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Abstract: Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary
brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and
exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many
HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach.
HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor
heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-
fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard
therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals,
and precision medicine may be more advantageous than a single treatment model. This multimodal
approach considers the environmental and genetic factors which could affect the patient’s response
to therapy, thus improving their outcome. This review discusses the current views and advances
in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will
assist in overcoming challenges in HGG.

Keywords: high-grade glioma; glioblastoma; anaplastic astrocytoma; anaplastic oligodendroglioma;
oligodendroglioma; chemotherapy; radiotherapy; immunotherapy; phytochemicals; nanoparticles

1. Introduction

Cancer is categorized by the World Health Organization (WHO) as the second deadli-
est disease, with an estimated death of 9.6 million globally in 2018 [1]. According to Siegel
et al., in the United States alone, the number of newly diagnosed cancer patients shows
an increment of around 8.94%, with an increase of 2.90% in mortality rate in the last five
years [2,3]. According to the WHO classification, glioblastoma (GBM) is a grade IV glioma
and the most aggressive form of diffuse glioma belonging to the astrocytic lineage. Out of
all gliomas and primary brain tumors, GBM makes up the majority of it. This makes it the
most common primary brain tumor [4].

Gliomas are neuroepithelial CNS tumors that can be classified into low-grade gliomas
(LGG) and high-grade gliomas (HGG) [5]. Gliomas are characterized by the grade of
malignancy, morphological characteristics, and molecular markers alteration based on the
2016 WHO classification [6]. Grade II–IV glioma includes astrocytoma, oligodendrogliomas,
and glioblastoma (GBM) [6–8]. Although the prevalence of HGG (4.55%) is low compared
to other cancers, it remains a fatal and aggressive type of primary brain tumor based on the
CBTRUS statistical report from 2009–2013 in the US population [2,3,9]. LGG patients often
respond better to treatment and have a better prognosis though patients may experience
relapse with more aggressive glioma features [10,11]. GBM is the most aggressive adult
form of HGG, accounting for 60–80% of all incidence among elder individuals (median age
of diagnosis of 62 years old) with a median survival of 15 months [4,12,13]. However, many
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HGG patients are not well suited for oncological treatment and are referred for palliative
care instead [4,13–15].

The recommended standard of care for newly diagnosed HGG includes surgical resec-
tion, radiotherapy, and chemotherapy. Despite the optimal primary treatment, the patients’
prognoses remain abysmal. According to the Central Brain Tumor Registry of the United
States, the median overall survival is between 15–23 months and a low five-year survival
rate (between 2007–2011) [4,13,16]. This can be due to surgical resection’s inefficacy to
fully resect the tumor and lack of effective therapeutic approaches to exclusively target
HGG tumors that often have high tumor heterogeneity with complex tumor microenviron-
ment [17]. Currently, there are no curative treatment options available for HGG, especially
in GBM, and the current therapeutic leads to adverse side effects. Recent clinical trials
utilize targeted treatment like immunotherapy and gene therapy as an adjuvant to counter
the impact of immune dysregulation by stimulating the patient’s immune system [18].
Recent breakthroughs in unraveling the molecular pathogenesis in HGG would improve
the classification of gliomas, determine a patient’s prognosis, and develop a therapeutic
regimen based on each patient’s requirement.

Additionally, research has looked into the potentiality of natural products as
nutraceutical-based adjuvants [19–21]. Hence, this present review aims to discuss the
current views of drug development and therapy in HGG. Additionally, this review dis-
cusses the therapeutic potential and the challenges associated with each of the different
treatment modalities. The highlights and discussion in this review aim to improve the
existing knowledge and bridge the gap in HGG research and advancement, particularly in
the last decade. We hope this will provide a more comprehensive understanding of the
development of more precise, effective, and personalized therapy in HGG patients.

2. Overview of Standard Therapy in HGG
2.1. Surgical Resection

Surgical resection is regarded as the benchmark to alleviate symptoms due to tumor
mass. It decompresses the bulk of the tumor, reduces the elevated intracranial pressure, and
provides a sufficient histological analysis of the tissue sample [22]. GBM’s residual presence
is often seen in tumor recurrence cases due to their highly infiltrative and proliferative
nature. Therefore, maximizing the tumor removal, which includes excising the margins
with minimal impacts on the healthy surrounding tissue, is crucial to improve the life
expectancy of GBM patients [23]. The average survival for patients who have undergone
surgical resection only instead of biopsy is significantly higher (7 months vs. 3.5 months),
according to Lara-Velazquez et al. [24]. Thus, the degree of tumor resection influences GBM
patients’ prognoses. Although radical extirpation is usually the aim, this is not attainable
due to the infiltrative nature of GBM cells [8,24,25]. Hence, every neurosurgeon’s realistic
aim is to resect up to a 90% threshold without causing surgery-related neurological deficits.
The innovations in the field of neurosurgical oncology which can aid in ensuring maximum
cytoreduction are summarized in Table 1.

Table 1. Innovations in neurosurgical oncology.

Innovation Description

Awake Craniotomy

• Allows identification of eloquent areas of tumor in the subcortical and cortical regions,
especially tumors which would otherwise be regarded as inoperable [24,26].

• Allows monitoring of patient while awake during surgery, thus increasing the degree of
resection.

• Better Karnofsky Performance Score post-operatively, local anesthesia usage, and
decrease hospitalization [24,27,28].

• Patients generally had better resections than patients under general anesthesia (25.9% vs.
6.5%) [24,27].
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Table 1. Cont.

Innovation Description

5-Aminolevulinic acid (5-ALA)

• Used in fluorescence-guided surgery, allowing to determine the tumor location,
investigate MRI findings pre and post-operatively, and identify the eloquent areas
involved in surgery [29,30].

• Exhibits promising results in increasing the patient’s survival with gross total resection
more achievable than without 5-ALA (65% vs. 35%, respectively) [24,29–31].

• Adverse effects—increased liver enzymes, neurological impairment and photosensitivity
[24,32].

Intraoperative mass spectrometry
(MS) and Desorption electrospray

ionization (DESI)

• Used to determine how molecules are arranged spatially in biological tissues [24].
• Integration of MS allows surgeons to distinguish tumors by acquiring the complex

molecular data in real-time [33–35].
• DESI allows biological tissues to be directly sampled and analysis of molecules that are

intact [34,36,37].
• 83% and 93% value for specificity and sensitivity respectively of surgical demarcation

when estimating the percentage of high tumor cell using DESI-MS [33].

Carmustine (BCNU) wafers
(Gliadel®)

• During surgery, carmustine (BCNU) is implanted at the tumor site. This enables
carmustine (BCNU) to diffuse across the adjacent tissues and supply therapeutic doses
locally [38,39].

• The combination of Gliadel wafers with systemic Tmz and radiotherapy prolonged the
overall survival [38,39].

2.2. Chemotherapy

The common alkylating agents used in HGG are temozolomide (Tmz, 8-Carbamoyl-
3-(2-chloroethyl)imidazo (5, 1-d)-l,2,3,5-tetrazin-4(3 H)-one) (Figure 1) and lomustine
(chloroethyl-cyclohexyl-nitrosourea, CCNU) [40–42]. Before Tmz, CCNU was the first-line
of treatment in GBM patients (110 mg/m2 orally every six weeks) [43]. Currently, CCNU is
administered in recurrent GBM patients [41,42,44]. CCNU is highly lipophilic, enabling
BBB penetration, making it an ideal candidate in GBM and treating other HGGs [40,44].
CCNU induces alkylation of DNA and RNA strands resulting in the formation of O6-
chloroethylguanine lesions [44]. CCNU inhibits the enzymatic function of key enzymes
involved in the carbamoylation process of amino acids, interfering with transcription and
translation processes [45–47]. CCNU efficacy in GBM relies on MGMT and mismatch
repair status, which repair the interstrand links form via CCNU toxicity [44,48]. Although
GBM patients with methylated MGMT and deficient mismatch repair often have a better
prognosis with CCNU, the six-months progression-free survival (19%) and median overall
survival (7.1 months) remains low, particularly in recurrent GBM patients as demonstrated
in phase III clinical trial [49].

Tmz had become the major game-changer in HGG, replacing nitrosourea-based
chemotherapy following a phase II randomized trial for recurrent GBM [50]. Tmz is
hydrophilic and small in size (194 Da) with BBB’s efficient penetration. Oral administration
of Tmz is accompanied by 100% bioavailability in the blood flow [51–53]. However, in
brain tumor tissue, the concentration of Tmz is around 20% of the plasma level [54,55].
The cerebrospinal fluid concentrations are similar, but the levels can rise to 35% of plasma
levels [54,56]. Tmz is stable in acidic conditions and labile in an alkaline state with a
plasma half-life of 1.8 h at pH 7.4 [57]. Moreover, brain tumors have a higher alkaline
pH compared to the surrounding healthy tissue, a condition that favors Tmz prodrug
activation [57]. Moreover, Tmz demonstrates an acceptable safety profile with mild or
moderate adverse effects making it a standard treatment in recurrent HGG while CCNU
being the second-line therapy [50]. However, Tmz is associated with side effects such as
nausea, fatigue, significant myelosuppression, thrombocytopenia, severe infections, and
myelodysplastic syndrome [54,58].
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Figure 1. Schematic depiction of Tmz mode of action. Tmz undergoes spontaneous hydrolysis intracellularly to
form monomethyl triazene 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide (MTIC). MTIC then hydrolyzed to form
5-aminoimidazole- 4-carboxamide, which later converts into methylhydrazine [52]. Methyldiazonium, an active cation,
then methylates the nucleobases, preferentially N7 position of guanine (N7-MeG; 70%), guanine rich site and to a certain
extend at N3 adenine (N3-MeA; 9%) and O6 guanine residues (O6-MeG; 6%) [59,60]. This results in the formation of nicks in
the DNA resulting in apoptosis and cell cycle arrest at the G2/M phase [60,61].

The standard dose (75 mg/m2/day) and concurrent administration of Tmz in recur-
rent anaplastic astrocytoma patients demonstrated 6-month progression-free survival and
overall survival of around 46% and 13.6 months, respectively [62–64]. The continuous
dose-dense Tmz for recurrent anaplastic astrocytoma can help overcome the drug resis-
tance by decreasing MGMT activity with anti-angiogenic properties [62,65,66]. In contrast,
anaplastic oligodendroglioma patients are responsive to various chemotherapy such as PCV
(procarbazine, vincristine, lomustine) and Tmz [62,67]. Although PCV administered prior
or after radiotherapy did not improve the overall survival among newly diagnosed low-
grade anaplastic oligodendroglioma patients, significant improvement was observed in the
progression-free survival when PCV administered following radiotherapy (24.3 months vs.
13.2 months) [67–69]. This improvement, however, demonstrated significant toxicity and
patients’ low quality of life. Interestingly, high-grade anaplastic oligodendroglioma patients
with 1p/19q co-deletion treated with radiotherapy only or a combination of radiotherapy
and PCV exhibited improvement in the overall survival [70–73]. Tmz is more tolerable than
PCV, and recent clinical trials supported its use for anaplastic oligodendroglioma patients
with intact 1p/19q and wild-type IDH1 [68,71]. Tmz demonstrated a positive response in
anaplastic oligodendroglioma patients and is used as the first line treatment in progres-
sive or recurrent anaplastic oligodendroglioma who are CT-naïve [74,75]. Previously, in a
prospective GICNO study, it was reported that co-deletion of 1p/19q is associated with
Tmz responses, and MGMT methylation is correlated with co-deletion of chromosome
1p/19q in anaplastic oligodendroglioma [76]. Hence, MGMT methylation and 1p/19q
co-deletion could confer a favorable prognosis in patients with HGG. Thus, a complex
model integrating 1p/19q co-deletion, MGMT methylation, IDH1 mutations while taking
into consideration the patient’s age and histopathological diagnosis should be integrated
to validate this [77]. The univariate analysis of the NRG Oncology/RTOG 0424 trial also
validated MGMT promoter methylation as an independent prognostic biomarker, particu-
larly in LGG patients receiving a combination of Tmz and radiotherapy [78]. This analysis
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demonstrated a significantly reduced OS association with unmethylated MGMT promoter
status. Additionally, this study highlighted MGMT promoter methylation as a potential
prognostic tool besides IDH1/2 mutation for LGG [78]. Anaplastic oligodendroglioma
patients treated with radiotherapy and PCV obtained an approximately objective response
rate of 44% towards Tmz with the median overall survival of 10 months [74,75,79,80].

Typically, the standard treatment for newly diagnosed GBM involves a four-pronged
approach. Following surgery and histopathological and molecular diagnosis, patients
are subjected to radiotherapy with concurrent administration of Tmz [81]. Stupp and
coworkers [82] showed that patients who received radiotherapy with concomitant daily
Tmz followed by six cycles of adjuvant Tmz recorded an improved median survival
(14.6 months) as compared to control groups (12.1 months). Additionally, the patients
showed a 26.5% improvement in the two-year survival rate compared to the traditional
approach (10.4%). For patients over 70, where surgery is not an ideal option, less aggressive
radiation or Tmz treatments are prescribed [83]. Nevertheless, due to tumor resistance over
time, extreme neurological deterioration, and the high risk of relapse, these therapies are
frequently proven ineffective [60,84].

2.3. Radiotherapy

Although radiotherapy following surgical resection does not offer complete cura-
tive effects in most HGG cases, it offers progression-free survival benefits compared
with chemotherapeutic agents [16,69]. In a prospective study (NOA-04 study), initial
chemotherapy (Tmz or Vincristine) combined with deferred radiotherapy was equivalent
to using radiotherapy alone [85]. Additionally, the study showed no significant difference
in progression-free survival between patients who received chemotherapy versus initial
radiotherapy. This study also indicated that IDH1 mutation has a favorable prognosis than
the methylation of MGMT promoter or 1p/19q co-deletion. Hence, anaplastic astrocytoma
with IDH1 wild-type and MGMT methylation patients may be more suitable treated with
chemotherapy and if the MGMT is unmethylated, they are better treated by radiotherapy
only. This is because MGMT encodes for a DNA repair enzyme that interferes with DNA
alkylation by Tmz [86]. Additionally, when the CpG islands located in the promoter regions
of MGMT are methylated, it suppresses MGMT transcription. Hence, individuals with
methylated MGMT HGG exhibit a favorable response when given Tmz [86]. Re-irradiation
is also useful in providing palliative benefit and is considered safe in recurring anaplastic
astrocytoma patients [62,87,88].

In three clinical trials, a combination of radiotherapy with PCV in anaplastic oligoden-
droglioma patients (EORTC 26955 and RTOG 9402) and LGG (RTOG 9802) demonstrated
an improvement in overall survival [62]. In another study, PCV addition to radiotherapy in
anaplastic oligodendroglioma patients is not restricted to tumors with 1p/19q co-deletion
but also to ATRX and IDH mutations [89]. Anaplastic astrocytoma patients may share simi-
lar molecular traits with anaplastic oligodendroglioma patients having 1p/19q co-deletion
and low-grade astrocytoma with IDH mutations. The results from these clinical studies
can be extrapolated for all diffuse gliomas, including anaplastic astrocytoma. The efficacy
of Tmz in combination with radiotherapy in treating anaplastic astrocytoma with 1p/19q
co-deletion yielded superior results as opposed to radiotherapy only [63,90]. In 2017, the
European Union of Neuro-Oncology suggested maximal safe resection followed by radio-
therapy only or chemotherapy only (Tmz or PCV) for individuals with newly diagnosed
anaplastic astrocytoma lacking 1p/19q co-deletion [40]. Postoperative radiotherapy (total
dose of 60 Gy across 30 fractions) is commonly given in anaplastic oligodendroglioma
patients [91–93]. However, there are different views that radiotherapy is unnecessary for
anaplastic oligodendroglioma patients with 1p/19q co-deletion due to neurocognitive
impairment. Nevertheless, there is no substantial scientific evidence of this opinion, and
therefore, radiotherapy is still considered the standard therapy for all malignant gliomas
until further evidence is made available.
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3. Challenges in HGG Standard Therapy

Though HGG therapy gives the patients an extended overall survival, it comes with
an actual impedance [94]. For example, in oligodendroglioma, ~4% of the cancer stem cells
(CSC) are cycling stem cells that promote tumor growth and recurrence. In comparison,
the remaining 96% are non-cycling cancer cells that are resistant to chemotherapy and
radiotherapy [94–96]. Mutation of IDH renders cells incapable of fully utilizing the citric
acid cycle, which creates ATP deprivation, leading to a low cell cycle performance [94].
Although chemo-radiotherapy has substantial benefits in prolonging the median overall
survival (>14 years), even after the prescription has been repealed by six rounds and
the dose has been lowered, the mortality rate remains high. In RTOG 9402 and EORTC
26951 clinical trials, patients prescribed with lesser cycle therapy and lower dose exhibited
significant hematological toxicities (56% and 46%, respectively) [97]. These toxicities further
necessitate the development of more effective therapy that selectively targets tumor cells
while maintaining patient quality of life.

In anaplastic oligodendroglioma patients, radiation is included as post-surgery initial
treatment. However, the PCV regime has been added as part of disease management (based
on EORTC 26951 and the RTOG 9402 trials), which demonstrated prolonged survival and
better radiographic response rate (93–100%) in 1p/19q co-deletion gliomas than Tmz
(35–82%) [98]. However, the combination of PCV with radiotherapy has been associated
with cognitive deterioration and brain damage due to prolonged irradiation. In the hope
of sparing and delaying such damage, the possibility of including only PCV chemother-
apy has been suggested as an alternative option [98]. Although PCV was suggested as
the potential standard care chemotherapy based on the EORTC/RTOG (phase III) trial
(PCV + radiotherapy) in patients with 1p/19q codeletion, there is still an ongoing debate
on Tmz use as a replacement for PCV due to its lower toxicity and easy administration
mode [98–100]. Although PCV demonstrated better effects than Tmz, the NOA-04 trial
demonstrated no difference between PCV and Tmz in combination with radiotherapy.
Suggesting neither regimen is superior to the other [101]. An ongoing two-arm phase III
clinical trial (NCT00887146) is looking into the direct comparison between PCV- radio-
therapy combination against concomitant and adjuvant Tmz with radiotherapy anaplastic
oligodendroglioma patients with 1p/19q co-deletion [102].

Anaplastic astrocytoma patients with 1p/19q co-deletion and IDH mutation often
have a better prognosis. In contrast, patients with only IDH mutation and intact 1p/19q
have moderate prognoses [62]. Although wild-type IDH anaplastic astrocytoma patients
tend to have poorer prognoses, they share similar molecular alterations with GBM patients,
including EGFR amplification, gain in chromosome 7, and loss in chromosome 10 [103]. In
IDH-wild type astrocytoma, the high tumor heterogeneity further under defined treatment
strategy [104]. Hence, patients are diagnosed and treated on a case-to-case basis based on
age, Karnofsky Performance Status (KPS), loss in chromosome 10, and gain in chromosome
7 along with the clinical and radiological course, and MGMT methylation status [104]. Al-
though IDH-mutated diffuse glioma patients have better prognoses and higher sensitivity
to chemotherapy, the IDH protein may represent a druggable antigen [105]. IDH catalyzes
the conversion of α-ketoglutarate into 2-HG, causing D-2-HG accumulation, which can in-
hibit numerous histone demethylases. The D-2-HG acts as a competitive inhibitor towards
α-KG-dependent histone demethylases [106]. Additionally, D-2-HG also competitively
inhibits the function of ten-eleven translocation methylcytosine dioxygenase 1 and 2 (TET 1
and TET2). TET functions as a catalyst for 5-methylcytosine (5-mC) demethylation process
through a series of conversions. However, when D-2-HG is present, it limits the ability of
cytosine to demethylate. Hence, this causes 5-mC to accumulate in the genome, which in-
duces cytosine demethylation [107]. Increased histone methylation associated with D-2-HG
can restrict cell differentiation which is vital in gliomagenesis and cell maintenance [108].
Furthermore, D-2-HG may affect numerous pathways involved in DNA repair. It inhibits
the α-KG-dependent alkB homolog (ALKBH) enzyme, which sensitizes cancers with IDH
mutations to DNA alkylating agents [109]. Moreover, mutation to IDH1 downregulates
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the ataxia-telangiectasia-mutated (ATM) signaling pathway via an alteration to histone
proteins’ methylation [110], resulting in enhanced sensitivity towards agents that dam-
age the DNA. Moreover, IDH mutation causes a reduction in NAD+, affecting the poly
(ADP-ribose) polymerase-1 (PARP1)-associated DNA repair pathways [107].

The current standard protocol of treating HGG can be improved using immunotherapy
or gene therapy to target the DNA repair pathways. Furthermore, decreased glutamate
and enhanced glutaminolysis are commonly seen in cancers with IDH mutation. Hence,
inhibiting glutaminases, would suppress IDH mutant cancers from growing as decreased
glutamate and dependence on glutaminolysis are important characteristics of IDH mutant
cancers [107].

Up-to-date chemotherapy of either PCV or Tmz, depending on physicians/patients’
preference for residual tumor patients after initial surgery, is recommended either with
radiotherapy for diffuse astrocytomas (IDH mutated or wild type) or alone for oligoden-
drogliomas [111]. Although prolonged survival of oligodendroglial patients over anaplastic
astrocytomas was reported, the differences were not statistically significant [112]. The lack
of details on possible allelic losses on chromosomes 1p/19q and IDH mutation status in
the patient population prevents a full assessment of observing survival disparity after
radiotherapy [112].

Tmz efficacy within a tumor can be affected by DNA repair systems (Figure 2) such as
base excision repair, mismatch repair, and notably, the methylation status of MGMT [54].
MGMT encodes O6-alkylguanine-DNA alkyltransferase (AGT) protein that removes the
alkyl genotoxic O6-meG adducts leading to chemoresistance [113]. In GBM, the therapeutic
advantage is most effective in 50% of patients whose tumors exhibit MGMT promoter
methylation [54,113]. GBM patients who initially respond to Tmz eventually experience
a relapse before or after treatment termination [114]. Cysteine-phosphate-guanine (CpG)
is the DNA methylation site of the MGMT gene that renders its inactivation leading to
reduced gene expression. Within this promoter region, 97 CpG loci are present with
two different methylation domains. However, not all the methylation site of CpG loci
regulates MGMT expression [115–117]. An unmethylated promoter region corresponds
to an active MGMT gene leading to an increased expression commonly associated with
Tmz resistance [117–121]. However, MGMT accounts for only 8–10% of Tmz resistance
in GBM [119,122]. Although MGMT promotes Tmz resistance, additional factors such as
post-translational modifications on histones proteins [123] and miRNAs deregulation [124]
are also involved.

The mispairing of O6-methylguanine (O6-MeG) with thymine induced by Tmz is
seen during the replication of DNA in unmethylated MGMT cells (Figure 2) [125,126].
This mispairing results in the mismatch repair system’s activation to excise thymine from
the newly synthesized daughter strand, leaving O6-MeG the parental strand intact. This
restorative process undergoes repetitive cycles by reinsertion and removal of thymines
leading to cell cycle arrest and apoptosis [125,126]. Impairment in mismatch repair system
contributed by gene mutations such as melanocyte-stimulating hormone 2 (MSH2), MSH6,
mutL homolog 1 (MLH1), and post-meiotic segregation-increased Saccharomyces cerevisiae 2
(PMS2) [57,59,122]. In a study by McFaline-Figueroa and colleagues [127], Tmz showed
modest deregulation in the expression of MutS ∝ MMR recognition complex components
with MSH6 (50%) and MSH2 (70%) proteins. The observation is correlated with the
diminished mismatch repair activity and accounted for Tmz resistance. However, these
mutations are predominant among recurrent patients with methylated MGMT GBM than
primary GBM, suggesting that initial Tmz sensitivity may exert selective pressure to alter
mismatch repair protein expression [57,59,122].

Base excision repair system is involved in repairing DNA damage caused by oxidizing,
ionizing radiation, or alkylating agents [119]. The methylation of N7-guanine (60–80%) and
N3-adenine (10–20%) represents more than 90% of the methylation by Tmz and is rapidly
repaired by base excision repair [119,122]. When one or more base excision repair com-
ponents are mutated, its ability is deficient and contributes to Tmz cytotoxicity [128,129].
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Notably, N3 lesions are lethal if not repaired, as opposed to N7 lesions, which leads to
inhibition of PARP-1. Such inhibition results in the accumulation of DNA nicks, which is
removed via the cell death mechanism. DNA damage causes hyper-activation of PARP-1,
resulting in NAD+ and ATP depletion, leading to cell death [59,122]. Although N7-guanine
and N3-adenine methylation are higher than that of O6-guanine, base excision repair role
in Tmz resistance is reportedly less critical than that of MGMT and MMR mutation [59,122].
Current studies have found that ferroptosis, a novel cell death mechanism, has been linked
to cancer progression and drug resistance in GBM [130,131]. Although ferroptosis’s role
in Tmz resistance may serve as a potential therapeutic avenue in sensitizing GBM cells to
Tmz, further studies are needed to fully understand its mechanism.

Figure 2. Mechanisms of Tmz resistance. (a) The expression of MGMT along with successful DNA repair mechanisms:
(b) mismatch repair; (c) Base excision repair resulting in survival as GBM tumors leading to chemoresistance.

Generally, Tmz can induce cell cycle arrest and apoptosis via DNA damage in tumors
that lack MGMT. However, in glioma, such as U87 cell line, they can develop a response
against Tmz-induced apoptosis and arrestment of the cell cycle at the G2/M phase [119,132].
Such finding suggests the possible involvement of other cell death mechanisms. Recent
studies have shown Tmz treatment induces autophagy in GBM cells. Chemotherapeutic
agents and radiations are known to activate autophagic pathways in cancer cells [119,133].
However, autophagic cell death is controversial as its dual effect includes pro-survival or
pro-death response [134,135]. Autophagy is a cytoprotective mechanism that can provide
cells with energy, prolonging their survival and evading apoptosis [134]. In cancer cells,
such a process can be detrimental as it favors the survival of cancer cells contributing
to chemoresistance. For instance, oxidative stress induced by chemotherapeutic drugs
enables cancer cells to survive, even in hypoxic and nutrient-deficient environments [134].
Autophagy through ATM/AMPK pathway can result in the formation of acidic vesic-
ular organelles and aggregation of LC3, which are vital for cytoprotective and cell sur-
vival [136,137]. Additionally, the hypoxic microenvironment in HGG tumors is a vast
challenge in radiotherapy as it induces radioresistance [138,139]. In GBM, the hypoxic
conditions can induce stemness and upregulate MGMT expression [59,140–142]. This
hypoxic condition elevates HIF-1, which increases glycolysis, pentose phosphate pathways,
and serine production pathways, heightening antioxidant production, thereby buffering
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ROS’s actions induced by radiation. Furthermore, the hypoxic state increases ROS produc-
tion, stimulating an antioxidant generation loop [143–145]. Hyperbaric oxygen is used to
counteract the tumors’ hypoxia [146,147]. GBM tumors subjected to hyperbaric oxygen dis-
played reversal/reduced radioresistance, chemoresistance, and radiation-enhanced tumor
motility [147–151]. Radiation from radiotherapy can adversely affect the patients’ neurocog-
nitive ability [152–154]. Hence, the application of fractionated radiotherapy or interstitial
brachytherapy is thought to be safer and well-tolerated among HGG patients [155–159]. In
a retrospective study, 59 recurrent GBM patients demonstrated prolonged median survival
by eight months when given a median dose of 36 Gy radiotherapy with 2 Gy given each
day [160]. However, there are insufficient data for fractionated radiotherapy to be used
routinely in the setting of recurrent GBM. Like fractionated radiotherapy, brachytherapy
also enables a sharp dose gradient by placing a radiation source within the tumor volume
to be treated [161]. This is usually carried out postoperatively, and it is offered to patients
with a good performance status and more resectable small tumor in volume. One of the ap-
proaches in which brachytherapy can be utilized is by placing permanent iodine 125 (I-125)
seeds in the resection cavity [161]. In a retrospective study by Darakchiev et al. in 2008,
utilizing brachytherapy in patients with GBM reported a favorable result with the median
survival of 15.9 months [162]. However, the disadvantage of brachytherapy is the high
incidence of radionecrosis. Hence, brachytherapy has to be used with caution [161].

4. Drug Development for HGG: Advancements and Challenges
4.1. Gene Therapy

Alterations in various genes largely drive tumorigenesis. Thus, gene therapy can be
utilized to inhibit the oncogenic properties of tumor cells [163,164]. Gene therapy in cancer
involves introducing a tumor-suppressing or growth-regulating gene into the tumor [163].
Since conventional treatment modalities are incapable of overcoming resistance, the genetic
component of tumor cells may be manipulated by utilizing gene therapy to acquire a
therapeutic benefit. To improve the delivery of these therapies, delivery vectors such as
viral vectors, polymeric nanoparticles, and non-polymeric nanoparticles have been stud-
ied [163,165–167]. Although the use of these viral and non-viral vectors offers therapeutic
advantages, their utilization in HGG possesses some challenges (Tables 2 and 3).

Viruses target specific cells and hijack the cell’s replicative properties. In doing so, this
leads to the release of numerous copies of the virus and the host cell’s death [168]. This
specific capacity of viruses allows them to selectively attack and overwhelm a particular
tumor cell population while sparing the other surrounding cells in its vicinity, making
viral therapy a potential candidate for the treatment of HGG [168]. Various trials have
been conducted to assess their efficacy, summarized in Table 4 [168]. According to a
meta-analysis carried out by Artene et al. in 2018 (Table 4), viral therapy improved the
overall-survival among newly diagnosed HGG patients (HR = 0.72, 95% CI: 0.54–0.97) [168].
However, the meta-analysis findings stated these studies were not statistically significant
(p = 0.13). Additionally, viral therapy did not statistically improve the progression-free
survival [168]. Hence, gene therapy using viral agents alone may not be a feasible treatment
modality in HGG.

Glioma cells secrete immunosuppressive factors that prevent them from being de-
tected and eliminated by the immune system. Additionally, glioma cells can express
CD95 ligand on their surface, which allows them to trigger apoptosis and subsequently
reduce T-cells’ infiltration in the tumor microenvironment [169,170]. Therefore, researchers
focus on developing multitarget therapies that enhance tumor detection and clearance,
promoting cell death such as apoptosis, while reducing processes such as angiogenesis and
chemoresistance. Such therapies include the use of immune therapy, electric field therapy,
nanoparticles and phytochemicals that can further enhance Tmz and radiotherapy efficacy.
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Table 2. Example of viral vectors in HGG studies.

Vector Findings

Herpesvirus and Retrovirus

The use of herpes simplex virus as suicide gene therapy by converting antiviral drugs which
prolonged prodrug treatment, improved survival and inhibited proliferation as well as tumor

growth [171–173].

TOCA 511 resulted in the promotion of T cell expansion (Th1, Th2 in CD4+, CD8+), mediated
antitumor immune response, and concentrated the effect of drugs at the tumor site which increased
direct tumor cell death, alterations in immune cell infiltration, and improved survival [174–178].

Retroviral replicating vectors (RRV) based on gibbon ape leukemia virus enabled high-efficiency
gene transfer and persistent expression of E. coli nitroreductase prodrug activator genes, resulting

in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954
administration [166].

Semi- and pseudotyped-RRV system harboring two suicide genes—HSV1 thymidine kinase and
yeast cytosine deaminase and prodrug demonstrated high oncolytic capability against extremely
heterogeneous and treatment-refractory GBM which promoted the inhibition of cell proliferation,

angiogenesis, increased apoptosis, and the depletion of tumor-associated macrophages in
orthotopic GBM [179].

Adenovirus

The replication-deficient adenovirus mutant thymidine kinase (ADV-TK) in combination with
ganciclovir improved recurrent patients’ survival, integrin antagonist cRGD (EMD121974)

promoted adenovirus-mediated REIC/Dkk-3 reduction of cell proliferation and mice survival.
Adenovirus is also used to transfect p53 gene, mediated cytotoxic immune therapy of prodrug and

PTEN, PI3K inhibitors [180–183].

Table 3. Benefits and challenges of viral and non-viral vectors in HGG [163].

Vector Benefits Challenges

Adenovirus • Deliver large amounts of DNA
• The gene expression is transient
• Elicits an immune response against the

tumor cells

Adeno-associated virus • Can transfer genetic material to
non-dividing and dividing cells

• Producing vectors is difficult
• The transgene capacity is limited
• Elicits an immune response

Retrovirus
• Can transfer genetic material to cells that

are dividing
• The expression of the vector is sustained

• Elicits an immune response
• Unable to transfect non-dividing cells
• Low transfection efficiency in vivo
• Risk of insertion at the wrong location

Gold nanoparticles • Can be used to treat and image the tumor
• Can be functionalized for targeting • Non-biodegradable

Polymeric micelles • Can be functionalized for targeting
• It is self-assembled with nucleic acids

• Increased the cytotoxic effects for
poly(ethylenimine) as well as other
cationic polymers.

• Low loading ability

Dendrimer and Dendrigraft
• It is self-assembled with nucleic acids
• Can be functionalized for targeting
• Non-immunogenic

• Increased cytotoxicity for cationic
dendrimers

• Limited release of therapeutics

Poly(β-amino ester)

• Biodegradable
• Compared to other cationic polymers, it

has a lower cytotoxic level
• Its efficiency to transfect is high

• It has limited control when releasing the
therapeutic agent.
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Table 4. Studies that utilized viral therapy in the treatment of HGGs. (AA—anaplastic astrocytoma, AO—anaplastic
oligodendroglioma, GBM—glioblastoma, OS—overall survival, PFS—progression-free survival) [168].

Study Reference WHO Classification
of Tumor

Phase of the
Clinical Trial

Total Patients
Outcome

Experimental Group Placebo Group

Rainov et al. [184] IV (GBM) III 111 103 OS, PFS
Stragliatto et al. [185] IV (GBM) I/II 22 20 OS, PFS
Westphal et al. [186] IV (GBM) III 119 117 OS
Wheeler et al. [187] III (AA,AO), IV (GBM) Ib/IIb 48 134 OS, PFS

4.2. Immunotherapy

Immunotherapy is used to treat many cancers, such as melanoma, renal cell carcinoma,
lymphoma, and non-small lung cancer [188]. Immunotherapy research is still ongoing
to explore potential newer target sites in HGG (Table 5) [18]. The treatment modalities
that can render tumors more vulnerable to one’s immune system are considered strong
candidates. Dendritic cell (DC) vaccine can serve as a mediator between the innate and
adaptive immune systems by processing and presenting the antigens to either B or T-cells.
This will then trigger an immune response via T or B-cells [168]. Thus, this makes them an
appealing vaccine candidate that can induce an immune response against tumors [168].
Various trials have been conducted to assess their efficacy, summarized in Table 6 [168].

According to a meta-analysis by Artene et al. (Table 6), DC therapy prolonged the
overall survival of newly diagnosed (HR = 0.65, 95% CI: 0.45–0.93, p = 0.02) and recurrent
HGG patients (HR = 0.63, 95% CI: 0.46–0.88, p = 0.006) [168], Also, the newly diagnosed
HGG patients had a 51% chance of having a longer progression-free survival period
between treatment initiation and the confirmation of tumor recurrences via MRI. Despite
this, the results were insignificant (p = 0.10) [168]. In conclusion, the meta-analysis by
Artene et al., exhibited that DC therapy provided significant improvement in the overall
survival among both groups of patients (newly diagnosed and recurrent HGG) [168].
However, all the studies included are in Phase I or II, which have limited value statistically.
Hence, larger phase III trials are required to justify this treatment modality further. In
a randomized phase III clinical trial (NCT00045968), the addition of DCVax to regular
therapy (Tmz) in newly diagnosed GBM patients prolonged the two and three-year survival
rate by 66.7% and 46.4% respectively in patients with methylated MGMT, whereas in
patients with unmethylated MGMT, the two and three-year survival rate is 32.1% and
11% respectively [189]. The authors concluded that the addition of DCVax-L to standard
therapy is safe and feasible for patients with GBM and may prolong their survival.

Monoclonal antibodies (Mabs) have high affinity and specificity in targeting growth
factor receptors such as PDGFR, VEGFR, and EGFR. One challenge of utilizing Mabs is that
they may not easily cross the BBB due to their large molecular size. Hence, to overcome this,
Mabs can be attached to a nanocarrier surface via a pre-adsorption process and prevent
biomolecular corona formation [190,191]. The nature of HGG, mainly GBM cells, which
are incredibly heterogenic, makes the usage of monovalent vaccines inadequate to control
tumor progression [192–194]. For example, some peptide vaccines are vastly restricted
towards the EGFRVIII variant, which is only present in 23–33% of GBM patients [195,196].
Thus, in GBM patients without this variant, the peptide vaccines may be futile. Moreover,
even if some patients have the EGFRVIII variant, the natural evolution of the GBM tumor
could result in a loss of this variant subtype, thus, causing peptide vaccines to be ineffective,
as seen in phase III of the ACT IV trial [197]. One strategy is to use a polyvalent vaccine so
that a larger population of tumor cells can be targeted.

CAR T cell therapy, which utilizes engineered T cells to kill tumors by targeting cell
surface-specific antigens, has gained emerging interest in preclinical and clinical GBM
studies [198–202]. Moreover, single use of CAR T cell therapy has demonstrated tolerable
safety profiling and feasibility in glioma. For instance, the use of CD70-specific CAR
T cells, which recognize CD70 positive GBM in vitro, promotes tumor regression in the
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xenograft and syngeneic GBM models [203]. CD70 expression is generally associated with
poor survival among IDH wild-type primary LGGs, the mesenchymal GBM subtypes,
and the recurrent GBM patients. In a study by Tang and coworkers, CAR T cells’ con-
struction, which targets B7-H3 was delivered using lentivirus in preclinical primary and
GBM cell lines [204]. B7-H3 is highly expressed in glioma patients as it is linked to tumor
malignancy and poorer survival. Using the constructed CAR-T-cell-B7-H3 targeting, they
demonstrated antitumor and cytotoxic activities, which promoted longer median survival
in the orthotropic GBM models.

A number of phases I and II clinical trials have shown the efficacy of CAR T cell ther-
apy in GBM patients (targeting IL-13Rα2, EGFRvIII, EphA2, and HER2) [199]. However,
these molecular targets are more prone to antigen escape since they are not homogenously
expressed in GBM tumors. Additionally, the high tumor heterogeneity and complex GBM
tumor microenvironment serve as limitations. These situations may impede the CAR
T cell migration towards the GBM tumor site and affect its persistence. Thus, a one-fit-
target approach may not be suitable. Additionally, combining immunotherapy such as
CAR T cell therapy with other therapeutic approaches could confer greater efficacy. In
a recent study, the addition of TGFβ-trap into EGFRvIII-specific CAR T cell further pro-
longed the survival of mice [205]. The authors also observed the elevated expression
of M1 polarization markers of GBM-infiltrated microglia, which may be responsible for
disrupting the immunosuppressive tumor microenvironment. In a study by Bielamowicz
and colleagues [206], the use of trivalent CAR T cells (UCAR T cells) could be beneficial
in overcoming antigenic heterogeneity in GBM. In this cohort study, co-targeting HER2,
IL13Rα2, and EphA2 overcomes the interpatient variability and activates the immune
synapses to improve cytotoxicity and release of cytokines when compared to monospe-
cific and bispecific CAR T cells. Additionally, the low concentration of the UCAR T cells
enhances the control of established autologous GBM patient derived xenografts and pro-
motes animal survival. In a different study, the local GBM tumor irradiation resulted in a
synergistic antitumor of natural killer group 2-member D (NKG2D) CAR T cell therapy
in immunocompetent GBM mice [207]. The tumor irradiation enhances the NKG2D CAR
T-cell activity, tumor recognition, and better trafficking of the intravenous injected NKG2D
CAR T cells.

The therapeutic efficacy of immunotherapy such as CAR T cell, peptide vaccine, or mon-
oclonal antibodies can be improved by (i) combining them with the existing conventional
therapy, (ii) the use of multitarget agent such as natural products, and (iii) the construction of
multi-target CAR T cells. In a study by Suryadevara and coworkers [208], preexposure of GBM
tumors to Tmz promotes EGFRvIII CAR T cells’ efficacy. The authors demonstrated that the
EGFRvIII CAR T cell’s engraftment would benefit from Tmz-induced lymphopenia, which ex-
tended the survival of the animal models. Their study suggested using standard therapy such
as TMZ as a first-line approach or preconditioning before the systemic infusion of EGFRvIII
CAR T cell. Following these observations, the authors conducted a phase I trial on 12 newly
diagnosed GBM patients subjected to Stupp regimen and three cycles of dose-intensified Tmz
before administering EGFRvIII CAR T cell (NCT02664363).

However, the combination of immunotherapy with other therapeutic approaches may
also heighten the toxicity and adverse effects. Therefore, such an approach of combining
CAR T cells, immune checkpoint blockades, monoclonal antibodies, conventional therapy,
and natural products still requires phase I and II clinical trials (which some are undergoing)
to provide important safety information. Additionally, these clinical trial data are essential
in limiting or superimposing the toxicities while justifying the efficacy and potential
pitfalls. To date, most of the studies of CAR T cell and its combination with other therapies
are mostly focusing on preclinical and xenograft of immunocompromised GBM models.
This does not represent the complex tumor microenvironment of GBM. Thus, it will be
important to evaluate CAR T cells and other therapy combinations in immune-competent
GBM models. Additionally, the use of 3D culture and patient-derived xenografts would be
beneficial as they closely mimic the tumor microenvironment and phenotypic of GBM.
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Table 5. Immunotherapy in HGG.

Immunotherapy Description

Bevacizumab

• Promotes survival, enhances standard therapy, and inhibits neoangiogenesis by
binding with VEGF [209–212].

• A systematic review exhibited that when used alone or when combined with a
cytotoxic drug, it prolonged the overall survival in patients with recurrent GBM
by four months [209].

• Bevacizumab in anaplastic astrocytoma, anaplastic oligodendroglioma, and
oligodendroglioma improved overall survival, progression-free survival, and
standard therapy in patients. The common toxicities are hypertension,
thromboembolic events, and hypophosphatemia [213–215].

Depatuxizumab mafodotin (ABT-414)

• Inhibits wild type EGFR or EGFRVIII, thus preventing polymerization of
microtubules which is important for vesicular trafficking and mitosis of cancer
cells. Modest improvement in progression-free survival among recurrent GBM
patients [216–218].

Peptide vaccine

• Peptide vaccines act against EGFRvIII, which is an active protein that is only
expressed in GBM and not healthy tissues; rindopepimut (CDX-110) is used in
clinical trials to target EGFRvIII in recurrent GBM patients [219–222].

• Rindopepimut used in recurrent GBM patients showed a significant
improvement in progression-free survival when combined with Bevacizumab
[219,220].

• In the ACT IV trial, whereby peptide vaccine was used for newly diagnosed
GBM patients, it failed to show survival benefits when used in combination with
Tmz [197].

Heat Shock Protein (HSP) vaccine

• Patients treated with the HSPPC-96 vaccine in a phase-II trial showed median
overall survival that is comparable to phase-I, an improvement compared to their
benchmark, with or without bevacizumab (42.6 weeks vs. 14.6 months) [223,224].

• HSPPC-96 demonstrated median overall survival with a high tumor-specific
immune response above 40.5 months (95% CI) as compared with 14.6 months
(95% CI) for patients with low tumor-specific immune response. The HSPPC-96
in combination with standard therapy, was safe in newly diagnosed GBM
patients [225].

Dendritic cell (DC) vaccine

• DC vaccine can immunologically present the antigens on glioma, activate CD8+

cells, prevent angiogenesis, and trigger tumor cell death [226–228].
• In newly diagnosed GBM, patients treated with DCs with or without adjuvant

therapy resulted in an improved median overall survival, progression-free
survival, and higher survival rate of three years [189,195,229–231].

• In Phase I/II, the use of DC-type multipeptide vaccine in patients with HGG
(GBM, anaplastic astrocytoma, anaplastic oligodendroglioma, and anaplastic
oligoastrocytoma) demonstrated clinical efficacy in as nine patients who were
vaccinated (41%) remained free of progression for more than 12 months [197].

Table 6. Studies carried out that utilized DC vaccine in the treatment of HGGs. (AA—anaplastic astrocytoma, AO—
anaplastic oligodendroglioma, GBM—glioblastoma, OS—overall survival, PFS—progression-free survival) [168].

Study Reference WHO Classification
of Tumor

Phase of the
Clinical Trial

Total Patients
Outcome

DC Vaccine Placebo

Wheeler et al. [232] IV (GBM) IA/IB/II 13 13 OS
Yu et al. [233] III (AA), IV (GBM) I 8 26 OS

Batich et al. [234] IV (GBM) I 11 23 OS
Der-Yang Co et al.

[231] IV (GBM) II 18 16 OS, PFS

Chang et al. [235] III (AA, AO), IV
(GBM) I/II 16 63 OS

Yamanaka et al. [236] IV (GBM) I/II 18 27 OS
Jie et al. [237] IV (GBM) I/II 13 12 OS

Vik-Mo et al. [238] IV (GBM) I/II 7 10 OS, PFS
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4.3. Tumor-Treating Field (TTF)

Tumor-treating field (TTF) is an anti-mitotic electric field therapy that tampers with
cell division and assembly of organelle via the delivery of low-intensity alternating electric
field to GBM tumor [239]. Initial clinical studies in recurrent GBM patients (n = 10),
shows that TTF prolonged the median time of disease progression (26.1 months), 6 months
progression-free survival rates (50%) and median overall survival (>62 weeks) [240,241]
TTF can enhance Tmz therapeutic efficacy by delaying the repair of damaged DNA in
newly diagnosed or recurrent GBM [242–245]. TTF in combination with Tmz increases
overall survival (about four months) and progression-free survival (approximately three
months) with reported improvement in patients’ quality of life and low incidence of
adverse effects as opposed to Tmz only (Table 7) [242,246,247]. Optune, a clinical TTF
device commercialized by Novocure, has demonstrated statistically significant survival
rates in recurrent GBM patients [248]. The minimally invasive nature, decreased systemic
toxicity and side effects are some of the attractive properties of TTF therapy [241,248]. This
is particularly important in recurrent illness, where patients undergo a variety of treatments
from chemotherapy to additional surgery and/or re-irradiation [248]. Despite significant
improvement with minimal adverse effects on physical and social functioning, TTF is a
costly option with an average cost of 185,476 euros per patient [243,249–251]. Additional
drawbacks include lifestyle restrictions as the device must be continuously worn due to
the correlation between device compliance and overall survival [251].

Table 7. Tumor-treating field (TTF) and adjuvants in HGG.

Study Design Treatment Intervention Outcomes

Dendritic cell (DC) vaccine

Phase II—randomized,
double-blind, controlled study

(n = 124 newly diagnosed
GBM without chemoradiation)

NCT01280552

Patients ratio, 2:1
• ICT-7 (n = 81)
• Placebo DC (n = 43)

18.3 months overall survival
for ICT-7 group vs.

16.7 months control
group [252].

Phase III—a randomized trial
(n = 331 GBM post-surgery

and chemoradiation)
NCT00045968

Patients ratio, 2:1
• Tmz + DCVax-L (n = 232)
• Tmz + placebo (n = 99)

Median overall survival of
methylated

MGMT—34.7 months, with
3 years OS (46.4%) [189].

Tumor-treating fields (TTF)

Phase III—randomized, open
label-trial

(n = 695 GBM with resected
tumors and completed

chemoradiation)

Patients ratio, 2:1
• Tmz + TTFields (n = 466)
• Control: Tmz alone

(n = 229)

TTF—18 h/day followed with
Tmz (150–200 mg/m2/day)
for 5 days (28 cycles).

TTF with chemoradiation
increased overall survival

from 16 months (Tmz alone)
to 20.9 months [242].

Nanoparticles

In vitro
SF-763, and

U-118MG cell lines

Iron Oxide Nanoparticle
conjugated with Cyclodextrin
and Chlorotoxin and loaded
with fluorescein and paclitaxel

Selectively targeted GBM cell
line, effectively killing
MGMT-resistant GBM

cells [253].

In vivo
Wild type mice

IV administration

Gemcitabine + Chlorotoxin
Conjugated Iron Oxide
Nanoparticle + Hyaluronic
acid

Increased half-life (blood)
2.8 h, 10-folds higher than free

GEM mice [254].

5. Repurposing Drugs for HGG

Quinoline-based antimalarial drugs such as chloroquine and hydroxychloroquine
have gained the potential to be repurposed alongside Stupp therapy. Both chloroquine
and hydroxychloroquine have been studied in preclinical and clinical trials as chemo-
radiosensitizer. Chloroquine promotes Tmz sensitivity by promoting apoptotic cell death
while inhibiting autophagosome fusion and mitochondrial autophagy [255]. Hydroxy-
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chloroquine (5 µg/mL) synergizes Bevacizumab (100 µg/mL) inhibition of autophagy by
increasing LC3-II/LC3-I ratio and p62 that causes Beclin1 degradation [256]. The formation
of GSCs and the highly hypoxic HGG tumors may hinder current therapy efficacy in
HGG. Chloroquine (20 nmol/L) synergistically radiosensitizes irradiation-induced apop-
totic death and autophagy suppression in U87 glioma-initiating cells. The addition of
chloroquine further reduced the number and diameter of glioma-initiating cells tumor-
sphere [257]. Chloroquine also promotes the histone deacetylation induced by histone
deacetylase inhibitor, suberoylanilide hydroxamic acid, in combination with Tmz [258].
Interestingly, chloroquine cotreatment with radiation suppresses the malignancy character-
istic of GBM cells by inhibiting TGF-β [259]. This inhibits matrix metalloproteinase-2, cell
invasion, clonogenic formation and enhances cell death. Both chloroquine (200 mg, daily)
and hydroxychloroquine (200 to 800 mg, daily) have been tested in a clinical trial to enhance
the efficacy of Tmz and radiation in improving median overall survival, particularly in
newly diagnosed EGFRvIII- and EGFRvIII+ GBM patients [260,261].

Repurposing older drugs such as metformin and antipsychotics is beneficial as they
are relatively cheap while capable of promoting standard therapy. For instance, in response
to specific Tmz concentrations, Akt activity can be activated, heightening tumorigenicity,
stemness, and cancer cells’ invasiveness [262]. Hence, by down-regulating Akt activation,
the cytotoxic effects of Tmz can be enhanced. Metformin showed the ability to inhibit
Akt activation, thus enhancing TMZ cytotoxicity [263,264]. Additionally, antipsychotics
can also be repurposed to counter the neoplastic activity of human gliomas, as reviewed
extensively by Kamarudin and Parhar [265]. For instance, perphenazine, in combination
with Tmz, demonstrated significant antiproliferative activity. Moreover, antipsychotic
drugs such as perphenazine can cross the BBB and antagonize the dopamine receptors,
namely D2 and D3, which are implicated in glioma formation [266,267].

Although the repurposing of drugs shares an adjuvant commonality in improving
HGG therapy, several issues may limit their therapeutic use. Although their repurposing
may offer therapeutic advantages in HGG therapy, most drugs can elicit cytotoxicity with
severe side effects. For instance, most studies reported the effective concentration of
hydroxychloroquine as an adjuvant to be ∼20 µM, significantly higher than its acceptable
dose of ∼5 µM. Even though the current empirical evidence supports their potentiation
of current therapy, it is generally accepted that such combinations would also equally
enhance the side effects. Hence, it is imperative to determine the clinically acceptable range
dose of these drugs, particularly in phase I/II clinical trial. Alternatively, the sequential
treatment of Tmz with hydroxychloroquine and BH3 mimetic, AT101, demonstrated a
higher cytotoxic effect toward GBM tumor growth but with lesser cytotoxicity in normal
astrocytes as compared to treatment with Tmz alone [268]. This sequential approach may
be beneficial as a clinical approach to reducing long-term treatment side effects. One of the
significant problems is their capability to cross the BBB since most of these commercially
available drugs have not been proven to cross the BBB.

Additionally, their bioavailability in the brain and pH stability, particularly within the
HGG tumor surrounding, remains unanswered. As compared to metformin and quinolone-
based antimalarial drugs, anti-psychotics agents such as selective serotonin reuptake
inhibitors, tricyclic antidepressants, lithium chloride, and valproic acid are more commonly
prescribed with glioma patients following the standard therapy. These antipsychotic drugs’
ability to cross the BBB further highlights their potential to be prioritized as a repurposed
drug-based adjuvant in the clinical setting, as reviewed by us previously [269]. Additionally,
these anti-psychotic drugs are well-studied in brain-related disorders and cancer studies.
Moreover, in clinical and population-based studies, retrospective, and case-report, this
group of drugs demonstrated safety profiling and promoted standard therapy. However,
more conclusive data from a larger cohort and Phase III trial are still required to justify
using these antipsychotic drugs towards the standard treatment.
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6. Phytochemicals and Nanoparticles in HGG
6.1. Flavonoids

Flavonoids are a group of bioactive polyphenolic agents structurally diverse with
low toxicity [269,270]. They have been studied for their anti-cancer properties in glioma
models [271–274]. Galangin (3, 5, 7-trihydroxyflavone), a natural flavonoid from roots of
Alpinia officinarum Hance, Alnus pendula Matsum, Plantago major L, and Scutellaria galericulata
L. (S.scrodifolia Fisch.), honey, and propolis [275,276]. Interestingly, galangin is cytotoxic
to tumor cells but non-cytotoxic to normal cells, making it a potential anti-neoplastic
agent [276]. Galangin’s anti-cancer effects include induction of autophagy, cell cycle arrest
at the G0/G1 phase, promotion of ROS-induced apoptosis, anti-angiogenesis, and anti-
proliferation [275,277]. Galangin, in combination with chloroquine, suppresses tumor
growth, promotes apoptosis, pyroptosis, and prolonged survival in vitro and in vivo GBM
models compared to galangin monotherapy [276].

Curcumin [1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] has been
reported with anti-proliferative, anti-angiogenesis and induction of apoptosis in numerous
cancer models [20,278]. For instance, curcumin enhances inhibition of angiogenesis, cell
invasion and promotes apoptosis when combined with paclitaxel in GBM cells [20,279].
Curcumin augments nimustine (ACNU) anti-tumor activity by enhancing the inhibition of
P13K/Akt and NF-κB/COX-2 in GBM cells [20]. In another study, curcumin potentiated
paclitaxel cytotoxicity in rat C6 glioma cells by inhibiting NF-κB activation [280]. In patient-
derived GSCs, curcumin (25 µM) significantly reduces Glio 3 and Glio 9 cells’ viability
via induction of ROS, activation of MAPK pathway, and downregulation of STAT3 and
IAPs [281].

miRNA can play a role in treatment resistance in GBM [282–285]. Curcumin can in-
crease miRNA expression in GBM, overcoming Tmz resistance. Li and coworkers showed
that curcumin (60–120 mg/kg) induced miR-378 expression significantly inhibited tu-
mor growth (30–60%) of xenografted U87-miR-378 in SCID mice [285]. The study also
demonstrated curcumin (50 µM) significantly suppressed cell proliferation and enhanced
apoptosis via p38 signaling in U87-miR-378 [285].

Although curcumin is useful in various cancers, its bioavailability and absorption
are low, resulting in rapid metabolism and systemic elimination. The use of formulated
nanoparticles such as poly(lactic-co-glycolic acid) [286], poly(butyl)cyanoacrylate [287], and
tripalmitin-oleic acid [288] enhance curcumin distribution in vitro and in vivo models. For
instance, poly(lactic-co-glycolic acid) demonstrated an increased half-life in male Sprague–
Dawley rat (210 ± 10 g body weight) brain tissue from 9 to 15 min [286]. Additionally, a
significant increase in curcumin retention time was reported in the hippocampus (83%)
and cerebral cortex (96%). Curcumin loaded in tripalmitin-oleic acid [288] showed an IC50
reduction (80 µg/mL to 20 µg/mL) in A172 cells and further reduced tumor volume (82%)
in subcutaneous flank tumor-bearing female nude mice.

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) can promote apoptosis and cell cycle
arrestment at G1 phase via cyclin-dependent kinase (CDK)-4 and cyclin D1 through p53
activation [274,289]. Additionally, quercetin targets the P13K/Akt/mTOR, IL-6/STAT, and
apoptotic protein modulation [274,290–292]. Quercetin (30 µmol/L) in combination with
Tmz (100–200 µmol/L) promoted Tmz-induced growth inhibition in U87 and U251 via
Hsp27 inhibition [293]. Quercetin combination with chloroquine (CQ) induced caspase-
dependent apoptosis, autophagic inhibition, and lysosomal suppression in T98G cells [294].
Additionally, quercetin (50 µM) and CQ (20 µM) induced ER stress in T98G cells. In another
study, quercetin (25 µM) in combination with sodium butyrate (1 mM) induced apoptosis in
rat C6 and T98G cells by modulating Bax, Bcl-2, and survivin proteins that led to caspase-3
activation and PARP [295].

Resveratrol (3,4′,5-trihydroxy-trans-stilbene) anti-cancer effects include anti-
proliferation, cell cycle arrestment, and apoptosis promotion through multiple signaling
pathways such as EGFR, p53, P13K/AKT/mTOR, STAT3, NF-κB, and oncogenic miR-
NAs [296,297]. Resveratrol suppresses tumor growth and prolongs survival in rats bearing
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intracranial C6 glioma [296,298,299]. Wang and coworkers showed a longer mean survival
in C6-xenograft rats treated with resveratrol (29.75 ± 9.27 days) than the control group
(15.8 ± 0.93 days) [296]. Resveratrol administration decreased the expression of EGFR,
MMP-9 NF-κB, PCNA, COX-2, and VEGF while increasing GFAP expression compared
to the control group. Resveratrol also enhances Tmz efficacy by reducing ROS/ERK-
mediated autophagy and promoting apoptosis [297,299,300]. Resveratrol in combination
with Tmz suppresses the cell growth and induces apoptosis in RG-2 cell (>20%, 17%),
LN-18 (62.3%, 12%), and LN-428 cells (28.6%, 8%) [297]. The co-treatment also reduce
MGMT protein expression RG-2 (44.9%), LN-18 (38.7%), and LN-428 (33.5%) compared
to the Tmz-treated group only. Additionally, resveratrol administration via lumbar punc-
ture effectively suppresses intracranial tumor growth in orthotopic rats and prolonged
survival [299,301,302]. Combination therapy with neurosurgery and lumbar-punctured
resveratrol demonstrated significant improvement of survival post-operation in orthotopic
rats by inhibiting tumor growth, promoting apoptosis, and inactivation of STAT3 [299,303].
The use of resveratrol-loaded polyethylene glycol-polylactic acid nanoparticles with trans-
ferrin moieties (Tf-NP-RES) reduced tumor volume and prolonged the survival in C6
orthotopic rats and U87MG-xenograft mice [304,305]. The use of liposomal TriCurin (TrLp;
curcumin: epicatechin gallate: RES 4:1:12.5) synergistically enhanced resveratrol anticancer
effects through the upregulation of p53 proteins in GL261 cells and C57BL/6 male mice
implanted with GL261 cells [306].

6.2. Polysaccharides

Polysaccharides possess immunomodulatory properties and are often referred to
as “biological response modifiers” [304,305], contributing to their therapeutic value as
anticancer agents. Polysaccharides modulate transcription factors and transcription of
genes associated with cell proliferation, angiogenesis, metastasis, cell cycle arrest, and
apoptotic induction [307–309]. Schizophyllan is a (1→3)-β-D-glucan rich polysaccharide
found in the fungus Schizophyllum commune. Zhou and coworkers showed that schizo-
phyllan reduced tumor growth in a dose-dependent manner in male Sprague Dawley rat
models implanted with the intracranial tumor in situ (20 mg/kg: 30.8 ± 4.1%, 40 kg/mg:
38.3 ± 3.5%, 60 mg/kg: 55.3 ± 5.1%) compared to control group [310]. In vitro study on
CNS-1 rat glioma treated with 40 and 60 mg/L schizophyllan showed a reduction in cell
number, increased apoptosis, and cell cycle arrestment at G0/G1 phase [310]. Fucoidan is a
sulfated polysaccharide, commonly found in brown algae (Laminaria digitata, Ascophyllum
nodosum, and Fucus vesiculosus) and brown seaweeds [249,311]. Its bioactivities include
anti-tumor, immunoregulatory, and anti-inflammatory effects [311,312]. Oligo-fucoidan, a
glycolytic cleavage product fucoidan (brown seaweed, Laminaria japonica) inhibits the cell
proliferation of U87MG and GBM8401 cells compared to SVGp12 cells [249]. The study also
demonstrated oligo-fucoidan ability to inhibit the expression of DNA methyltransferases
1, 3A, and 3B, induce differentiation of cell markers (MBP, OLIG2, S100, GFAP, NeuN,
and MAP2), and decrease methylation of p21 (DNMT3B target gene). Additionally, the
addition of decitabine (DNMT inhibitor) to oligo-fucoidan promoted inhibition of U87MG
cell growth and induced myelin basic protein [249].

Ganoderma lucidum, commonly known as “Reishi” in Japan and “Lingzhi” in China,
is a mushroom used in Asian countries for its medicinal values [313,314]. G. lucidum
polysaccharides (GL-PS) are the bioactive component of the fungus, which possess im-
munomodulatory and anticancer properties [315]. GL-PS inhibited U251 cell proliferation
by blocking cell cycle at G0/G1 and promoted apoptosis via caspase-3 activation [316].
In a separate study, the authors demonstrated an increase in the concentration of IL-2,
TNF-α, and IFN-γ following GL-PS administration in Male Fischer rats (F344) bearing RG2
glioma [314]. The abdominal injection promoted functional maturation of dendritic cells
leading to inhibition in tumor growth (101.93 ± 53.58, 113.56 ± 39.76, 161.28 ± 56.69 mm3)
and increased median survival (27.67 ± 2.87, 31.78 ± 6.38, 27.33 ± 4.97 days) compared to
control rats (162.99 ± 48.34 mm3, 24.44 ± 2.55 days) [314].
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Lentinan (Lentinus edodes, also known as the shiitake mushroom), is an attractive
polysaccharide with reported minimal toxicity and pharmacological properties, including
antitumor, immunomodulatory, antioxidant, and blood lipid reduction [317]. Lentinan
elicits its immunomodulatory properties by activating macrophages and dendritic cells
via Dectin-1 receptor binding, resulting in the elevation of cytotoxic T lymphocytes and
natural killer (NK) cells [318,319]. Lentinan as a monotherapy or in combination with
chemotherapy has been extensively studied in osteosarcoma [320], breast [321], and ovar-
ian cancer [322]. However, to date, lentinan has only been studied on C6 glioma cells,
demonstrating anti-proliferative, cell cycle arrestment at G0/G1 phase and apoptosis in-
duction [323]. Such findings propose lentinan as a potential phytochemical that should be
explored more in preclinical HGG models.

6.3. Cannabinoids

Cannabinoids from Cannabis possess anti-cancer properties and are primarily used
in cancer patients as part of palliative care to relieve pain, relieve nausea, and stimulate
appetite [324,325]. Nabiximols trademarked as Sativex®, which contains equal parts
∆9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) (1:1) is formulated as an oro-
mucosal spray that allows slow absorption through the mucus, with rapid and direct
access to the circulation, where plasma concentration plateaus more rapidly [326–328].
The combination of phytocannabinoids inhibited tumor growth via anti-angiogenesis and
induction of apoptosis [326–328] in vitro (U87 and T98G) and orthotopic glioma murine
models [329,330]. The phytocannabinoids combinations (THC and CBD (1:1 ratio)), when
co-administered with Tmz, demonstrated strong synergistic reduction of glioma initiating
cell growth in orthotopic xenograft nude mice [331]. Sativex has been explored in a clinical
setting combined with Tmz (NCT01812603) in placebo-controlled phase II clinical trials
involving recurrent GBM patients [328]. In a study conducted by GW Pharmaceuticals,
GBM patients with 60% or greater Karnofsky performance who received dose-intense Tmz
(100 µL of solution containing 27 mg/mL THC and 25 mg/mL CBD (12 sprays) reported a
one-year survival rate of 83% and a median survival over 662 days compared to control
group (44% and 369 days) who received Tmz only [328,332].

6.4. Thymoquinone

Thymoquinone (2-methyl-5-isopropyl-1, 4-benzoquinone) from Nigella sativa (black
seed) [333] possesses anti-angiogenesis, anti-invasion, and anti-metastasis in various can-
cers with minimal effect on normal cells [334–336]. Thymoquinone also enhances the
efficacy of chemotherapeutic drugs when used in combination in cancer models [337].
Thymoquinone (3.6 µM) addition to chloroquine (4.4 µM) suppresses autophagic flux, in-
hibits cell proliferation in T98G and Gli36∆EGFR cells independent of the p53 status [338].
Thymoquinone (50 µM) synergized Tmz (100 µM) effects by enhancing the inhibition of
U87MG cell migration and invasion, significantly more significant than Tmz or thymo-
quinone alone [334]. However, thymoquinones’ lipophilicity hinders its pharmacokinetics
resulting in low membrane permeability, solubility, and bioavailability [333,337].

6.5. Potential and Challenges of Phytochemicals and Nanoparticles

The discovery of plant-derived bioactive compounds as novel therapeutics may pro-
vide therapeutic advantages in HGG research (Figure 3, Table 8). Around 60 percent
of commercially available clinically approved anti-cancer medications are derived from
medicinal plants [339,340]. Their multitarget, high selectivity against cancer cells, capa-
ble of reducing multidrug chemoresistance, inexpensive and marginal side effects make
them valuable potential therapeutics, especially when combined with current therapy
advancement [341]. Phytochemicals such as thymoquinone, cannabinoids, and resveratrol
have proven to enhance the anti-cancer effect in pre-clinical models when combined with
Tmz [297,328,334]. Such development in pre-clinical findings further necessitates clini-
cal studies to fully assess phytochemicals efficacy in combination with current standard
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therapy. Although Sativex (THC:CBD, 1:1) clinical trial (NCT01812603) demonstrated an
increase in 1-year survival rates in combination with Tmz (83%) over standard therapy
with Tmz alone (44%), the clinical trial did not progress any more than phase II. Hence
further clinical inspection should be considered for further validation [328]. Although
various phytochemicals demonstrated pre-clinical potential, their use in the animal or
actual clinical setting is still not convincing and well-studied. Thus, incorporating these
phytochemicals with nanoparticles delivery systems may be of interest to researchers.

Figure 3. Phytochemicals as potential adjuvants in HGG. Phytochemicals from different classes modulate various signaling
pathways in human HGG tumor cells that promote cell cycle arrestment, inhibit cell proliferation, invasion, migration, and
promote cell death.

Cancer nanomedicine has emerged as a revolutionary approach in cancer research,
changing cancer therapeutics’ paradigm [342]. The recent rapid development of nanoma-
terials brings an exciting opportunity to deliver various therapeutics to sites of interest
in patients while preserving healthy tissues and organs [343]. This therapeutic approach
has also been approved in the ovarian and breast cancer model by the United States Food
and Drug Administration and the European Medical Agency due to lesser side effects
and better safety profile than the conventional therapeutic [343]. Nanomaterials such as
liposomes, nanoemulsion, polymeric micelles, and iron oxide nanoparticles have been
investigated as therapeutics carriers to treat HGG (Table 6). These materials demonstrated
a favorable effect, enhanced permeability, and retention through positive targeting that
allows nanomaterials to retain tumor tissues. Nanoparticles can cross the BBB and maintain
in GBM tissue due to the “leaky” BBB caused by necrosis and microvascular proliferation
of GBM cells [344]. Such properties have enabled nanoparticles to be explored in clinical
settings. In early-phase clinical trials, liposome-based nanomedicines using single-agent
therapy of nanoliposomes containing doxorubicin (NCT02766699) and irinotecan are cur-
rently in development (NCT02022644) [345,346]. The current status of these clinical trials is
still ongoing with active recruitment.

The use of nanoparticles also faces challenges such as immune response, blood flow,
red blood cells hemolysis, and substantial tissue resistance, preventing nanoparticles from
being internalized cellularly, particularly in the nano-drug diffusion in vivo model [347]. In
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phase II clinical trial, postoperative GBM patients who underwent chemoradiation did not
show statistically significant benefit in the overall survival and 6-month progression-free
survival when subjected to the combination of Tmz and pegylated liposomal doxoru-
bicin [348]. Similarly, intraperitoneal administration of pegylated liposomal Tmz in glioma
bearing male Lewis rats and in vitro study (CNS-1 glioma cancer cells) demonstrated
prolonged survival and decreased tumor volume. However, such effects were not statis-
tically significant [349]. These unsuccessful events could be due to the mode of delivery,
non-specific, non-targeted, and reduced drug availability impeded by the BBB and tumor
heterogeneity. Therefore, a more precise and target-specific nano therapy is required.
The use of doxorubicin as a standard drug in this in vitro study demonstrated ITGα-2
expression in GBM to be significantly higher than EGFR [350]. Doxorubicin delivered by
GBM-induced angiogenesis selectively via ITGα-2 antibody-directed liposome improved
anti-tumor efficacy and penetrated BBB (cells A172 and U87), which highlights ITGα-2 as a
potential strategy.

Table 8. Pre-clinical and clinical studies on the use of natural products in GBM treatment.

Phytochemical Study Design Observations

Curcumin

U118, U87, U251MG-100 µM nimustine
hydrochloride + 20 µM curcumin

Enhanced anti-proliferation, anti-migration, and
proapoptotic activities of nimustine hydrochloride [20].

Patient-derived GSCs (Glio 3, Glio 9)—25 µM
curcumin

Reduced cell viability of GSCs via ROS-dependent
mechanism, MAPK-pathway activation and

downregulation of STAT3 and IAPs [281].

U87-miR-378-50 µM c
SCID mice-30, 60, 120 mg/kg

miR-378 sensitized GBM toward curcumin, inhibited
tumor growth, cell proliferation, and induce

apoptosis [285].

Thymoquinone U87MG-50 µM TQ + 100 µM Tmz Decreased cell migration and invasion [334].

Plumbagin A172, U251-5.5 µM (IC50)

Cell cycle arrestment at G2/M phase. Apoptotic
induction with minimal necrotic cell death. PTEN

overexpression and downregulation of E2F1, MDM2,
cyclin B1, surviving, Bcl-2 protein, and PARP-1.

Inhibition of telomerase activity [351].

Sativex

NCT01812603
Phase I and Phase II (n = 21 GBM) with Karnofsky

performance scale ≥60%
100 µL (12 spray/day) Sativex

(27 mg/mL THC + 25 mg/mL CBD) orally + Tmz
Control: Tmz alone

83% of one year survival rate in Sativex + Tmz group
compared to 44% in Tmz alone [328].

Quercetin

T98G-50 µM quercetin + 20 µM chloroquine Induced autophagy and ER stress [294].

C6, T98G-25 µM quercetin + 1mM NaB
Promoted apoptosis via increased expression of Bax,
caspase 3, downregulation of Bcl-2, surviving and

PARP degradation [295].

Resveratrol

C6-50,100,150 µM
Inhibited cell proliferation, cell cycle arrestment at
s-phase, apoptotic induction, downregulation of

miR-21, miR-19 and miR30a-5p [296].

RG-2-25 µM Resveratrol + 250 µM Tmz
LN18, LN428-75 µM Resveratrol + 750 µM Tmz

Inhibition of MGMT expression, downregulation of
STAT3/Bcl-2/surviving, apoptosis and cell cycle

arrestment (G1 or S-phase) [297].

Galangin

U87MG and U251-100 µM
Apoptosis, cell cycle arrest G0/G1 pytoptosis, and

protective autophagy. Enhanced
chloroquine-suppressed tumor growth compared to

galangin monotherapy [276].

Male BALB/c athymic mice, 4 weeks old; 14–17 g)
(orthotopic U87MG xenograft)

100 mg/kg/day GG + 25 mg/kg/day chloroquine;
control: DMSO
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Table 8. Cont.

Phytochemical Study Design Observations

Schizophyllan

CNS-1-40 and 60 mg/L Schizophyllan
Apoptosis and cell cycle arrest at G0/G1 phase.

Tumor growth inhibited [310].
Sprague Dawley male rats (n = 40) (in situ

intracranial tumors, CNS-1)
20, 40, 60 mg/kg; control 0.9% NaCl

Icariin U87MG-10 µM ICA + 200 µM Tmz

Synergistically decreased cell proliferation,
sensitized GBM cell by enhanced apoptosis by

increased caspase-3 and cleaved PARP expression.
Inhibited cell migration, invasion via suppression of

NF-κB activity [352].

Silbinin (Silybum) A172, SR-50, 100, 150 µM s

Apoptotic induction via caspase-3 activation and
PARP-1 cleavage. Enhanced autophagic flux via
LC3-I to LC3-II conversion and P62 degradation.

Inhibition of mTOR and downregulation of
YAP [353].

Luteolin U251, LN229-10, 20 30 µM

Inhibited cell proliferation. Apoptotic induction via
MAPK by activation of FADD, upregulation of
cleaved PARP, cleaved caspase-8, and cleaved

caspase-3. Increased expression of Bax to Bcl2 ratio.
Autophagy induction promoting miR-124-3p

expression [354].

Silbinin
+

Luteolin

U87, T98G-50 µM SIL + 20 µM Synergistically inhibited cell proliferation, invasion,
and migration. Apoptosis induction and inhibition
of rapamycin (RAPA)-induced autophagy via iNOS
downregulation, PKCα suppression, and miR-7-1-3p

upregulation [355].

Female nude mice (nu/nu) (subcutaneous U87MG,
T98G xenografts)

Silbinin (200 mg/kg/day) + Luteolin (10
mg/kg/day)

Oligo-fucoidan GBM8401, U87MG-50, 100, 200 µg/mL
Cell cycle arresting at G1/S phase induced cell

differentiation, inhibited DNA Methyltransferases,
and decreased p21 methylation [249].

G. lucidum
polysaccharides

(GL-PS)

U251- 50, 100, 200, 400 or 800 µg/mL

Male Fischer rats (200-250G)- 50, 100, and 200
mg/(kg d) GL-PS; control: saline

Inhibited cell proliferation, cell cycle arrestment at
G0/G1 phase, promote apoptosis via caspase 3

activation. Increased IL-2, TNF-α, INF-γ. Enhanced
cytotoxicity of NK and T cells. Inhibited tumor

growth and prolonged rat survival [316].

Saponin D (Pulsatilla
koreana)

U87 MG-10 µM SB365

Nude mice-SB365 (5 mg/kg/every other day,
intratumoral) + Tmz (2.5 mg/kg/day, i.p., U87

xenograft)

Inhibited cell proliferation. Alteration in
mitochondrial membrane potential (MMP),

neutralization of lysosomal pH Increased ratio of
LC3-II/I and p26 in cell indicating Inhibition of
autophagic influx mediated by cathepsin B and

mainly ROS. Co-treatment of SB365 and Tmz exerted
an additive effect. Suppression of tumor growth in

xenograft model [356].

Toosendanin

U87, C6, T98G-10 nM

Athymic nude mice—6 weeks old (n = 10),
(U87-Luc xenograft, subcutaneous)

1 mg/kg qd (orally)

Inhibited cell proliferation and induced apoptosis
in vitro and in vivo. Reduce tumor progression via

apoptosis. Reduced tumor weight. Increased
expression of Bax, cleaved caspase-3, and reduction

in Bcl-2 expression. No cytotoxic effect in T98G.
Apoptosis induced via increased expression of

estrogen receptor β and p53 [357].
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Table 8. Cont.

Phytochemical Study Design Observations

Coronarin D U251-10, 20, 40 µM

Cell cycle arrest at G1 phase, induced
caspase-dependent mitochondrial-mediated

apoptosis by increasing phosphorylated ERK,
p-H2AX histone, and overexpression of p21 [358].

Carvacrol U87-500 µM

Inhibition of TRPM7. Reduction in cell viability,
migration, invasion, and MMP-2. Promotion of

cofilin phosphorylation and inhibition of
Ras/MEK/MAPK and PI3K/Akt. TRPM7 [359].

Lentinan
C6- 20, 40, 80 mg/L Inhibited tumor growth, cell proliferation, cell cycle

arrestment at G0/G1 phase, and promoted
apoptosis [323].

SD male rats-20, 40, 80 mg/kg/d; control:
0.9% Nacl

Ficus carica

U138 MG, T98G, U87 MG-0.25 mg/mL

U138 MG, T98G-0.25 mg/mL + 450 µM
Tmz U87 MG-0.25 mg/mL + 25µM Tmz

Inhibited GBM cell proliferation, and stimulated
apoptosis. Inhibit cell invasion via reduction in

VEGF expression.
Synergistic inhibition in GBM cell proliferation. The
co-treatment increased miRNA expression (let-7d) in

T98G cells modulating GBM progression via
miRNA [360].

Celastrus orbiculatus U87, U251-20, 40, 80 µg/mL

Inhibition of cell adhesion, migration, and invasion.
Reduction in N-cadherin, vimentin, MMP-2, and
MMP-9 expression. Upregulation of E-cadherin.

Inhibition in actin assembly. [361].

Tetrandrine
(Stephania tetrandra) U87, U251-4 µM Tet + 2 Gy

Enhanced radiosensitivity of the cell. Inhibited cell
proliferation by decreasing phosphorylated ERK

expression. Cell cycle arrestment at G0/G1
phase [362].

Osthole U87-50, 100, 200 µM
Inhibited cell proliferation and enhanced apoptosis
in cells. Increased expression of miR-16 precursor

and decreased expression of MMP-9 [363].

Trichosanthin U87, U251-10, 20 µM

Inhibited cell proliferation, invasion and migration.
Induced apoptosis and inhibited LGR5 expression
suggesting repression in Wnt/β - catenin signaling

pathway [364].

7. Precision Medicine

Precision medicine is a type of customized treatment that can be used to treat patients
with HGG according to their specific molecular profile [365,366]. One example is using
the novel 3D brain cancer chip, which utilizes GBM cells to form 3D cancer tissues for
drug screening, therapy resistance, and tumor cell motility [367–370]. For instance, the
use of poly(ethylene glycol) diacrylate (PEGDA) hydrogel, thereby making it permeable
to biomolecules and water, allows “smart release” of the chemical transported on the
chip to study the response of the drug in the adjacent 3D environment [367]. Utilizing
the concept of PEGDA hydrogel, this can be applied in the polyvalent vaccine, which
may confer better advantages than monovalent vaccines. However, its large molecular
size may pose a challenge to cross the BBB. Hence, by integrating PEGDA hydrogel in
it, this challenge could be overcome. The ability of induced neural stem cells (iNSCs)
derived from patients’ skin cells to cross the BBB makes it an ideal candidate to be used for
personalized therapy in GBM treatment [22]. iNSCs are genetically engineered to have the
ability to undergo differentiation while triggering apoptosis in co-cultured human GBM
cells [22,196]. In a study by Bago et al. in 2016, the authors proved that the delivery of TNF-
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α-related apoptosis-inducing ligand (TRAIL) via iNSCs in murine GBM models resulted in
a decreased growth of diffused and solid GBM xenografts by 20 and 230-fold respectively.

Additionally, it also prolonged the median survival in these murine models [371]. The
data support the potential of iNSC being a highly efficient drug-delivery vehicle for the
treatment of both invasive and solid brain tumors [371] Hence, more preclinical studies
are required to determine the efficacy and potentiality of iNSCs before considering it in
GBM treatment. Moreover, molecular genetic tools would help to determine a patient’s
prognosis and the best therapeutic regimen for each patient. For instance, patients with
triple-positive mutations (1p/19q codeletion, IDH mutation, and TERT promoter mutation)
have a favorable prognosis, while patients with triple-negative mutation often have poorer
prognoses [372–375]. This information can be used to ensure the patients whose prognosis
is favorable are not treated too aggressively at the onset of the disease to prevent treatment-
induced neurological deficits. Hence, in precision medicine, a prognostic marker can be
determined, which could be used to plan the treatment mode, eventually improving the
patients’ prognoses.

In an article by Prados et al. [376], to illustrate the principles of molecular profiling
of GBM, the authors carried out genome and exome-wide sequencing of 13 samples of
recurrent GBM. They mapped the identified genomic alterations to possible CNS-active
treatment modalities. One of the recurrent GBM samples exhibited CDKN2A gene deletion,
EGFR gene amplification, and EGFRvIII expression [376]. The therapeutic agents which
served as strong candidates for GBM with amplification of the EGFR gene include afatinib,
dacomitinib, and propranolol. Afatinib is an irreversible EGFR/ERBB2 inhibitor [376]. In
preclinical trials, it has been shown to have activity against the EGFRvIII variant. However,
afatinib’s efficacy in GBM is not demonstrated yet [376]. Dacomitinib is also an EGFR
inhibitor and is currently tested in GBM clinical trials (NCT01112527). It is reported that
dacomitinib have improved penetration of the BBB [376]. Propranolol, commonly used
in hypertension, migraine prophylaxis, angina pectoris, and various other conditions, has
recently exhibited the ability to control EGFR trafficking. However, its efficacy in clinical
trials remains to be seen [376]. For CDKN2A deletion, the therapeutic agent of choice
includes cyclin-dependent kinase (CDK) 4/6 inhibitors. One example is PD-0332991, which
is currently in phase II of GBM clinical trials (NCT01227434), as mentioned in an article by
Prados et al. [376]. Using this GBM sample as an example, if an EGFR inhibitor that has
activity against EGFRvIII and can penetrate the BBB is coupled with a CDK 4/6 inhibitor, it
may serve as a potentially effective treatment strategy in this case. Another recurrent GBM
sample exhibited mutation of BRAF V600E gene, deletion of TSC2, FANCA and RECQL5
genes [376]. These deletions and mutation can cause the activation of both the MAPK
and P13K/mTOR signaling pathways. In this context, if an mTOR inhibitor coupled with
a BRAF/MEK pathway inhibitor is utilized, it could be a potentially effective treatment
mode in this case [376]. These two examples exhibit the importance of precision medicine
in HGG.

One way precision medicine could be applied is by acquiring multiple biopsies of the
tumor mass during surgery, which includes both the enhancing and the non-enhancing
regions of the particular HGG [376]. Then, extensive profiling of the genome is performed,
and the drugs which are considered the most probable candidates to serve as the therapeutic
agent of choice are selected. All the drug selections can be individualized to tackle the
various genetic alteration of the HGG. Additionally, some samples of the tumor are also
collected for future xenograft testing. Blood samples are also acquired over time so that
tumor DNA that is circulating can be assessed. This may help for the future development
of non-invasive biomarkers [376]. In short, precision medicine will help to combat the
heterogeneity and complex nature of GBM strategically.
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8. Conclusions

The introduction of newer therapies like immunotherapy or gene therapy has provided
some improvement in HGG patients. However, prolongation of overall survival does not
translate into the eventual prospect of curing this disease. Immunotherapy, although
promising, is yet to demonstrate anti-tumor efficacy in human HGG. This may be due
to the complex immune mechanisms and tumor heterogeneity that have not been fully
understood. These approaches should be pursued, perhaps by trying to reactivate the
tumor-immune system several times until the tumor has completely disappeared. The
different subtypes of GBM (neural, proneural, mesenchymal, and classical) have made the
disease even more complicated. Thus, how each different subtype responds with the other
immunotherapies remains unclear. Another challenge is to ensure that immunotherapy
and chemoradiation are used strategically when used in combination. The side effects of
chemotherapy and radiotherapy may pose an obstacle to immunotherapy efficacy; thus,
timing is crucial when used in combination.

Although fascinating, the current therapeutic approaches, such as immunotherapy, are
accompanied by many drawbacks such as time-consuming, materials used, and complexity
of the experimental design. Therefore, a more cost-friendly with high specificity towards
tumors with marginal side effects such as the use of phytochemicals and the repurposing of
older drugs should be further considered in HGG treatment. Moreover, repurposing older
drugs with the innovations mentioned above provides a multitarget molecular approach
while being cost-effective in HGG management. Although these phytochemicals and older
drugs’ bioavailability is a major problem, formulation and combination therapy have shown
as a solution to address such issues. Studies focusing on the use of novel nanoformulations
to improve the bioavailability and efficacy of flavonoids and other lipophilic compounds
are vital. Moreover, the co-administration of phytochemicals, immunotherapy, and older
drugs with standard chemotherapeutic drugs mainly results in modulating multiple signaling
pathways. Thus, the use of nano targeted delivery may provide a clinical perspective in
HGG therapy. Hence, precision medicine with the integration of the discussed therapeutic
advancements may be the future trend to find a cure via extensive genetic profiling. In short, a
multimodal approach is required to treat HGG as no single method is considered adequate,
with surgical resection being an integral part of this approach. More importantly, the current
established use of chemotherapy, surgical resection, and radiotherapy do not guarantee a
complete remission or tumor resection in HGG patients. Therefore, the combination of various
therapeutic approaches may provide a better alternative to exclusively treat and target HGG
tumor with different subtypes while delivering a safer toxicity profile in patients with HGG.
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