Heathcote, 2008; Donkin & vanMaanen, 2014; van
Maanen, Forstmann, Keuken, Wagenmakers, & Heathcote,
2016). The standard LBA model has five parameters (see
Fig. 3): The rise-to-threshold (drift rate) is represented by a
normal distribution with mean v and standard deviation s. The
distance to the threshold is represented by a uniform distribu-
tion [B–A, B] (i.e.,B is the maximum threshold value, and B–A
is the minimum, because the start point of accumulation is
sampled from [0, A]; S. D. Brown & Heathcote, 2008). In
addition, the LBA model assumes that the time required for
perceptual processing prior to a decision stage, and the time
required for executing a motor response, together result in a
shift of the response time distribution (t0).

The parameters were optimized by maximizing the
summed log likelihood using the SIMPLEX algorithm
(Nelder & Mead, 1965). To eliminate any implicit scaling
due to boundaries of the parameter space, all parameters ex-
cept t0 were estimated on a log scale. Note that this was done
without a scaling constraint. The t0 parameter was estimated
using a logistic transformation that mapped the range [0,

min(RT)] to [−∞,∞]. To avoid local minima, the fitting was
restarted with random initial values at least 500 times.1 To
illustrate the effect of different scaling constraints, we divided
all parameters except t0 by various scaling constraints. Each
row in Fig. 4 presents the results for a different constraint.

The top row in Fig. 4 replicates the result fromMiletić and
van Maanen (2019), where we assumed that the standard de-
viation of the winning accumulator is always the same.2 We
found a correlation between temporal precision m and the
threshold parameter B, as well as a marginally significant cor-
relation between m and the mean drift rate of the winning
accumulator v1. Of note is that we did not find correlations
with the mean drift rate of the losing accumulator v2, nor with
the standard deviation of that accumulator.3 Here, we assumed
that the standard deviation of the winning accumulator would
not vary between participants, hence the correlation of that
parameter with m could not be verified. These results suggest
that individuals who were better “timers” (indicated by a low
m) displayed higher thresholds and possibly higher drift rates
than individuals who were poorer timers (i.e., high m).

The second row of Fig. 4 reveals what conclusions we
might have drawn, had we constrained the standard deviation
of the losing accumulator (s2). The values on the y-axes

Fig. 3 The linear ballistic accumulator model assumes that binary
decisions depend on the accumulation of evidence for either choice
alternative, which varies from trial to trial. The rise-to-threshold (drift
rate) is characterized by a normal distribution with mean v and standard
deviation s. The distance-to-threshold is characterized by a uniform

distribution [B–A, B]. Because v and s are assumed to differ between
the accumulators representing correct and incorrect choices, these param-
eters jointly explain the proportion of errors, as well as the observed
response time distributions for different choices (shown on top)

1 The best fitting parameter estimates of the originally published model were
also included as initial guesses.
2 Note that in the original analysis we report response caution, defined as B −
A/2, rather than B. Response caution is the average distance to threshold. For
the current purposes we focus on the threshold parameter instead; m is a
parameter from a model of temporal reproduction, and is directly proportional
to the coefficient of variation.
3 The original correlations did not depend on the two extreme estimates of m.
For details, see Miletić and van Maanen (2019).
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Fig. 4 Correlations between estimated linear ballistic accumulator (LBA)
model parameters and temporal precision in a secondary task. Left panels:
Threshold parameter B. Middle panels: Mean drift rates for correct (blue,
v1) and incorrect (red, v2) responses. Right panels: Standard deviation of
drift rates for correct (blue, s1) and incorrect (red, s2) responses. Each row

is scaled differently (indicated between brackets on the y-axis). The sta-
tistics are the results of correlation tests on the LBA parameter and tem-
poral precision from Miletić and van Maanen (2019), suggestive of the
different conclusions that might have been drawn if different scaling
assumptions would have been made
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represent the originally estimated parameters, but divided by
the standard deviation of the losing accumulator. Although
this is not necessarily identical to the result of refitting the data
with the new constraint, it comes close, as differences could
only be due to local minima in the parameter landscape. The
interpretation of our original analysis would not be supported,
although the trends in the data seem to be consistent.

The third row of Fig. 4 shows the conclusions under the con-
straint that the sum of drift rates is 1, which is a common assump-
tion in LBAmodels (Donkin, Brown,&Heathcote, 2011). Under
this assumption, the conclusion that B and m correlate can again
be drawn, but not the conclusion that v1 andm correlate. Note that
the correlation coefficients of the drift rates of the winning and
losing accumulators are equal but of opposite sign, due to the
specific scaling constraint used here (i.e., v1 + v2 = 1).

The bottom row of Fig. 4 shows what the conclusion would
have been under the constraint that B = 1. Because we now do
not allow B to vary across individuals, there is no association
with B possible. Instead,m now predicts the inverse pattern of
drift rates, in particular for the losing accumulator: the higher
m, the higher v2. This would entail that precise timers (low m)
display slow evidence accumulation for incorrect responses.
Such a conclusion would have been meaningful had the hy-
pothesis been that individuals who are good at time estimation
also have the ability to suppress irrelevant information.

Making the scaling constraint explicit in the parametrization
helps to understand the apparent ambiguity of the results. For
example, if the standard deviation of the drift rate is constrained
to s1= 1 (see Fig. 4, top row), then the threshold parameter can be
thought of as a target amount of evidence (E) relative to one
standard deviation of drift rate. The unit associated with that
quantity would be E/(E/s), since the unit of drift rates is the
amount of accumulated evidence per second (note that s here
refers to second, contrary to s1, the standard deviation of the drift
rate distribution). Similarly, the unit of themean drift rate vwould
become (E/s) / (E/s), or a unitless signal-to-noise ratio.

If, on the other hand, the threshold parameter was constrained
at B = 1E (i.e., one evidence unit E, as in Fig. 4, bottom row),
then the unit of both the mean and standard deviation of the drift
rate would become (E/s)/E. Rearranging to 1/s makes clear that
this can be thought of as frequency: it expresses the (mean and
standard deviation of the) number of threshold distances that an
accumulator covers per second. In light of the experiment we
reanalyzed, this would mean that higher m is associated with a
higher number of threshold distances covered per second, in
particular for the incorrect accumulator.

Although both interpretations highlight different aspects of
the cognitive processes, they are consistent with each other.
The first interpretation holds that m correlates negatively with
the threshold-to-noise ratio b/s1, but not with signal-to-noise
ratio v2/s1. Hence, higher m indicates lower b/s1, but equal v2/
s1. It follows that relatively speaking, the speed-per-threshold
v2/b (for the incorrect accumulator) is higher for higher m.

This is the second interpretation: higher m is associated with
a higher number of threshold distances covered per second.

Discussion

In this article, we illustrated the consequence of choosing a po-
tentially inappropriate scaling constraint, when interpreting cor-
relations between computational cognitivemodel parameters and
individual differences in neurophysiological, psychological, and
physical factors. In simulation, we showed that the data-
generating parameters of SDT cannot be recovered, unless a
scaling constraint is assumed. The choice of scaling constraint
critically affects the parameter estimates, which becomes crucial
for interpreting the relationship with other factors, often neces-
sary for scientific progress. Similar findings can be observed
acrossmultiplemodeling paradigms, includingRL, and evidence
accumulation models (DDM and LBA). In a reanalysis of a
previously published experiment using the LBA model, we cor-
roborated these findings, and found that one specific association
between a model parameter and a measure taken from another
task flips sign depending on the assumption adopted. That is, in
the original publication we found a positive correlation between
drift rate and temporal precision, suggesting that participants that
were more uncertain in their temporal judgements showed faster
evidence accumulation. In addition, we found a negative corre-
lation between temporal precision and threshold, suggesting that
more imprecise participants adopted lower threshold values. In a
subsequent experiment we teased apart these effects, such that
we remain confident about our initial conclusions (see Miletić&
van Maanen, 2019).

However, assuming a different scaling constraint ultimate-
ly led to a positive correlation between the drift rate of a losing
accumulator and temporal precision, suggesting that partici-
pants that were more certain in their temporal judgements
could suppress irrelevant information. This suggestion seems
plausible on the surface, and researchers might be tempted to
adopt this conclusion, if they would find the scaling constraint
that was used appropriate.

It is important to realize that the ambiguity in these conclu-
sions is essentially an interpretation problem. When fitting a
model while keeping one parameter constant for scaling, the
estimates of all other parameters are defined relative to the
scaling constraint—and thus, the interpretation of these pa-
rameters should also be understood relative to the scaling
constraint. Different conclusions about interindividual corre-
lations reached under different scaling assumptions may at
first sight appear contradictory, but they are, in fact, consistent
with one another. This becomes clear when the scaling con-
straint is explicitly mentioned in the parametrization.
However, this interpretation step is often not made in the lit-
erature, and poses limitations on the conclusions that one can
draw.
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To guide the interpretation of parameter estimates, we pro-
posed to explicitly express parameters in their respective units.
Expressing parameters in their units explicates the relationships
that exist between parameters. Fitting the model while keeping
one parameter constant for scaling purposes changes the units of
the estimated parameters, and consequently the interpretation. In
light of this, it makes intuitive sense to interpret the evidence
accumulation process implemented in LBA as a signal-to-noise
ratio, although in some cases other design choices could bemade
(e.g., Nunez, Srinivasan, & Vandekerckhove, 2015; Nunez,
Vandekerckhove, & Srinivasan, 2017). This also seems the most
useful interpretation for the sensitivity and criterion of SDT.

For standard RL, the most straightforward way to explicate
the relationship between β (the inverse temperature of the soft-
max function) and γ (the weighting of the reward function) is to
express β in units of 1γ. The alternative is also possible, if a
researcher is interested in individual variation γ: In that case,
scaling β to β= 1, means that the weighting of the reward func-
tion is expressed per 1 unit inverse temperature. More complex
relations might entail when the relationship between reward and
value is modelled in a nonlinear way (Ahn et al., 2008; Scholl,
Kolling, Nelissen, Browning, et al., 2017; Scholl, Kolling,
Nelissen, Stagg, et al., 2017; Scholl et al., 2015; Steingroever
et al., 2014), making it even more important to keep track of
the relationship between parameters. These examples illustrate
that expressing parameters in their respective units helps in
interpreting the parameter estimates, and—at least for replicabil-
ity purposes—helps in specifying themodel under consideration.

The contribution of the current paper is that a conclusion
about the association between a cognitive model parameter and
another factor is only valid under the assumption that participants
indeed do not vary with respect to the scaling constraint.
Unfortunately, in many papers, the scaling constraint is not men-
tioned, or only cursory (Tran et al., submitted). This makes con-
clusions about the relationships that exist between model and
individual difficult to interpret, since there is no explicit justifica-
tion for the scaling constraint that is applied.

Because sets of parameters can be rescaled to another param-
eter, it is not enough to argue that the default scaling constraint is
accurate, because the model’s fit is good. That is, another scaling
constraint results in exactly the same goodness of fit, but a dif-
ferent relationship with the underlying factor of interest.

Implicitly, we addressed another issue, and that is the assump-
tion of a scaling constraint per se. In generating the data for our
simulations, we made the assumption that participants differed in
the values of all their parameters. In contrast, applications of the
class of models under consideration here almost always assume
that at least one parameter is constraint across participants for
scaling purposes. This assumption may be warranted in many
applications, where variability in the parameter that is selected for
scaling is small and nonsystematic compared with others (cf. the
SDT illustration with which we started). A solution that more
closely adheres to the true variability in the data might be to

hierarchically fit the cognitive model to all participants. Under
the assumption that participants are hierarchically nested in a
group, one could constrain only the group level parameter to a
constant. This way, the scaling property is satisfied, while
allowing variability around this constant on the level of partici-
pants. Using Bayesian model fitting techniques (Anders,
Oravecz, & Alario, 2017; Lee & Wagenmakers, 2013), this is
often implied by prior distributions of the parameters, either on
the individual or group level. These prior distributions enforce
the intuition that the scaling parameters are at least closely relat-
ed, but allow variability if necessary. This approach might best
balance the need for constraint with the reality of the data.

Open practices statement The SDT simulation study, the
reanalyses fromMiletić and van Maanen (2019), and the anal-
yses reported in the Supplementary Materials are available
online (https://osf.io/ctp9r/).
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