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Abstract: In this study, the influence of defined extrusion-like treatment conditions on the denaturation
behavior and kinetics of single- and multi-component protein model systems at a protein concentration
of 70% (w/w) was investigated. α-Lactalbumin (αLA) and β-Lactoglobulin (βLG), and whey protein
isolate (WPI) were selected as single- and multi-component protein model systems, respectively.
To apply defined extrusion-like conditions, treatment temperatures in the range of 60 and 100 ◦C,
shear rates from 0.06 to 50 s−1, and treatment times up to 90 s were chosen. While an aggregation
onset temperature was determined at approximately 73 ◦C for WPI systems at a shear rate of 0.06 s−1,
two significantly different onset temperatures were determined when the shear rate was increased
to 25 and 50 s−1. These two different onset temperatures could be related to the main fractions
present in whey protein (βLG and αLA), suggesting shear-induced phase separation. Application of
additional mechanical treatment resulted in an increase in reaction rates for all the investigated systems.
Denaturation was found to follow 2.262 and 1.865 order kinetics for αLA and WPI, respectively.
The reaction order of WPI might have resulted from a combination of a lower reaction order in
the unsheared system (i.e., fractional first order) and higher reaction order for sheared systems,
probably due to phase separation, leading to isolated behavior of each fraction at the local level (i.e.,
fractional second order).

Keywords: whey proteins; α-Lactalbumin; β-Lactoglobulin; whey protein isolate (WPI); denaturation;
reactivity; thermomechanical treatment; kinetics; extrusion processing; phase separation

1. Introduction

Due to their nutritional and functional properties, proteins are often used to produce protein-based
products such as sports beverages, meat substitutes, baked products and dairy infant formulae. From a
nutritional point of view, protein consumption is necessary for normal growth and repair of body
cells, functioning of muscles, and health related immune functions [1]. Furthermore, the unique
functionality of proteins includes the ability to form gels, increase the viscosity of solutions, and stabilize
emulsions and foams. The functional properties of proteins strongly depend on the molecular structure,
and by this, on their physicochemical properties [2]. Thermal, chemical, or mechanical treatment
may lead to changes in the molecular structure of proteins, and consequently on their functionality.
Therefore, processes such as extrusion have been used to produce protein-based emulsifiers and
thickeners [3,4]. Extrusion processing uses shear, heat, and pressure to change the structure of food
components, including proteins [5]. Different unit operations such as transport, mixing, shearing,
and heating are possible within the extruder, making it a continuous flow reactor. This leads to a
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reduction of processing steps and acceleration of chemical reactions improving the productivity and
energy consumption [6]. Heat transfer from the heated barrel, conversion of mechanical energy into
heat energy, and shearing from the rotation of the screws result in thermal and mechanical stresses
acting simultaneously on the highly concentrated protein matrices (concentration > 30%). Thus,
factors including screw and die configuration, screw speed, flow rate, and barrel heating influence the
reactions taking place, i.e., protein denaturation. The native structure unfold, reactive sites hidden in
the globular structure become available and new protein–protein interaction are formed, which can
lead to protein aggregation. Although there is plenty of information about the effect of temperature
and shear rate on the denaturation of proteins, most studies are mainly focused on protein solutions
(concentration below 10%), which are quite different from the conditions during extrusion processing.

Since a better understanding of the denaturation behavior of proteins subjected to various process
conditions can be used to develop process-engineering approaches to design whey proteins with
new functionalities, information about the effect of combined thermal and mechanical treatment on
the denaturation reaction and kinetics of proteins at protein concentrations above 30% is needed.
Accordingly, in our recent study [7] the influence of protein concentration, treatment temperature,
and shear rate on denaturation and aggregation kinetics of β-Lactoglobulin (βLG) as a model protein
system at concentrations above 50% (w/w) was investigated. The results showed that denaturation
and aggregation reaction rates decreased with increasing protein concentration. In comparison to
thermal treatment alone, a combination with mechanical treatment resulted in higher reaction rates
and consequently, in higher degrees of non-disulfide covalent bond aggregation. Denaturation of βLG
at high concentration was found to follow 2.15-order kinetics, which was significantly higher than the
reaction order of 1.5 determined for βLG solutions at concentrations below 10%. These results showed
that the denaturation and aggregation kinetics for highly concentrated systems differed from the
known kinetics for diluted systems. Moreover, in comparison to βLG, whey proteins are expected to
show different reaction behavior as it is a multi-component system including various protein fractions
(i.e., βLG and α-Lactalbumin (αLA)) as well as non-protein components such as lactose. Therefore,
the objective of this study was to systematically investigate the effect of extrusion-like treatment
conditions on the denaturation kinetics of a highly concentrated multi-component protein system such
as whey protein isolate. To gain better insights about the denaturation mechanisms at high protein
concentrations in some way representative for low moisture extrusion for the creation of structures
from protein powders, the role of the main whey protein fractions (i.e., βLG and αLA) were also
separately investigated. For this, the influence of the shear rate on the reaction onset temperature
for βLG, αLA, and whey protein isolate at a concentration of 70% was investigated. Furthermore,
the degree of denaturation for the chosen whey protein systems was analyzed and described by a
mathematical model to determine the kinetic parameters as a function of temperature, shear rate,
and time.

2. Materials and Methods

2.1. Materials

Whey protein isolate (WPI), German Prot 9000, with a content of 90% protein on dry matter
was kindly provided by Sachsenmilch Leppersdorf GmbH (Sachsenmilch Leppersdorf, Leppersdorf,
Germany). According to the supplier, the contents of the minor ingredients were ≤ 3% lactose and
≤ 1% fat. Total ash content was 4% and the content of moisture was ≤ 5%. Pure bovine βLG was
produced at the Chair of Food and Bioprocess Engineering of the Technical University Munich at
Freising-Weihenstephan, Germany. The βLG used in this study was highly pure (< 0.05% lactose,
minerals < 0.7%), the moisture content was < 4%, the degree of nativity was > 90%, with 99% protein
on dry matter, and the content of βLG in the dry matter was > 98%. Agropur Inc. (Agropur, WI, USA),
kindly provided α-Lactalbumin (αLA), BiPro Alpha 9000. According to the supplier, the αLA used in
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this study was highly native and pure (< 0.2% lactose), the moisture content was < 5.6%, 97.6% protein
on dry matter, and the content of αLA in the dry matter was 92.2%.

2.2. Sample Preparation

WPI, βLG, and αLA were mixed with deionized water (Millipore Sigma, Burlington, MA, USA)
to produce protein doughs with a protein concentration of 70% (w/w) with a Thermomix (Vorwerk,
Wuppertal, Germany) for 3 min. To ensure a homogenous distribution of water, the samples were
stored at 8 ◦C at least for two days before any experiment.

2.3. Defined Extrusion-Like Treatment Conditions and Inline Rheological Analyses

Defined treatments at extrusion-like conditions and inline rheological measurements were
performed by a closed cavity rheometer (CCR) (RPA flex, TA Instruments, New Castle, DE, USA) as
described in our previous study in detail [7].

To determine reaction onset temperatures, temperature sweep analyses within a temperature
range of 30–180 ◦C were carried out. The measurements were performed at a heating rate of 5 K
min−1 with a shear rate of 0.06 s−1. The effect of mechanical treatment at a shear rate of 0.06 s−1 can
be neglected, as this shear rate corresponds to the (linear-viscoelastic) LVE region of the samples.
To investigate the influence of shear rate on the reaction onset temperature, temperature sweep analysis
were also performed in the same temperature range of 30–180 ◦C and heating rate of 5 K min−1 at higher
shear rates of 25 and 50 s−1. Isothermal time sweep measurements were conducted to investigate
the influence of time, temperature, and shear rate on the reactions taking place, and correspond to
defined extrusion-like treatment conditions (i.e., thermal and mechanical treatment) depending on the
chosen parameter settings. Samples were treated at temperatures between 60 and 100 ◦C, shear rates
0.06, 25, and 50 s−1, and treatment times up to 90 s, respectively. It should be noted that due to
the small volume of the measuring chamber (4.5 cm3) and preheated lower and upper geometries,
the samples achieved the chosen treatment temperatures almost instantaneously. Although during
the thermomechanical treatments, the temperature of the chamber geometry is controlled by electric
heating and forced air-cooling, at very high protein concentrations and shear rates, viscous dissipation
energy led to slightly higher chamber temperatures than the temperatures set. Therefore, the treatment
temperatures in the results section are given as a mean value with standard deviation to include this
effect. After defined extrusion-like treatment in the CCR, the samples were dried in a vacuum dryer
(Heraeus, Hanau, Germany) at 25 ◦C and 10 mbar and milled with a coffee mini grinder (KYG Group,
Dongguan, China) to a particle size <500 µm. For further offline analyses, only the dried protein
powders were used. All measurements were conducted at least in duplicate.

2.4. Degree of Denaturation

The amount of native protein remaining in solution after the treatment was measured using
UV–Vis spectroscopy to determine the degree of denaturation. To induce precipitation of denatured
proteins, samples (1 mg mL−1) were dissolved in an acetate buffer (0.5 M, pH 4.6). After an extraction
time of one hour, the denatured proteins were removed by centrifugation at 4301× g for 60 min;
ensuring that only soluble, and by this, native fractions remained in the supernatant. Absorption of
the samples was measured at a wavelength of 280 nm by an Evolution 201 spectrophotometer (Thermo
Fischer Scientific Inc., Waltham, MA, USA). Untreated samples were used as reference and every
extraction was performed in duplicate for each sample. Using a calibration curve, the concentration
in the supernatant was calculated from the measured absorption. The degree of denaturation (DD)
(Equation (1)) was calculated as the protein concentration ratio after (CT) thermomechanical treatment
and before treatment (C0).

DD =

((
C0 − CT

C0

)
∗ 100

)
(1)
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2.5. Kinetic Modeling

The effect of the heat and shear treatment on the denaturation kinetics was described using formal
reaction kinetics. The kinetic parameters were determined using a non-linear regression (NLR) method
as described by [7]. An integrated form of the general reaction rate (Equation (2)) can describe the rate
of protein denaturation:

(
CT

C0
) =

(
1 + (n− 1)knC0

n−1t
) 1

1−n (2)

where C0 and CT are the concentrations (g g−1) of native whey proteins before and after treatment,
respectively, n is the overall order of the reaction and k is the apparent reaction rate constant ((g g−1)(1−n)

s−1). To determine the kinetic parameters with respect to time, data ( CT
C0

versus t) was fitted directly
into Equation (2) and n and k were determined simultaneously by NLR (OriginPro 2018, OriginLab
Corporation, Northampton, MA, USA). The overall fit of the model to the experimental data was given
by R2.

Using the Arrhenius Equation (Equation (3)), the temperature dependence of the reaction rate can
be described:

kT,n = ko,T,ne(−
ET,A
RT ) (3)

where T is the treatment temperature (K), R is the universal gas constant (8.314 kJ kmol K−1), kT,n is
thermal-induced rate constant, k0,T,n pre-exponential factor, and ET,A is the activation energy (kJ mol−1).
Since additional shear stress is also expected to influence the reaction kinetics of highly concentrated
whey protein systems [7], the modified Arrhenius equation developed from a Boltzmann distribution
of mechanical energy in a shear field [8] (Equation (4)) was used to describe the influence of shear
stress on the denaturation reaction kinetics:

kτ,n = ko,τ,ne(−
Eτ
aJ ) (4)

where kτ,n is the reaction rate constant for the shear-induced reaction and kτ,0 is a constant analogous
to k0,T,n in the Arrhenius equation. Eτ is shear activation energy, J is the average rate of shear energy
input, and the factor a relates J to the average amount of mechanical energy temporarily stored in a
mole of chain bonds of the sheared system. Assuming that the shearing reduces the thermal activation
energy necessary for protein unfolding, then, the resulting rate constant can be formulated using a
modified Arrhenius equation (Equation (5)):

k = koe(−
Et
RT ) = koe(−

E0 − ∆E
RT ) (5)

With
∆E = E0 − Et (6)

where Et is the total activation energy, E0 is the thermal activation energy in the absence of shear stress
and ∆E activation energy reduction resulting from the mechanical treatment. Using Equation (6) and
the reaction constant calculated from Equation (3), the total activation energy was calculated. E0 was
calculated using a shear rate of 0.06 s−1, as at this shear rate the influence of mechanical treatment on
the reactions is negligible. Then activation energy reduction was then calculated using Equation (6).

3. Results and Discussion

3.1. Influence of Defined Thermal and Mechanical Treatment on the Reaction Behavior and Onset Temperatures
of Whey Proteins

The complex modulus |G∗| is depicted in Figure 1 as a function of temperature and shear rate for
the system containing 70% (w/w) WPI. The complex modulus in Figure 1a shows two distinct regions:
initial decrease (Region I) followed by an increase (Region II). The decrease in the complex modulus in
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Region I was related to the increased mobility of the protein molecules due to increasing temperature.
A distinct change in the slope happened at approximately 73 ◦C (transition from Region I and II),
which is defined as the aggregation onset temperature [9,10]. Although the aggregation might have
started at lower temperatures, this is the temperature where the aggregation outweighs the effect
seen in Region I. By increasing the shear rate to 25 and 50 s−1, the course of the complex modulus
changed compared to Figure 1a. The complex modulus in Figure 1b,c shows four distinct regions:
initial decrease (Region I), followed by an increase (Region II), a further decrease (Region III), and final
increase (Region IV), which led to the determination of two aggregation onset temperatures.

Figure 1. Complex modulus |G∗| as a function of temperature for systems with a whey protein isolate
(WPI) concentration of 70% (w/w) and a shear rate of 0.06 (a), 25 (b), and 50 s−1 (c). Measurements were
performed at a constant heating rate of 5 K min−1.

At a shear rate of 25 s−1, the aggregation onsets at 70 and 79 ◦C. By increasing the shear rate
to 50 s−1, these temperatures decreased to 66 and 75 ◦C. The occurrence of two onset temperatures
when the samples were sheared might suggest shear induced phase separation of proteins. At a shear
rate of 0.06 s−1, the protein molecules of different fractions (i.e., βLG and αLA) were homogenously
distributed, and the measured onset temperature implied that they involve in the aggregation reaction
simultaneously. At higher shear rates, it is possible that these protein fractions form separated phases
due to their limited miscibility, which might lead to variations of the molecular mobility, interactions,
and aggregation at the local level. This possibility is discussed in the following sections in more detail.

The results for βLG and αLA samples depicted in Figures 2a and 3a show that there were
two temperatures at which the course of the complex modulus changed. These temperatures are
defined as the denaturation and aggregation onset temperature, respectively. As shown in Figure 2a,
the denaturation onset temperature for βLG with a concentration of 70% was approximately 72 ◦C,
which is in accordance with previous results in [9]. In the case of αLA (Figure 3a), a lower denaturation
of approximately 65 ◦C was measured. For both proteins, increasing the shear rate (depicted in b, c)
led to a decrease in the aggregation onset temperature.
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Figure 2. Complex modulus |G∗| as a function of the temperature for systems with a βLG concentration
of 70% (w/w) and a shear rate of 0.06 (a), 25 (b), and 50 s−1 (c). Measurements were performed at a
constant heating rate of 5 K min−1.

Figure 3. Complex modulus |G∗| as a function of temperature for systems with a αLA concentration
of 70% (w/w) and a shear rate of 0.06 (a), 25 (b), and 50 s−1 (c). Measurements were performed at a
constant heating rate of 5 K min−1.
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In contrast to WPI, which is a complex system containing more than one protein fraction,
the aggregation onset temperature at a shear rate of 0.06 s−1 for systems containing the single fractions
αLA and βLG increased from 73 to 82 ◦C and 80 ◦C, respectively. As expected, αLA shows higher
aggregation onset temperatures compared to βLG due to its four stabilizing disulfide bonds and
lacking a free thiol group. Higher aggregation temperatures were observed for αLA compared to
βLG from various authors at various treatment conditions [11,12]. The results of WPI at 0.06 s−1 show
that the βLG had a lower aggregation temperature in this complex system. Since the WPI systems
show lower viscosity as the βLG systems, higher reaction rates were expected due to an increased
molecular motion, which explained the lower onset temperature. Additionally, an increase in reaction
rate was expected as in WPI systems all protein fractions present could participate and form aggregates.
Although no denaturation onset temperature was observed for the WPI at a shear rate of 0.06 s−1,
it was expected that denaturation onsets between 60 and 70 ◦C.

In accordance to these results, [13] showed that the denaturation onset temperature of βLG
decreased when βLG was combined with αLA. The authors also showed that systems containing
only αLA showed a denaturation temperature of approximately 65 ◦C. Since αLA denatured at
lower temperatures compared to βLG, it seems possible that in homogenous systems containing both
fractions, the aggregation reactions starts from a reactive αLA monomer if the thermal treatment is
high enough to activate the αLA monomers. Furthermore, the concentration of each fraction present in
the mixture was also expected to influence denaturation and aggregation reactions.

At a shear rate of 25 s−1, βLG shows an aggregation onset temperature of 70 ◦C and αLA of 79 ◦C.
Increasing the shear rate to 50 s−1 led to a decrease in the aggregation onset temperature to 66 and
76 ◦C, for βLG and αLA, respectively. This effect was also observed in our previous studies on WPI
and βLG [7,10]. It seems that the aggregation onset temperatures determined for the sheared WPI
systems corresponded to the onset temperatures of the single protein fractions. This can be related
to the phase separation phenomena, which has been observed for various biopolymer mixtures [14].
For instance, [15] reported for βLG and κ-carrageenan (κ-Car) systems two slopes of the elastic modulus
G’ during a heating/shearing and cooling down treatment step. The first slope corresponded to the
setting of the βLG network, and the second to the further protein network affected by the formation of
the κ-Car gel in the system [16]. Although the authors investigated a mixture of globular proteins and
polysaccharide (i.e., βLG and κ-car), similar to the results observed in Figure 1 during heating and
shearing of WPI systems, two markedly different rheological behaviors (i.e., a bicontinuous profile)
were observed suggesting the formation of phase-separated gels. Similarly, the first onset temperature
suggests the setting of βLG aggregates and the second one, the aggregation of αLA affecting the
previously formed βLG network.

Although phase separation of protein solutions has not been often reported, it is indeed expected
to occur with time [17]. Since proteins have, like all polymers or all solid materials, a limited solubility,
at a protein concentration above their solubility, separation into different phases occur [18].

3.2. Influence of Defined Thermal and Mechanical Treatment on the Denaturation of Whey Proteins

The influence of treatment temperature and shear rate on the DD for samples containing WPI and
αLA at a concentration of 70% (w/w) treated for 30 s is depicted in Figures 4 and 5, respectively.
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Figure 4. Degree of denaturation as a function of temperature and shear rate for a WPI concentration
of 70% (w/w) and treatment time of 30 s.

Figure 5. Degree of denaturation as a function of temperature and shear rate for a αLA concentration
of 70% (w/w) and treatment time of 30 s.
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As shown in Figure 4, thermal treatment of WPI at 60 and 70 ◦C resulted in a degree of denaturation
of 2% and 12%, respectively. The degree of denaturation for samples treated thermally at 80 ◦C was
approximately 80%. At higher temperatures, the degree of denaturation was already above 90% even
at the lower shear rate of 0.06 s−1. Increasing the shear rate to 50 s−1 led to an increase in denaturation
for all temperatures investigated. Thermomechanical treatment of WPI at a shear rate of 50 s−1 and
temperatures 60, 70, and 80 ◦C resulted in a degree of denaturation of approximately 13%, 51%,
and 94%, respectively. At temperatures above 100 ◦C, the effect of the shear rate on the denaturation
was no longer visible as at these conditions the denaturation reaction was already high.

As shown in [7], the thermal treatment of βLG at a concentration of 70% resulted in similar
denaturation compared to WPI. Treatment of βLG systems at 60, 70, and 80 ◦C resulted in a degree of
denaturation of approximately 2%, 11%, and 72%, respectively, whereas thermomechanical treatment
at a shear rate of 50 s−1 and temperatures 60, 70, and 80 ◦C resulted in a degree of denaturation of
approximately 22%, 58%, and 96%, respectively.

Although the denaturation of βLG and WPI systems at a shear rate of 0.06 s−1 was very similar,
at higher shear rates the βLG systems showed higher degrees of denaturation. Probably due to the
fact that the βLG systems show higher values of complex modulus and by this, of viscosity (Figures 1
and 2), therefore the effect of the shear stresses on the reactions is expected to increase, which could
then lead to higher reaction rates.

As depicted in Figure 5, the degree of denaturation of αLA was higher compared to WPI and βLG
independent of the applied treatment temperature or shear rate. At a shear rate of 0.06 s−1, treatment at
temperatures of 60, 70, and 80 ◦C resulted in approximately 7%, 52%, and 87%, respectively. At a shear
rate of 50 s−1, even a treatment at 60 ◦C resulted in approximately 40% denaturation. Samples treated
at 70 ◦C and 50 s−1 were over 80% denatured. Higher treatment temperatures resulted in almost a
complete denaturation since the degree of denaturation was above 80% even at the lowest shear rate of
0.06 s−1.

Although the denaturation temperature for aLA solutions determined using differential scanning
calorimetry (DSC) was approximately 65 ◦C [11,13,19–21], when αLA was heated at defined
temperatures (below 100 ◦C), reversible denaturation through the formation of non-covalent bonds
was observed. Due to the weak nature of these bonds, the newly formed bonds break up as soon as
samples cool down, αLA returns to a quasi-native state, and renaturation takes place [22].

The overall high values of denaturation observed in Figure 5 could result either from the high
concentration of αLA or from the small amount of βLG (approximately 5%) present in the αLA protein
powder. If the reaction rate is high enough, which is the case at high protein concentrations, then the
intermolecular thiol-disulfide exchange is rapid and the probability of renaturation decreases [11],
leading to high values of denaturation. Additionally it is possible, that the small amount of βLG present
in the αLA protein powder could act as a catalyst for the reactions, making a protein molecule available
with a free thiol group, which then could react with an αLA molecule, initiating the aggregation reaction.

3.3. Kinetics of Denaturation of Whey Proteins at Extrusion-Like Conditions

Data from the results of the degree of denaturation was plotted and fitted using NLR to obtain the
kinetic parameters shown in Tables 1 and 2.
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Table 1. Denaturation kinetic parameters for αLA at a concentration of 70%.

Temperature/◦C Shear Rate/s−1 Reaction
Order n/-

kT,τ/2.262/(g
g−1)−1.262 s−1 R2/- αLA/%

60
0.06

2.262 ± 0.007

1.947 × 10−9 0.993

70

25 7.420 × 10−9 0.999

50 1.565 × 10−8 0.999

70
0.06 2.738 × 10−8 0.998

25 5.569 × 10−8 0.999

50 1.291 × 10−7 0.996

80
0.06 2.314 × 10−7 0.993

25 3.686 × 10−7 0.992

50 7.594 × 10−7 0.993

100
0.06 1.971 × 10−6 0.993

25 2.872 × 10−6 0.994

50 5.609 × 10−6 0.995

Table 2. Values of activation energy without shear stress, reduction of activation energy due to shear
stress, and their ratio from the denaturation kinetic parameters for αLA and WPI samples with a protein
concentration of 70% (w/w) at different thermomechanical treatment conditions.

Temperature
Range/◦C

Shear
Rate/s−1

Reaction
Order n/-

Protein
Concentration/%

Et/kJ
mol−1

E0/kJ
mol−1

∆E/kJ
mol−1 (∆E/E0)/%

80–100
0.06

2.262 ±
0.007

αLA70

117.239 117.239
25 112.381 4.859 4%
50 109.441 7.799 7%

60–80
0.06 233.653 233.653
25 190.844 42.808 18%
50 189.808 43.845 19%

80–100
0.06

1.865 ±
0.055

WPI70

100.361 100.361
25 85.434 14.927 15%
50 80.411 19.950 20%

60–80
0.06 267.176 267.176
25 244.372 22.804 9%
50 234.644 32.532 12%

The kinetic parameters for the denaturation reaction for αLA after thermal and mechanical
treatment at a concentration of 70% (w/w) are shown in Table 1. For the investigated range of treatment
conditions, a denaturation reaction order of 2.262 was identified. The reaction rate constant (k) increased
with temperature and a combination of thermal and mechanical treatment led to even higher values
of k. The reaction rate determined in [7] for βLG at concentrations between 50% and 70% was 2.151,
which is very similar to the reaction rate shown in Table 1.

In contrast, the reaction order for WPI at a concentration of 60% was 1.909 [10]. A similar
reaction order (1.865) was determined when the concentration of the WPI system increased to 70%.
Although compared to our previous results the denaturation reaction order decreased slightly from
1.909 to 1.865 when the concentration of WPI increased from 60% to 70%, the accelerating effect of
temperature and shear rate on the reactions was still observed. There is clearly a dependence of protein
fractions present in the protein system on the reaction order. The reaction order for single protein
fractions follows a fractional second order, whereas for complex systems such as WPI where multiple
protein fractions are present, a fractional first order was observed. In theory, a second order is observed
when the reactions depend on the concentration of two reactants or one concentration squared. For βLG
it was hypothesized that a reactive monomer is needed to start the reaction, consequently starting
from dimers, then native monomers are formed, which then are activated and react further with
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other monomers to form non-native dimers, trimers, and eventually oligomers [23]. Consequently,
the denaturation reaction depends on the concentrations of dimers and reactive monomers available.
Denaturation of αLA is expected to follow a similar mechanism, starting from monomers, which need
a monomer with a free thiol group to react. When the thermal treatment is high enough the disulfide
bonds stabilizing the αLA molecule are broken down. As shown in [12], thermal treatment at 100 ◦C for
10–30 min results in up to a 25% loss of disulfide bonds, which could lead to the formation of reactive
groups similar to thiols. Similar to βLG, the reactive αLA monomers react then with monomers and
form disulfide bonded oligomers through thiol-disulfide exchange reactions. For the WPI systems,
either the free thiol group of the βLG can react with βLG monomers or αLA monomers, therefore the
reactions depend mostly on the concentration of the thiol groups available resulting in a fractional first
order. Although for WPI a first fractional order reaction was observed, the reaction order is higher than
most of the findings of previous studies for lower protein concentrations at neutral pH. Most of the
kinetic data for the denaturation reaction of whey proteins takes only into consideration the thermal
denaturation of βLG in the system and a reaction order of 1.5 is frequently observed. The increase in the
reaction order at the investigated conditions could arise either from the increased protein concentration
or from the additional effect of shear stresses on the reactions. As shown in Figure 1, for systems
containing multiple protein fractions, a combination of thermal and mechanical treatment led to a
more complex reaction behavior as two aggregation onset temperatures were observed. The reaction
order of almost 2 (1.865 and 1.909) could then result from a combination of a lower reaction order
for unsheared systems and higher reaction order for sheared systems as phase separation occurs,
leading to similar reaction orders as for the single protein fractions. Consequently, it is expected
that the denaturation reaction rate after thermomechanical treatment of complex systems containing
various protein fractions depends on the ratio and concentration of each fraction. As already shown
for less concentrated systems, changes of βLG and αLA ratios in WPI systems result in aggregates
with different protein composition [24].

The calculated values of the activation energy (Et) for αLA and WPI systems at a concentration of
70% are depicted in Table 2. The results show that the activation energy decreased with increasing
thermal and mechanical treatment. Similarly results are shown in [7] for βLG systems with a
concentration of 70%. As expected from the previously discussed results, in the temperature range
of 80–100 ◦C the activation energy was highest for βLG (107–133 kJ mol−1) [7], then for αLA
(109–117 kJ mol−1) followed by WPI (80–100 kJ mol−1). Since at temperatures above 80 ◦C both of the
protein fractions (αLA and βLG) are expected to aggregate, the energy input in the system due to the
treatment was high enough to induce aggregation, consequently the activation energy was lowest for
WPI systems. In the temperature range between 60 and 80 ◦C, the activation energy was lowest for
the αLA systems. Since αLA denatured at approximately 65 ◦C, treatment in this temperature range
positively affected the reaction leading to lower values of activation energies. Similar results were
observed in [25] since the denaturation of αLA in solutions was found to be initially even faster than that
of βLG at 65 ◦C. The maximum reduction of the activation energy at a shear rate of 50 s−1 was 19% and
12% for αLA and WPI, respectively. In WPI systems, the intermolecular interactions between αLA and
βLG possibly resulting in phase separation, led to higher values of activation energy and the effect on
the shear rate on the reduction of activation energy seemed to decrease. Furthermore, for αLA systems
by increasing the shear rate from 25 to 50 s−1, the activation energy decreased by only 1%, which could
imply that shear stress indeed influences the reactions, but only up to a limit and the maximum
reduction is achieved at the chosen shear rates. The activation energy determined for the βLG systems
was overall higher than for αLA and WPI. As already shown in the results from temperature sweeps,
the complex modulus of the βLG systems was higher than for αLA and WPI systems. The high complex
modulus and by this high viscosity led to low molecular mobility, lower reaction rates, and higher
values of activation energy. Therefore, the calculated activation energies for WPI systems and the effect
of the shear rate on its reduction represent the combined effect observed for the main fractions, βLG
and αLA. Similar results were observed by [26], since the denaturation rate for βLG was lower than for
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systems containing more than one whey protein fraction. Overall, the determined activation energies
are in agreement with previously reported values by other authors [26,27]. In the temperature range
below and above 80 ◦C, the activation energy values for various whey protein systems ranged from
189 to 283 kJ mol−1 and between 80 and 133 kJ mol−1, respectively.

4. Conclusions

Using the closed cavity rheometer investigation on the influence of defined extrusion-like treatment
conditions on the denaturation behavior and kinetics of single- and multi-component protein model
systems at protein concentration of 70% (w/w) was possible. Results of the temperature sweep
analysis showed that for αLA and βLG, corresponding to single-component systems, independent
of the shear rate applied one onset temperature was determined. Similarly, for the unsheared
multi-component (WPI) system, one aggregation onset temperature was determined. In contrast,
when the multi-component system was sheared, two onset temperatures corresponding to each of the
main whey protein fractions were observed. A combination of thermal and mechanical treatment led
to higher degrees of denaturation for all the protein systems investigated. In contrast to many studies,
αLA showed a higher degree of denaturation compared to WPI and βLG even without the additional
influence of shear stress. It seems at high protein concentrations, the renaturation of αLA after thermal
and mechanical treatment might decrease due to high reaction rates. Since the reaction order for αLA
and βLG was very similar (2.262 and 2.151, respectively), the reaction pathways of these proteins under
thermomechanical treatment are expected to be similar. For WPI systems, a reaction order of 1.865 was
determined, which probably results from a combination of a lower reaction order for unsheared systems
and higher reaction order for sheared systems due to phase separation, leading to a reaction order similar
to the single protein fractions. Although the determined values of activation energy are in accordance
with previous studies, it was shown that the shear stress influenced the denaturation reaction of
single- and multi-component protein systems differently. Furthermore, it was shown that additional
information about the denaturation mechanisms of whey proteins at high protein concentration could
be gained by combining protein chemistry and rheological analysis. Since changes in the concentration
and ratio of βLG and αLA could lead to changes in the denaturation and aggregation behavior of
complex systems such as WPI, further investigations are needed to fully understand the reactions
taking place and eventually be able to control them. Additionally, investigations on the influence
of protein denaturation on the resulting nutritional properties, e.g., availability of essential amino
acids during digestion, are needed to be able to design protein-based novel ingredients with enhanced
functionality and biological activity for desired health outcome .
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