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A B S T R A C T

Electrophysiological studies of adults indicate that brain activity is enhanced during viewing of repeated faces, at
a latency of about 250ms after the onset of the face (M250/N250). The present study aimed to determine if this
effect was also present in preschool-aged children, whose brain activity was measured in a custom-sized pe-
diatric MEG system. The results showed that, unlike adults, face repetition did not show any significant mod-
ulation of M250 amplitude in children; however children’s M250 latencies were significantly faster for repeated
than non-repeated faces. Dynamic causal modelling (DCM) of the M250 in both age groups tested the effects of
face repetition within the core face network including the occipital face area (OFA), the fusiform face area (FFA),
and the superior temporal sulcus (STS). DCM revealed that repetition of identical faces altered both forward and
backward connections in children and adults; however the modulations involved inputs to both FFA and OFA in
adults but only to OFA in children. These findings suggest that the amplitude-insensitivity of the immature M250
may be due to a weaker connection between the FFA and lower visual areas.

1. Introduction

The human face conveys an extremely rich set of information con-
cerning identity, gender, emotion, and other important social cues.
Interpretation of this wealth of information is essential for social in-
teractions and requires elaborative processes in multiple brain regions,
with a bias toward right hemisphere structures (Haxby et al., 2000;
Rossion, 2014). Functional magnetic resonance imaging (fMRI) studies
in healthy adults show a stronger blood-oxygen-level dependent
(BOLD) signal in the lateral inferior occipital gyrus (i.e., the occipital
face area, OFA; Gauthier et al., 2000a; Rossion et al., 2003) and the
middle fusiform gyrus (i.e., fusiform face area, FFA; Kanwisher and
Yovel, 2006) when processing faces or invariant facial aspects (e.g.,
eyes) compared to other object categories (e.g., cars). Moreover, evi-
dence from fMRI-neural adaptation or repetition suppression studies
demonstrates that BOLD activities in both the OFA and FFA are in-
creased for a sequence of unique faces compared to repeated faces (Eger
et al., 2004; Ewbank et al., 2012; Gauthier et al., 2000b; Schiltz and
Rossion, 2006). Such “release from adaptation” suggests that similar
populations of face-selective neurons may function in both categorizing
(e.g., ‘it is a face, not a car’) and identifying faces (e.g., ‘it is face A, not
face B’).

Electrophysiological recordings using magneto-/electro-encephalography
(M/EEG) have provided information about the temporal sequencing of face-

specific processing stages (Olivares et al., 2015; Rossion, 2014). Two im-
portant M/EEG components, the M/N170 and the M/N250, are believed to
index structural (∼130–200ms; e.g., Bentin et al., 1996; Rossion and
Jacques, 2008) and identity (∼220–300ms; e.g., Itier et al., 2006;
Schweinberger et al., 2007, 2002; Walther et al., 2013) encoding stages of
facial attributes. A recent MEG study in young adults reported that the right
fusiform gyrus exhibits an early reduction in its activity at around 150ms for
category-level repetitions of face stimuli (e.g., face-to-different-face) and a
late reduction between 200 and 300ms for item-level repetitions
(face-to-same-face) (Simpson et al., 2015). Taken together, the fMRI andMEG
data suggest that a common population of neurons in the OFA and
FFA carries out categorization and identification of faces in two sequential
stages.

Given the social importance of face perception, one might assume
the underlying brain regions should mature quite early. In fact, this
issue is still strongly debated in the literature. Compelling support for
early maturation has been reported by recent fMRI and M/EEG studies,
showing that the activation and response patterns of the FFA (Cantlon
et al., 2010; Haist et al., 2013) and the M/N170 (He et al., 2015;
Kuefner et al., 2010) are stable from age 4–5 years (McKone et al.,
2012). On the other hand, there is a wealth of fMRI data showing that
the brain regions comprising the face network continue to mature to
adolescence and beyond (Cohen Kadosh et al., 2013Kadosh et al., 2013;
Song et al., 2015).
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In adults, the repetition of unfamiliar faces is known to modulate
the amplitude of M250, indicating the initial encoding of individual
face exemplars (Schweinberger, 2011; Schweinberger et al., 2004,
2002; Walther et al., 2013). It remains unclear whether there is a
comparable effect in children’s brain responses. One EEG study on 7-
month-old infants reported a more negative N290 (a precursor of the
adult N170) amplitude for novel female faces compared to 1-back re-
peated female faces (with one intervening different face) (Righi et al.,
2014). However, a later infant EEG study using human faces, ape faces,
and houses in an immediate repetition paradigm reported that, unlike
the adult response, the N290 ampliutde was modulated at the level of
the basic categorization (human, ape, or house) but not the individual-
level representation (Righi et al., 2014; Peykarjou et al., 2014). Another
recent EEG study found no N290 amplitude effect, but did find a re-
duced N290 latency for repeated faces, which the authors interpreted to
suggest faster processing of the repeated faces (Peykarjou et al., 2016).

In older children, two recent M/EEG studies using face repetition
tasks have reported a frontal negative component between 250 and
600ms in children as young as 8-years-old that is sensitive to face re-
petitions, with a larger amplitude for immediately repeated faces than
novel/non-repeated faces (Itier and Taylor, 2004). Source reconstruc-
tion on a similar component in 6–7 year-olds showed enhanced acti-
vation in the right hippocampus to repeated (but unfamiliar) faces
(Taylor et al., 2011b). It remains unclear how this frontally-distributed
component may be related to the occipitotemporal M/N250 component
reported in adults.

While there have been a few electrophysiological and neuroimaging
studies of face repetition effects in infancy, and in school-aged children,
there have been no studies of children of intermediate ages. There are
two main reasons for the lack of neuroimaging studies on face re-
cognition in early childhood. Firstly, preschool children have a limited
capacity for the sustained attentive vigilance and behaviour control
typically required in such experiments (Brown and Jernigan, 2012).
Secondly, most neuroimaging systems with adult-sized head coils
(fMRI) and helmet dewars (MEG) are poorly optimised for use with the
smaller heads of children (Johnson et al., 2010). The advantage of using
a custom-sized pediatric MEG system with pre-school aged children has
been demonstrated in our previous work showing a robust face-sensi-
tive M170 response in a group of 3- to 6-year-old children (He et al.,
2014a,b, 2015); a response that has not been detected in previous
studies using a conventional adult MEG system (Kylliainen et al., 2006;
Taylor et al., 2010). Furthermore, using dynamic causal modelling
(DCM), we were able to elucidate developmental changes in the con-
nectivity of the core face network comprised of the OFA, FFA, and
superior temporal sulcus (STS) (He et al., 2015).

In the present study, we aimed to extend our previous pediatric
MEG work on the N170 to the subsequent M250 stage of face processing
in healthy preschool aged children. To this end, we used a passive
viewing repetition paradigm with an orthogonal visual detection task
(Schweinberger et al., 2007). Repetitions were presented in a 0-lag and
passive viewing design to minimise the cognitive and attentional de-
mands on the children. We examined whether an M250 effect is de-
tectable in children (using a pediatric MEG system); and compared the
effective connectivity of the OFA and FFA underlying the neural re-
sponses obtained in both groups.

2. Material and methods

2.1. Participants

Data were collected from 10 typically-developing children (4M,
aged 5.3 ± 0.83 years, range 4–6 years) and 11 healthy adults (7M,
aged 24 ± 5.76 years, range 18–33 years). All participants were right-
handed with normal or corrected to normal vision. Data from an ad-
ditional 12 participants (10 children and 2 adults) were excluded due to
non-compliance (6 children), excessive head movement (> 10mm

throughout the whole session causing loss of more than 40% of trials, 4
children), and technical problems during data acquisition (2 adults).
The experimental procedures were approved by the Human Participants
Ethics Committee at Macquarie University. Written informed consent
was obtained from the adult participants and from the parents/guar-
dians of the children prior to the experiment.

2.2. Experimental procedure

Upon arriving at the laboratory, participants were familiarized with
the magnetically shielded room (MSR) where they were tested in a
supine position with visual images projected onto a screen by video
projectors situated outside the MSR room (child MEG projector: InFocus
Model IN5108, Portland; Adult MEG projector: Sharp Notevision Model
PG10S, Japan). Prior to MEG measurements, five head position in-
dicators (HPI) were attached to a tightly fitting elastic cap. The 3D
locations of the HPIs, fiducial landmarks and the shape of each parti-
cipant's head were measured with a pen digitizer (Polhemus Fastrack,
Colchester, VT). Then, children were tested using the child custom-
sized 64-channel whole-head axial gradiometer MEG system (Model
PQ1064R-N2m, KIT, Kanazawa, Japan), and adults were tested using
the 160-channel whole-head axial gradiometer MEG system (Model
PQ1160RN2, KIT, Kanazawa, Japan). The gradiometers of both systems
have a 50mm baseline and a 15.5mm diameter positioned in a glass
fibre reinforced plastic cryostat for measurement of the normal com-
ponent of the magnetic field from the human brain (Kado et al., 1999).
In both systems, neighbouring channels are 38mm apart, and 20mm
from the outer dewar surface. The size of the dewar helmet of the child
system was 53.4 cm. This was designed to fit 90% of heads of 5-year
olds (for more details please refer to Johnson et al., 2010).

Both systems were situated within the same MSR and therefore
environmental noise was equivalent. Stimuli consisted of 84 colour
pictures, including 43 unfamiliar faces (24 male) and 41 cartoon alien
pictures. Faces were posed with neutral expression and without glasses,
earrings, facial hair or make-up. All pictures were trimmed to remove
any background, including clothing and hair. Four blocks of 63 pictures
were presented with 86 trials of immediate repetitions (0-lag) and 86
trials of no repetitions. No individual face appeared more than 3 times
within a block. To ensure that participants maintained vigilance, they
were required to press a button for catch trials of cartoon aliens, ran-
domly embedded into the image stream. Brain responses to the catch
trials and to faces presented immediately before or after the catch trials
were not analysed further. Repeated, non-repeated, and catch trials
were presented in a pseudo-randomized order. Even though each face
was repeated only once after a varying number of intervening stimuli,
participants might develop expectations about the nature of the next
stimulus. To examine this possibility, we compared responses for the
first and last blocks of trials and found no significant differences (see
section 1 in the Supplementary Materials).

The experiment was programmed using Experiment Builder soft-
ware (SR Research Ltd., Mississauga, Ontario, Canada). All pictures
were presented within a light grey frame fitted into a rectangular area
that subtended a visual angle of 3.10°× 4.58° in the adult system and
2.64°× 3.90° in the child system. The monocular gaze of the partici-
pant's right eye was monitored by an SR Research Eyelink 1000 eye-
tracking system with a sampling rate of 1000 Hz (http://www.sr-
research.com/EL_1000.html). Each trial began with a fixation point
that appeared at the centre of the screen for 200ms. Each stimulus was
then presented for 1000ms with the condition that eye fixations were
maintained in the proximity of the fixation point. The mean inter-sti-
mulus interval was 1000ms (with a random jitter of 50ms). Catch trials
remained on the screen until a response was made or a maximum
duration of 2000ms occurred (Fig. 1). In both groups, participants re-
sponded to catch trials with accuracy greater than 98%.
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2.3. MEG data acquisition

MEG data were recorded continuously using a sampling rate of
1000 Hz and an on-line bandpass of 0.03–200 Hz. Head locations were
measured before and after each block; movement tolerance was a
maximum of 5mm in adults and 10mm in children.

Off-line data processing was done using SPM8 (Litvak et al., 2011)
and Fieldtrip (Oostenveld et al., 2011) toolboxes in MATLAB2013a
(http://au.mathworks.com/products/matlab/). Data were low-pass fil-
tered at 30 Hz, down-sampled to 250 Hz, high-pass filtered at 1.6 Hz,
epoched around the time of stimulus onset (-100 to 600ms), and
baseline corrected. A baseline epoch was created at −800 to −100ms
from stimulus onset and concatenated to the main epoched data. Trials
containing large amplitude artifacts were removed using the Fieldtrip
visual artefact rejection method (z-score < 2). There were 86 trials for
repeated face and non-repeated face (i.e., the first representation of the
face) conditions respectively in each individual data, and approxi-
mately 98% of trials in each adult and 97% of trials in each child data
survived the rejection procedure. Data from each participant was then
co-registered with the individual dewar head location. For children who
took breaks in-between acquisition blocks, data for each recording
block were first co-registered with initial dewar head location files of
individual blocks, and then transformed into a common sensor space
averaged across all acquisition blocks using the realignment method
implemented in Fieldtrip (Knosche, 2002). The same realignment of
sensor space onto a common sensor space procedure was applied to
individual data before group statistics were performed. Robust aver-
aging was applied to average across trials within the two conditions,
i.e., the repeated faces and non-repeated faces, for each sensor and
participant (Litvak et al., 2011). Outliers were down-weighted by this
method using an iterative robust general linear model (Wager et al.,
2005), which calculates and reassigns weights to each sample of each
trial according to how far it is from the mean response. To remove any
high-frequency noise introduced by the robust averaging step, the
averaged epoched data were low-pass filtered again at 30 Hz.

2.4. Sensor space analysis

To determine differences in the evoked magnetic brain responses
between conditions at the sensor- level, we used topological inference
(Chumbley and Friston, 2009), a method based on the random field

theory and implemented in SPM8, to search and compare event-related
fields (ERFs) in the entire sensor space. This method stringently corrects
for multiple statistical comparisons by calculating the family-wise error
(FWE) rate across 64×64 pixel image for each of the time points from
100ms before to 600ms after stimulus onset. In order to increase sta-
tistical power, we applied a sensor of interest (SOI) approach to select
sensors where the ERFs to face stimuli were greater than baseline (FWE
corrected p < 0.05). The time window for which the ERFs were greater
than baseline within the SOI was identified as the relative time period
of interest. This SOI procedure is orthogonal to the effect of interest
because it averaged over repeated and non-repeated face stimuli. Sub-
sequently, the mean amplitude for each sensor was then averaged
across the SOI regions to produce a value for each subject and each
condition to test for condition-specific effects within groups. We se-
lected to calculate root-mean-square (RMS) waveforms as the sensor-
level technique since it captures simultaneous activity across SOI
clusters, is less susceptible to variations in head-sensor-positions, and is
more comparable across different types of MEG gradiometers (Ozaki
et al., 2012). Due to the fact that adults and children were measured
with two different MEG systems, between-group comparison was in-
appropriate at the sensor level, and therefore only within-group com-
parisons were made to characterise the repetition effect in both groups.
A two-sided paired t-test was performed on the averaged responses
using IBM © SPSS © Statistics (v21.0). P-values for all pairwise multiple
comparisons were corrected by false discovery rate (FDR, q < 0.05)
(Benjamini and Hochberg, 1995).

2.5. Dynamic causal modelling (DCM) and bayesian model selection (BMS)

DCM for EEG/MEG uses generative neural mass models of the brain
to characterise dynamic changes induced by experimental contextual
modulations among brain regions, and therefore facilitates hypothesis
testing in terms of making inferences about the direction and strength
of effective connectivity within the neural architecture underlying the
electromagnetic signals observed at the scalp level (David et al., 2006).
All DCM analyses were performed using DCM10 as implemented in
SPM8.

A canonical cortical mesh derived from the MNI template T1 image
was co-registered and warped, in a non-linear manner, to match each
participant’s digitised head-shape data. A single sphere model was used
to compute leadfield used by the source reconstruction scheme im-
planted in the DCM inversion procedure (Litvak et al., 2011). Source
regions defined here are estimated as priors (dipole locations or mo-
ments), from which Bayesian inversion of the DCM implicitly estimates
the conditional density of the locations (16mm2 Gaussian dispersion)
and orientations (under uninformative or flat priors) (David et al.,
2006; Kiebel et al., 2006).

DCM model space, consisting of the bilateral OFA (MNI coordinates:
right: [42−77 −11]; left [-39, −81, −15]), FFA (right: [42−45
−27]; left [-39, −51, −24]), and the superior temporal sulcus (STS;
right: [48−42 12]; left [-48, −42, 12]), was adapted from a previous
developmental DCM-MEG study (He et al., 2015). The two model
structures, as outlined in Fig. 2, are both comprised of reciprocal con-
nections between OFA, FFA and STS within each hemisphere: the inter-
hemispheric model space (the child winning model in He et al., 2015)
includes extra inter-hemispheric connections from OFA to contralateral
FFA on top of the simple model space (the adult winning model in He
et al., 2015).

We then specified a set of 24 models based on this two symmetric
hemisphere model space with systematic variations in face repetition
modulation between OFA and FFA in the right hemisphere. Similar
connectivity modulations on recurrent connections between FFA and
OFA during face repetition tasks have been tested in a DCM-fMRI study
(Ewbank et al., 2012). The right hemispheric dominance of face de-
tection and identification has been consistently reported over the last
two decades of neuroimaging research in infants (e.g., de Heering and

Fig. 1. Schematic illustration of the child-friendly experimental paradigm. Faces were
presented at a rate of 1000ms, a fixation (star) interleaved between faces for 200ms, and
inter-stimulus interval was 1000 ± 50ms. Each face was paired either with the same
face (repeated face trial) or with a different face (non-repeated face trial), i.e., used twice in
both 86 repeated or 86 non-repeated trials.
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Rossion, 2015), children (e.g., Kuefner et al., 2010) and adults (e.g.,
Ewbank et al., 2012). Meta-family 1 (see Fig. 3) has models derived
from the simple model; Meta-family 2 (see Fig. 4) includes connectivity

variations of the inter-hemispheric model. Each Meta-family was then
composed of three sub-families, with inputs modelled to enter the OFA
only (sub-family 1), FFA only (sub-family 2), and both the OFA and FFA
(sub-family 3). These three alternative specifications of inputs were set
up to test a rather recent view of face perception proposing that other
than from the OFA, FFA receives independent input from low-level
visual areas (Kim et al., 2006) and is activated in parallel with OFA for
the process of a coarse-to-fine representation generation of faces
(Rossion and Caharel, 2011). Lastly, within each sub-family, there are
four alternative models differed in whether face repetitions modulate
the efficacy of the forward connections, the backward connections, both
the forward and backward connections between OFA and FFA, or only
self-connections of OFA and FFA.

All 24 models were inverted individually, and the random-effects
Bayesian model selection (BMS-RFX) was used to compare the ex-
ceedance probability (i.e., the probability of each model more likely
than any other tested models to have generated the observed data) of
each individual model or model family to select the most possible

Fig. 2. Model structures adapted from a previous developmental DCM-MEG study (He
et al., 2015). The simple model structure contains connections between OFA, FFA and
STS. The inter-hemispheric model includes extra inter-hemispheric connections from OFA
to contralateral FFA. OFA, occipital face area (inferior occipital gyrus); FFA, fusiform face
area (fusiform gyrus); STS, superior temporal sulcus.

Fig. 3. Meta-family 1. All models in Meta-family 1 have the simple model space with connections between OFA, FFA, and STS within each hemisphere. Sub-family 1, sub-family 2, and
sub-family 3 have models with driving inputs entering OFA only, FFA only, and both OFA and FFA respectively in each column. Models within each sub-family differed from each other in
terms of the type of modulations enabled by face repetitions for changes in forward and self-connections only, backward and self-connections only, both forward/backward and self-
connections, or self-connections only. OFA, occipital face area (inferior occipital gyrus); FFA, fusiform face area (fusiform gyrus); STS, superior temporal sulcus.
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model (the “winning model”) across individuals within each group
(Stephan et al., 2010).

Model inversion was restricted within the time window of the
M250, where the repetition effects in the ERFs were significant (adults:
0–212ms; children: 0–326ms, see below sensor space results). This was
to optimise the investigation of spatiotemporal dynamics of face stimuli
within the network as a result of network perturbations from the ex-
perimental modulation. It is important to define the time window for
DCM model inversion for accurate source reconstruction (Litvak et al.,
2011). Model evidence was drawn firstly at the Meta-family level
(Meta-family 1 vs. 2) using the family Bayesian model selection (BMS)
method (Penny et al., 2010). A second level family BMS on models from
the most likely Meta-family was then carried out to assess the most
plausible sub-family, followed by the final BMS to examine which single
model would perform best in explaining the observed sensor level data.

3. Results

3.1. Sensor space results

A data driven topographical analysis was carried out, providing a
statistic parametric map of spatial and temporal clusters of face-sensi-
tive responses, rigorously correcting for family-wise error rates (FWE).
Two bilateral occipitotemporal clusters of sensors were obtained
(Fig. 5), giving significantly greater ERFs to faces than baseline (FWE-
corrected p < 0.05) in adults (30 out of 160 channels) and children (25
out of 64 channels). Adult ERF waveforms were characterised by three
face-evoked responses (Fig. 6): M100, latency around 85ms (range:
63–110ms); M170, around 137ms (range: 115–183ms); and M250,
around 205ms (range: 165–212ms). ERFs of children (Fig. 7) showed a
prominent M100 component peaking at 117ms (range: 90–167ms); an
M170 response at 214ms (range: 167–277ms), and a M250 response at
305ms (range: 260–326ms).

Fig. 8 shows root-mean-square (RMS) waveforms for each group.

Fig. 4. Meta-family 2. All models in Meta-family 2 have the inter-hemispheric model space with extra inter-hemispheric connections between OFA and FFA on top of the simple model
space. Sub-family 1, sub-family 2, and sub-family 3 have models with driving inputs entering OFA only, FFA only, and OFA and FFA respectively in each column. Models within each sub-
family differed from each other in terms of the type of modulations enabled by face repetitions for changes in forward and self-connections only, backward and self-connections only, both
forward/backward and self-connections, or self-connections only. OFA, occipital face area (inferior occipital gyrus); FFA, fusiform face area (fusiform gyrus); STS, superior temporal
sulcus.
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Mean latencies and amplitudes for three ERF components from SOIs
were computed in each participant, and a paired-t-test with FDR cor-
rection was computed to examine experimental effects within each
group. In adults, the only significant effect was a larger M250 (∼6.45
fT) for repeated faces compared to non-repeated ones (t (10)= 4.25,
p=0.002, p-fdr= 0.012); no significant effects was obtained for M100
or M170 responses. In children, no significant amplitude effects were
found for any of the three components; however the M250 had an
earlier latency (∼22.15ms) for repeated than non-repeated faces (t
(9)= 4.43, p=0.002, p-fdr= 0.012).

3.2. DCM-bayesian model selection (BMS)

In adults, DCM models were inverted within 0–212ms (the time
window of M250) for each individual. Consistent with our previous
study (He et al., 2015), at the Meta-family level the simple model
structure (Meta-family 1) was found to be superior in explaining face-
selective MEG response in adults by the random-effects Bayesian model
selection (BMS-RFX; exceedance probability= 0.99, Fig. 9A upper
panel). The second level family BMS-RFX model selection showed that
sub-family 3, with driving input entering both OFA and FFA, has the
highest exceedance probabilities (0.78) (Fig. 9B upper panel). The final
BMS-RFX among models with different types of modulatory connec-
tions favoured the model (in Fig. 10 left side) that has all connections
dynamically change in response to the face repetition, including the
forward and backward connections between the OFA and FFA, as well

as the self-connections within the two regions (exceedance prob-
ability= 0.87, Fig. 9C upper panel).

In children, DCM models were also inverted for each individual
within the time window of M250 (i.e., 0–326ms). At the first Meta-
family level of model selection, BMS-RFX clearly favoured Meta-family
2 (exceedance probability= 0.96, Fig. 9A lower panel). The second
level family BMS-RFX showed strong preference to sub-family 1, which
consists of models with inputs only entering OFA (exceedance prob-
ability= 0.79, Fig. 9B lower panel). In the final BMS-RFX, the model
(in Fig. 10 right side) that has recurrent backward and forward con-
nection between OFA and FFA, with changes in self-connectivity in
both regions, was preferred in explaining the face repetition effect in
children (exceedance probability= 0.68, Fig. 9B lower panel).

Across individuals in both groups, the three levels of BMS-RFX
showed highly consistent results with a comparable variability between
children and adults (see details in Fig. 3 in the Supplementary
Materials).

4. Discussion

The results of the present study confirm that M250 amplitude is
significantly modulated by face repetition in the adult brain
(Schweinberger, 2011; Schweinberger et al., 2007; Simpson et al.,
2015). In contrast, using a pediatric MEG system, children showed no
significant M250 amplitude effect but did exhibit a modulation of M250
peak latency, with significantly faster responses to repeated faces than
to non-repeated faces. This latency effect has been previously reported
in EEG measurements of infants (Schweinberger et al., 2002). DCM
analyses demonstrated that the key group difference in effective con-
nectivity for this time window lies in the visual inputs entering into the
reciprocal network of OFA and FFA: a single input to the OFA in chil-
dren, but parallel inputs through both the OFA and FFA in adults.

Our MEG data showed three brain responses − the M100, M170,
and M250 in adults at latencies consistent with previous reports
(Schweinberger et al., 2004, 2007, 2002; Simpson et al., 2015; Taylor
et al., 2011a). As expected, there were neither amplitude nor latency
changes of the M100 and M170 for face repetitions, suggesting in-
sensitivity of these components to this manipulation. This finding
agrees well with the standard model of the temporal structure of face
processing, which proposes that the M100 represents the general low-
level perceptual analysis of visual stimuli (e.g., colour and phase-
spectrum), and the M170 indexes the earliest categorical encoding of
facial structural information (e.g., integration of facial features into a
face representation) (Eimer, 2011; Rossion and Caharel, 2011; Simpson
et al., 2015). Our finding of a repetition-sensitive M250 in adults is
consistent with the recent consensus that the M/N250 indexes the
computation of identity, or the formation of individual face exemplars,
subsequent to the structural encoding of faces (Schweinberger et al.,
2007, 2002; Simpson et al., 2015; Taylor et al., 2010).

In children, M100, M170 and M250 signals over occipitotemporal
areas manifested no amplitude sensitivity to face repetitions. However,
children showed a faster M250 peak latency for repeated than non-re-
peated faces. This finding is consistent with previous reports of reduced
N290 latency in 9-month-old infants (Peykarjou et al., 2016) and re-
duced N170 latency in adults (Itier et al., 2006) for repeated unfamiliar
faces. To the best of our knowledge, there are no other published MEG/
EEG studies that have investigated the face repetition effect in pre-
school children. There is a MEG study in school-age children (6–7
years) that reported an enhanced brain response to repeated faces, but
with a much broader time window (280–680ms) that was only iden-
tifiable at the source level (Itier et al., 2006; Taylor et al., 2011b). It is
unclear whether the M250 component found in our preschool children
is the functional precursor of the much broader component reported in
those 6–7-year-olds. The absence of the M250 amplitude sensitivity to
face repetitions may be due to the design of our particular paradigm.
The processing effort upon the immediate repetition of unfamiliar faces

Fig. 5. Sensors of Interest (SOIs) in adults (N=11, top panel) and children (N=10,
bottom panel), from which significant face-evoked components (i.e., M100, M170 and
M250) were identified showing a significantly larger amplitude to faces than baseline.
Black dots for bilateral temporal sensors, red for right occipital and green for left occipital
sensors.
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Fig. 6. Averaged sensor waveform from 30 out of 160 MEG sensors in each hemisphere from adults (N=11). Black line shows baseline responses and red line indicates responses to faces
(novel plus repeated faces). Shaded areas represent the corresponding 95% confidence intervals across all participants in the group.

Fig. 7. Averaged sensor waveform from 25 out of 64 MEG sensors in each hemisphere from children (N=10). Black line shows baseline responses and red line indicates responses to
faces (novel plus repeated faces). Shaded areas represent the corresponding 95% confidence intervals across all participants in the group.
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is high in children, as reflected in the reduced M250 latency; however,
more repetitions are required for building a stable representation.
Therefore, either increasing the number of repetitions of the same face,
or increasing the duration of each presentation, might help to elicit face
repetition effects on the M250 amplitude in children.

Results from the DCM analysis reveal that both the adults and
preschool children recruit reciprocal connections between OFA and FFA

Fig. 8. Root-mean-square waveforms for two experimental conditions from sensors of
interest in adults (N=11, top panel) and children (N=10, bottom panel). Blue line
shows responses to repeated faces and red line indicates responses to novel faces.

Fig. 9. Bayesian model selection with random effects (BMS-RFX) (11 adults and 10 children). (A) Meta-family inference based upon the two basic model space: In adults (upper panel),
the BMS favoured the simple model space − connections between OFA, FFA and STS within each hemisphere; in children (lower panel), BMS-RFX selected the inter-hemispheric model
where extra inter-hemispheric connections between OFA and FFA are in place. (B) Sub-family inference based upon the location of the driving input entering the model space: In adults
(upper panel), the second level BMS-RFX favoured sub-family 3, which has inputs entering both the OFA (occipital face area/inferior occipital gyrus) and the FFA (fusiform face area/
middle fusiform gyrus); in children (lower panel), BMS-RFX selected Family 1, in which models have inputs entering the OFA only. (C) The final level BMS-RFX on four alternative models
within the winning sub-family respectively, in both groups, clearly favoured the model with modulations on forward and backward connections between and self-connections within FFA
and OFA in both adults (upper panel) and children (lower panel).

Fig. 10. The winning model of adults (Left panel, N=11) and children (Right panel,
N= 10). Compared to the adult winning model, the child winning model has inter-
hemispheric connections between OFA and FFA on top of the intra-hemispheric con-
nections between OFA, FFA and STS. Bayesian model selection with random effects (BMS-
RFX) preferred driving inputs enter into both OFA and FFA in adults and into OFA only in
children. Both models have reciprocal connections between and self-connections within
the OFA and FFA that are responsive to face repetition modulations. OFA, occipital face
area (inferior occipital gyrus); FFA, fusiform face area (fusiform gyrus); STS, superior
temporal sulcus.
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for computing identity-specific facial attributes. These results mirror
the changes found in a recent fMRI connectivity study showing differ-
ential weighting of forward and backward OFA to FFA connections
during processing of repeated faces (Ewbank et al., 2012). Strikingly,
the patterns of effective connectivity within the OFA and FFA network
were significantly different for the two age groups (Fig. 10) in terms of
how the visual inputs enter the network. We tested three alternative
models, i.e., inputs coming either through OFA only, FFA only, or both
OFA and FFA. The Bayesian model selection in adults clearly favoured
dual inputs of facial information to the network, i.e., inputs directly into
the OFA and FFA (Fig. 7A). This finding is in line with reports from
lesion studies in which the functionality of the right FFA and superior
temporal sulcus (another core face region) were found to be intact in
prosopagnosia patients, despite structural damage to the right OFA
(Rossion et al., 2011; Schiltz and Rossion, 2006) or to bilateral OFAs
(Steeves et al., 2006). Moreover, structural imaging studies have also
reported direct connections from early visual areas to the FFA
(Gschwind et al., 2012; Pyles et al., 2013). Therefore, our data adds
evidence to the argument that in the mature human brain, both the OFA
and FFA receive inputs through multiple pathways from the low order
visual areas to compute face representations collaboratively and in-
dependently.

The main difference of the winning model for children compared to
adults is the single input through OFA to the network. This pattern
suggests that the fusiform gyrus in the immature brain has weaker
connections with lower visual areas and, therefore, receives less in-
formation to operate on face-related processes for invariant identity
specific features. This is consistent with recent fMRI evidence using
DCM, showing weaker connections between lower visual areas and the
fusiform gyrus in children compared to adults during performance of a
face identification task (Fairhall and Ishai, 2006). It has also been
shown in some recent connectivity studies that cortical networks for
face processing are continuously reorganised and strengthened in such
a way that some of the connections linked to child face-processing skills
would be replaced by maturing connections emerging during the de-
velopment of face recognition strategies (Johnson, 2001, 2011; Joseph
et al., 2011). If this is so, the lack of significant effective inputs to the
FFA in children might result in a weaker guidance of the fine-tuning of
processing in the OFA for the computation of facial identity attributes,
manifest at the sensor level as a lack of M250 response to face repeti-
tions.

A number of conceptional and methodological limitations apply to
the current study. First, an interleaved design with repeated faces in-
tervened by a varying number of different faces may be more optimal
for minimising expectations about the nature of the next stimulus.
Second, since we used DCM models derived from the previous litera-
ture, the present data cannot rule out the existence of comparable or
better models. Future studies should endeavour to examine whether the
current findings can be reproduced by modelling with more extended
networks based on additional priors from advanced source re-
construction techniques or multimodal recordings (Friston et al., 2017).
Our study is also limited by the relatively small number of participants
in our two groups: larger sample sizes would be preferred to increase
statistical power. Finally, as pointed out by one of our reviewers, it
would also be useful in future pediatric studies to assess whether there
are any important differences (e.g., personality) of children who are
compliant during the scanning procedure compared to those that are
not able to follow task instructions.

In conclusion, this is the first study of the effect of face repetitions
on the M250 in preschool children. The MEG results show that im-
mediate repetitions of faces enhance the amplitude of the M250 neu-
romagnetic component in adults, but had no influence on earlier
components such as M100 and M170. However, in children, repetitions
significantly modulated the latency but not the amplitude of the M250
peak; there were no significant amplitude or latency effects on earlier
peaks. Most importantly, by using the DCM connectivity analysis, this

study examined the functional connectivity between two key face-
sensitive brain regions, the OFA and FFA. Results show that the gen-
eration of the M250 in both adults and children relies on reciprocal
connections between the OFA and FFA. In adults this network receives
inputs from lower order visual areas through both OFA and FFA, but in
children only the OFA receives these inputs. Overall, this investigation
of the functional profile of the M250 component following immediate
face repetition in preschool-aged children provides valuable insights
into our understanding of the spatiotemporal characteristics of the
development of the face processing network. Moreover, it also re-
presents an important advance in the application of the pediatric MEG
to elucidate the developmental trajectories of transient cognitive pro-
cess and its underling neural organisation in both space and time.
Future applications of our pediatric MEG in studying the preschool
cognition of face processing may benefit from engaging both the core
and extended face networks with (1) more repetitions of different faces,
(2) longer presentation for each face stimulus, (3) more demanding
explicit recognition tasks, and (4) well-controlled comparison stimuli
(e.g., objects) in order to address a comprehensive account of the de-
velopment of face selectivity in human brain.
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